
AMSC 663 Mid-Year Report: Lagrangian

Analysis of Two- and Three-Dimensional Oceanic

Flows from Eulerian Velocity Data

David Russell
Second-year Ph.D. student, Applied Math and Scientific Computing

russelld@umd.edu

Project Advisor: Kayo Ide
Department of Atmospheric and Oceanic Science

Center for Scientific Computation and Mathematical Modeling
Earth System Science Interdisciplinary Center
Institute for Physical Science and Technology

ide@umd.edu

October 15, 2015

Abstract

In this project, we will design and build a set of Lagrangian analysis
tools for an oceanic flow whose velocity is proscribed on a spatio-temporal
grid. The main tools will be the so-called M -function (arc-length over a
fixed time interval) and the maximal finite-time Lyapunov exponent, both
of which help elucidate the underlying coherent structures of the flow.
After validating them, we will test these tools on a dataset coming from
a modeled flow of the Chesapeake Bay.

1 Introduction

Ocean currents have all sorts of large-scale coherent structures that are gen-
erally invisible to the naked eye. By coherent structure, we mean a blob of
fluid that moves as one—eddies or jet streams, for example [1]. Finding ways
to unveil these structures is of general interest to those who study mixing and
transport. For example, if a pollutant enters the water, it tends to stay within a
single coherent structure, so the boundaries (or manifolds) separating different
coherent structures serve as barriers to its transport (neglecting molecular dif-
fusion). The classification of these structures borrows heavily from dynamical
systems theory. Of particular interest are the notions of a distinguished hyper-
bolic trajectory, or DHT (the equivalent of a fixed point in a changing flow field)

1



and stable and unstable manifolds (structural boundaries on which the flow is
toward or away from the DHT, respectively).

Velocity data from ocean models give us the raw material to bring out these
structures. To do so, it is useful to move from the grid-based (Eulerian) view-
point to a flow-following (Lagrangian) one. That is, set up a vast network of
fluid “particles” to be tracked through the flow, simulate their trajectories as
the flow evolves, and then analyze those trajectories to get structural informa-
tion. In Lagrangian terms, a coherent structure is nothing more than a group
of particles whose trajectories “go together” in some sense.

2 Approach

One way to delineate boundaries between coherent structures is to look for
places where velocity changes abruptly in a certain direction. Wherever a region
of fast-moving particles abuts a slow-moving region, a structural boundary is
evident. This will also be true if one of the regions will be moving or has been
moving faster at a time not far from the current one. In other words, if we color
each particle by how far it has traveled or will travel within a certain fixed time
interval (for example, the last two days), then color boundaries will tend to align
with structural boundaries. Thus, letting X(X0, t) be the position at time t of
the particle with initial position X0, we introduce the so-called M -function [2]:

Mu,τ (X∗
0, t

∗) =

∫ t∗+τ

t∗−τ

(
2 or 3∑
i=1

(
dXi(t)

dt

)2
) 1

2

dt,

which is simply the distance traveled by the particle with initial position X∗
0

over the time interval spanning forward and backward time τ from the current
time t∗. Sometimes we will be interested in looking only forward or backward
in time, and will define M accordingly by

Mu,τ (X∗
0, t

∗) =

∫ t∗+τ

t∗

(
2 or 3∑
i=1

(
dXi(t)

dt

)2
) 1

2

dt

or

Mu,τ (X∗
0, t

∗) =

∫ t∗

t∗−τ

(
2 or 3∑
i=1

(
dXi(t)

dt

)2
) 1

2

dt.

The choice should be clear from the context.
Another way to look for transport boundaries is to look for places where a

flow bifurcates, or splits apart. If a small parcel of fluid experiences relatively
little stretching and squishing as it moves through the flow, it is likely to lie
within one coherent structure. Conversely, if it finds itself getting massively
stretched along some axis (as time runs either forward or backward), it is likely
to lie on the boundary between two coherent structures. Thus we need a way to

2



Figure 1: M -function coloring for a dataset from the Kuroshio current [2]. Red
represents fast-moving regions, blue slow. Stable and unstable manifolds appear
as thin yellow lines.

quantify the degree to which two nearby trajectories diverge in time. To that
end, we introduce the maximal finite-time Lyapunov exponent (FTLE):

λ =
1

2t
ln
(
ρ
(
LTL

))
where ρ denotes the spectral radius and

L(t) =
∂X(X0, t)

∂X0

is the so-called transition matrix at time t (the Jacobian of current position with
respect to initial position). An equivalent definition of λ is that, for the locally
linearized flow field, it represents the exponential growth rate of an infinitesimal
fluid parcel along its direction of maximal stretching.

These two tools, the M -function and FTLE, provide a launching point for
a Lagrangian analysis of the flow. For example, one can produce visualizations
like that in figure 1, in which the eddies, jet streams, and stable and unstable
manifolds are clearly visible.

3 Algorithms

There are two main computational tasks to be performed in this project: com-
putation of the particle trajectories, and analysis of those trajectories to obtain

3



structural information. Where applicable, both low-order and high-order meth-
ods will be implemented, in order to investigate the speed vs. accuracy tradeoff
often inherent in deciding between those alternatives.

3.1 Trajectory Computation

Let u(x, t) be a continuous velocity field in two or three dimensions, i.e.

u(x, t) = (u, v) = (u(x, y, t), v(x, y, t))

in two dimensions, or

u(x, t) = (u, v, w) = (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t))

in three dimensions. A particle trajectory X(X0, t) must then satisfy

Ẋ(X0, t) = u(X(X0, t), t)

where Ẋ denotes dX
dt . In three dimensions, for example, this boils down to the

system of differential equations

Ẋ(X0, t) = u(X(X0, t), Y (X0, t), Z(X0, t), t)

Ẏ (X0, t) = v(X(X0, t), Y (X0, t), Z(X0, t), t)

Ż(X0, t) = w(X(X0, t), Y (X0, t), Z(X0, t), t)

or, in abbreviated form,

Ẋ = u(X,Y, Z, t)

Ẏ = v(X,Y, Z, t)

Ż = w(X,Y, Z, t).

The trajectory can thus be determined from a given u by

X(X0, t
∗) =

∫ t∗

t0

u(X(X0, t), t) dt.

There are two parts to applying this formula to Eulerian velocity data.
First, if the velocity components are given only on a spatio-temporal grid, e.g.
u(xi, yj , zk, tl) = ui,j,k,l, these components must be interpolated between the
grid points as the particles travel there. Second, once velocity is interpolated,
a numerical integration scheme must be chosen.

3.1.1 Velocity Interpolation

Velocity values are assumed to be given on a so-called Arakawa C-grid (in ac-
cordance with the ROMS standard to be discussed later). This means that the
given data for u, v, and w are staggered within each grid box, so that, u is

4



Figure 2: Arakawa c-grid box [6]

given at the centers of the west and east faces, v north and south, and w top
and bottom (figure 2). Each of these scalar components will be interpolated
independently to the location of each particle. For simplicity, the 3D interpo-
lation will be broken into a 2D horizontal interpolation followed by 1D vertical
interpolation. Temporal interpolation also is treated as a 1D problem following
spatial interpolation.

The simplest way to interpolate horizontally is to use bilinear splines. A
bilinear spline is a function of the form

f(x, y) =

1∑
i,j=0

cijx
iyj = c00 + c10x+ c01y + c11xy

defined on a single grid box, where the parameters c00, c10, c01, c11 are chosen so
that the values of f at the corners match those of the given function. In other
words, given data u, the interpolant f on [xi, xi+1]× [yj , yj+1] must satisfy

f(xi, yj) = ui,j

f(xi+1, yj) = ui+1,j

f(xi, yj+1) = ui,j+1

f(xi+1, yj+1) = ui+1,j+1.

This simple scheme has O(h2) error for h = ∆x = ∆y, and is only C0, with
discontinuous derivatives at the box edges.

A more accurate method is to use bicubic splines. In this case, we approxi-
mate u by a bicubic function

f(x, y) =

3∑
i,j=0

cijx
iyj

within each box. To solve for the sixteen unknowns cij , we must fit not only
to the given values of u at the four corners, but also to estimated values of the
partial derivatives ∂xu, ∂yu, and ∂xyu at those corners. This method is known
to be O(h4) under certain conditions.

5



For the 1D vertical interpolation problem, we compare two methods: lin-
ear splines and cubic polynomials interpolated through the nearest four verti-
cal neighbors. That is, given z ∈ [zk, zk+1] and 2D-interpolated values uk =
u(x, y, zk), uk+1 = u(x, y, zk+1), etc., we approximate u(x, y, z) using a linear
spline by

f(z) = w · uk + (1− w) · uk+1

where

w =
zk+1 − z
zk+1 − zk

which is O(h2), or, for better accuracy, using a cubic polynomial through the
nearest four vertical neighbors, by

f(z) =
(z − zk)(z − zk+1)(z − zk+2)

(zk−1 − zk)(zk−1 − zk+1)(zk−1 − zk+2)
uk−1

+
(z − zk−1)(z − zk+1)(z − zk+2)

(zk − zk−1)(zk − zk+1)(zk − zk+2)
uk

+
(z − zk−1)(z − zk)(z − zk+2)

(zk+1 − zk−1)(zk+1 − zk)(zk+1 − zk+2)
uk+1

+
(z − zk−1)(z − zk)(z − zk+1)

(zk+2 − zk−1)(zk+2 − zk)(zk+2 − zk+1)
uk+2.

which is O(h4) (although it is not C1, as it does not match derivatives, unlike
cubic splines). At the vertical boundaries, the nearest four neighbors will not
be symmetric about the query point, so that, for example, the interpolating
polynomial will be the same for the upper two layers.

Finally, the 1D temporal interpolation problem will be treated using the
same two methods as the 1D vertical problem.

3.1.2 Time Integration

For velocity integration, we use only explicit methods for simplicity. A well-
known high-order multistage method is the famous Runge-Kutta fourth-order
(RK4) scheme:

k1 = ∆t · u (Xn, tn)

k2 = ∆t · u
(
Xn +

k1

2
, tn +

∆t

2

)
k3 = ∆t · u

(
Xn +

k2

2
, tn +

∆t

2

)
k4 = ∆t · u (Xn + k3, tn + ∆t)

Xn+1 = Xn +
1

6
(k1 + 2k2 + 2k3 + k4) .

6



We also plan to implement the Milne-Hamming scheme, which is a stable fourth-
order multistep predictor-corrector method. Its equations are:

X̂n+1 = Xn−3 +
4∆t

3
(2u(Xn, tn)− u(Xn−1, tn−1) + u(Xn−2, tn−2))

for the predictor and

Xn+1 =
9

8
Xn −

1

8
Xn−2 +

3∆t

8

(
u(X̂n+1, tn+1) + 2u(Xn, tn) + u(Xn−1, tn−1)

)
for the corrector. We choose this method because it is currently implemented
in the ROMS model (see section 6).

3.2 Analysis Tools

3.2.1 M-function Calculation

The M -function can be calculated in parallel with, and using the same integra-
tion schemes as, the trajectory computation.

3.2.2 Lyapunov Exponent Calculation

The two main aspects of the maximum Lyapunov exponent calculation are (i)
approximating the transition matrix L and (ii) calculating the eigenvalues of
LTL. For the two-dimensional case, we have

L(X(X0, t), t) =


∂X(X0,t)
∂X0

∂X(X0,t)
∂Y0

∂Y (X0,t)
∂X0

∂Y (X0,t)
∂Y0

 ,
and the idea is to approximate these partial derivatives using finite differences.
To that end, we initially lay four particles directly to the left and right of the
initial position of interest (with sufficiently small separation ∆X0) and up and
down (separation ∆Y0), calculate their trajectories up to the current time, and
approximate L by

X(X0+
∆X0

2 ,Y0,t)−X(X0−∆X0
2 ,Y0,t)

∆X0

X(X0,Y0+
∆Y0

2 ,t)−X(X0,Y0−∆Y0
2 ,t)

∆Y0

Y (X0+
∆X0

2 ,Y0,t)−Y (X0−∆X0
2 ,Y0,t)

∆X0

Y (X0,Y0+
∆Y0

2 ,t)−Y (X0,Y0−∆Y0
2 ,t)

∆Y0


(A higher-order method could presumably be used here as well, but this was
not discussed.) The three-dimensional case is entirely analogous.

Calculating the eigenvalues of LTL is relatively simple, since it is either
a 2 × 2 or 3 × 3 matrix, leading to a characteristic polynomial that is either
quadratic or cubic. Solving the characteristic equation thus amounts to finding
the roots of a quadratic or cubic polynomial. Both of these problems have
tractable closed-form solutions (e.g. the quadratic formula in the 2× 2 case).

7



4 Implementation

All programs are written in MATLAB (version 2015b). When possible, code
will be run on a MacBook Pro with a 2.6 GHz Intel Core i5 processor and 8 GB
of memory. However, this is expected to become prohibitive for an eventuality
of about 106 particles in the testing problem, so we plan to do those runs on the
Deep Thought 2 cluster on the University of Maryland campus. The algorithms
involved lend themselves to massive parallelization, since each trajectory, M -
function, etc. can be computed independently of the others. Particle locations
are stored in column vectors, and any function of the particles (e.g. their grid
box indices) is stored in a vector of the same size. A prevailing design concept
was to avoid looping through particles by vectorizing all operations.

Bilinear interpolation of u(x, y) on [xi, xi+1] × [yj , yj+1] was implemented
explicitly via the formula

f(x, y) = wy (wxui,j + (1− wx)ui+1,j)

+ (1− wy) (wxui,j+1 + (1− wx)ui+1,j+1)

with weights

wx =
xi+1 − x
xi+1 − xi

wy =
yj+1 − y
yj+1 − yj

.

In implementing these formulas, x and y become column vectors with the par-
ticle locations, and the only tricky part is finding the box indices i and j corre-
sponding to each particle. This was simply accomplished using the histcounts

function in MATLAB.
Bicubic interpolation on [xi, xi+1]× [yj , yj+1] was performed by scaling the

problem to [0, 1]2, doing the interpolation there, and scaling back. The coeffi-
cients in

f(x, y) =

3∑
i,j=0

cijx
iyj

can be determined from the values of u and its derivatives by



c00

c10

c20

c30

c01

c11

c21

c31

c02

c12

c22

c32

c03

c13

c23

c33



=



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
−3 3 0 0 −2 −1 0 0 0 0 0 0 0 0 0 0
2 −2 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 −3 3 0 0 −2 −1 0 0
0 0 0 0 0 0 0 0 2 −2 0 0 1 1 0 0
−3 0 3 0 0 0 0 0 −2 0 −1 0 0 0 0 0
0 0 0 0 −3 0 3 0 0 0 0 0 −2 0 −1 0
9 −9 −9 9 6 3 −6 −3 6 −6 3 −3 4 2 2 1
−6 6 6 −6 −3 −3 3 3 −4 4 −2 2 −2 −2 −1 −1
2 0 −2 0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 2 0 −2 0 0 0 0 0 1 0 1 0
−6 6 6 −6 −4 −2 4 2 −3 3 −3 3 −2 −1 −2 −1
4 −4 −4 4 2 2 −2 −2 2 −2 2 −2 1 1 1 1





u(0, 0)
u(1, 0)
u(0, 1)
u(1, 1)
ux(0, 0)
ux(1, 0)
ux(0, 1)
ux(1, 1)
uy(0, 0)
uy(1, 0)
uy(0, 1)
uy(1, 1)
uxy(0, 0)
uxy(1, 0)
uxy(0, 1)
uxy(1, 1)



,

8



although this system of equations was hard-coded to take into account the
column-vector nature of u(0, 0), u(1, 0), etc. The derivatives in question were
approximated using the second-order finite difference approximations. For in-
terior grid boxes, we used the centered differences

∂xui,j ≈
ui+1,j − ui−1,j

2∆x

∂yui,j ≈
ui,j+1 − ui,j−1

2∆y

∂xyui,j ≈
ui+1,j+1 − ui−1,j+1 − ui+1,j−1 + ui−1,j−1

4∆x∆y
,

while for grid boxes bordering an edge of the domain, these formulas were re-
placed by one-sided differences. For example, when i = 1 we used the second-
order approximations

∂xu1,j ≈
1

2∆x
(−3u1,j + 4u2,j − u3,j)

∂xyu1,j ≈
3u1,j−1 − 3u1,j+1 − 4u2,j−1 + 4u2,j+1 + u3,j−1 − u3,j+1

4∆x∆y
,

and when i = j = 1, we used

∂xyu1,1 ≈
9u1,1 − 12u1,2 + 3u1,3 − 12u2,1 + 16u2,2 − 4u2,3 + 3u3,1 − 4u3,2 + u3,3

4∆x∆y
.

Again, some care had to be taken to ensure that the operations remained vec-
torized. For example, because of the different formulas for boundary boxes
and interior boxes, we had to be able to grab one set of particle indices at a
time—those in the interior, or on the left boundary, or the top boundary, etc.

5 Validation

To validate our interpolation schemes, we apply them to the simple analytic
function u(x, y) = ey sin(πx). That is, we discretize this function on a grid,
apply the schemes to this grid data, and verify that the error goes to 0 as the
grid spacing goes to 0. In fact, for grid spacing h = ∆x = ∆y, we expect the
maximum error to be O(h2) for bilinear and O(h4) for bicubic. The results are
shown in figure 3. Using the two finest grids, the estimated order of accuracy p
in ‖u− f‖2 = O(hp) is p ≈ 3.0029 for bilinear and p ≈ 4.3569 for bicubic, both
somewhat higher than expected.

The computational times of these figures are also compared in figure 4. As
expected, bicubic interpolation takes significantly longer (roughly 10-20 times),
and the time grows roughly linearly with the number of grid points.

To validate our trajectory computation, we test it on some well-understood
nonlinear dynamical systems: the Duffing oscillator (2D) and Hill’s spherical
vortex (3D), and, time permitting, on the rotating Duffing oscillator (2D) and

9



Figure 3: Convergence of bilinear and bicubic interpolation

Figure 4: Time of bilinear and bicubic interpolation

10



Lorenz three-variable system (3D). In each case, we discretize phase-space ve-
locity to an Arakawa c-grid, calculate particle trajectories from this data, create
M -function and FTLE maps, and compare these trajectories and maps to the
known dynamics of the systems in question, quantitatively and visually.

The Duffing oscillator comes about as a generalization of a harmonic oscil-
lator to the case when the restoring force is nonlinear. The undamped case we
will implement here is a common standard for testing in Lagrangian dynamics
[3]. Its equations are

ẋ = y

ẏ = x− x3 + ε sin t

where ε is a forcing parameter. The unforced case (ε = 0) is an autonomous
system with an analytical solution (in terms of elliptic functions) against which
our numerical trajectories can be judged. Another feature to look for is the
closure of the trajectories, arising from the fact that this represents a potential
flow. Finally, the stable and unstable manifolds form S-shapes around the origin,
so we look for the M -function to reveal these shapes at the right time scale.

Figure 5 shows exact trajectories coming from the formula

y = ±

√(
x2 − x4

2

)
−
(
x2

0 −
x4

0

2

)
for the trajectory beginning at (x0, 0), with the stable/unstable figure-eight
manifold (x0 = ±

√
2) highlighted. For comparison, numerically computed tra-

jectories using the same initial conditions are shown below, using RK4, bilinear
interpolation, ∆x = ∆y = 0.2, and ∆t = 0.02. Clearly, the overall picture is
correct, although there is some visible error for trajectories close to the mani-
fold. One possible direction to go from here would be to check that error goes
to zero as ∆x → 0, both visually and numerically. For the numerical part,
it will be useful to (eventually) implement the exact trajectories as analytical
functions of t, which is possible using Jacobi elliptic functions, namely [9]:

x(t) = c1cn

(
t
√
c21 − 1 + c2,m

)
y(t) = −c1

√
c21 − 1 · sn

(
t
√
c21 − 1 + c2,m

)
dn

(
t
√
c21 − 1 + c2,m

)

where

m =

√
c21

2(c21 − 1)

and c1, c2 come from x0, y0 via

c1cn(c2,m) = x0

−
√
c21 − 1 · sn(c2,m)dn(c2,m) = y0.

11



Figure 5: Exact (top) and approximate (bottom) trajectories for the Duffing
oscillator, using the same initial data. The stable/unstable manifold has been
colored black in both cases (in the second, as an approximate trajectory).

12



Once this is implemented, we can calculate the root-mean-square error of a
trajectory up to a given time and see that this goes to zero as ∆x→ 0.

Figure 6 shows a colored graph of the M -function, using a data-grid spacing
of ∆x = 0.2 and a particle-grid spacing of one-tenth of that. In the top figure,
the M -function is calculated over the interval t = 0 to 6 but the graph is
colored by the particle’s position at t = 0. In the bottom figure, the integration
is run backwards in time over the same time interval. The choice of t = 6
was motivated by this being the right timescale to bring out the stable manifold
(top, blue) and unstable manifold (bottom, blue) as separate entities. It’s worth
noting that all particles move counterclockwise around the elliptic fixed points
(−1, 0) and (1, 0) so that, as expected, they approach the hyperbolic fixed point
at (0, 0) along the stable manifold and exit along the unstable one.

Time permitting, we will also validate on a variant of the Duffing oscillator,
the rotating Duffing oscillator[3]:

ẋ = x sin(2βt) + y(β + cos(2βt)) + [−(x cos(βt)− y sin(βt))3 + ε sin(ωt)] sin(βt)

ẏ = x(−β + cos(2βt))− y sin(2βt) + [−(x cos(βt)− y sin(βt))3 + ε sin(ωt)] cos(βt).

Hill’s spherical vortex (figure 7) is a three-dimensional axisymmetric flow
field described in spherical coordinates by a streamfunction

ψ = −3

4
Ur2

(
1− r2

a2

)
sin2 θ

where θ is the polar angle (measured from the positive z-axis). From this
streamfunction, radial and azimuthal velocities can be generated via

ur =
1

r2 sin θ

∂ψ

∂θ

uθ = − 1

r sin θ

∂ψ

∂r
.

which, after some manipulation, gives Cartesian velocities

u = −3Uxz

2a2

v = −3Uyz

2a2

w =
3U(2x2 + 2y2 + z2 − a2)

2a2

The fixed points of this flow are (0, 0,−a) and (0, 0, a), and the stable and un-
stable manifolds are the sphere of radius a and center the origin, and pieces
of the line x = y = 0 lying inside and outside the sphere. Again, analyti-
cal solutions will be available for comparison, in the form of level sets of the
streamfunction. We will look for (potentially) three-dimensional trajectories to

13



Figure 6: M -function for Duffing oscillator, integrated between t = 0 and t = 6
(top, integrated forward and pictured at t = 0; bottom, integrated backward
and pictured at t = 6).

14



Figure 7: Hill’s spherical vortex [10]

be confined to a plane through the origin (as is required of axisymmetric flows),
as well as for closure of those trajectories lying within the sphere. Eventually
we will plot cross-sections of the M -function and look for them to clearly bring
out the known manifolds.

Time permitting, we will also validate on the Lorenz three-variable system,
a canonical example of chaotic dynamics. Derived from a simple model of the
atmosphere, its equations are

ẋ = σ(y − x)

ẏ = rx− y − xz
ż = xy − bz.

We will be looking for trajectories to find and follow the Lorenz attractor. We
may also plot cross-sections of the M -function to see if they can bring out the
attractor.

6 Testing

We will test our Lagrangian analysis tools on a velocity field generated by a
model of the Chesapeake Bay. The model is an implementation of ROMS (Re-
gional Ocean Modeling System), a primitive-equations-based ocean modeling
platform that can be adopted to various geographic regions [5]. The Chesa-
peake Bay ROMS model (ChesROMS) uses a curvilinear coordinate system
molded to the shape of the bay (figure 8). For simplicity, velocity interpolation
will be done in this index space before being transformed back into real space,
although the trajectory computation will be done in real space. Eventually our
methods will have to be adapted to allow for land-water boundaries within the
domain, as is clear from the figure. To ensure that particles do not exit the
water domain, a no-slip or free-slip boundary condition must be implemented.

15



spheric Administration’s (NOAA) National Geophysical
Data Center.

ChesROMS is forced by open ocean tides and non-tidal
water level, river discharge, winds, and heat exchange
across the air–water interface. Imposed at the open ocean
boundary were nine tidal constituents from the Advanced
Circulation Model (ADCIRC) EC2001 tidal database
(Mukai et al. 2002), together with non-tidal water levels
interpolated from NOAA’s tide stations at Wachapreague,
Virginia and Duck, North Carolina. Chapman’s condition
for surface elevation (Chapman 1985) and Flather’s
condition for barotropic velocity (Flather 1976) were
applied to the barotropic component at the open ocean
boundary, while for the baroclinic component a radiation
condition was used for velocity and a radiation condition
with nudging for temperature and salinity. Climatological
temperature and salinity from the World Ocean Atlas 2001
was used for nudging (http://www.nodc.noaa.gov/OC5/
WOA01/pr_woa01.html) at the open ocean boundary. Daily
freshwater discharge data for nine major tributaries
(Susquehanna, Patuxent, Potomac, Rappahannock, York,
James, Nanticoke, Choptank, and Chester Rivers) from the
USGS were applied at the upstream river boundaries, and
river temperature was obtained from nearby CBP stations
and salinity was set to zero.

Atmospheric forcing, including 3-hourly winds, net
shortwave and downward longwave radiation, air temper-

ature, relative humidity, and pressure, was obtained from
the North America Regional Reanalysis (NARR) produced
at the National Center for Environmental Prediction (http://
www.emc.ncep.noaa.gov/mmb/rreanl/). No assimilation of
surface temperature data was performed for the simulations
presented here. A series of sensitivity studies were
conducted to finalize the model setup. The major con-
clusions of these experiments are described below.

We experimented with four of the turbulence closure
schemes that come with ROMS (Warner et al. 2005b). In
our simulations, regular Mellor–Yamada level 2.5 (Mellor
and Yamada 1982) and K-profile parameterization (Large et
al. 1994) produced similar vertical stratification while k-ω
and Mellor–Yamada level 2.5 implemented using the
generic length scale method (Warner et al. 2005b) yielded
similar density structures and slightly more stratification in
the upper Bay. For results presented here, we used k-ω as
the turbulence closure scheme for better results in the upper
Bay.

The model is also sensitive to the background mixing
and bottom friction parameters. The background viscosity
and diffusivity were set to be 5×10−5 and 0.5×10–5 m2/s,
respectively, in our final model configuration. The quadratic
bottom friction was imposed in the model with a coefficient
of 0.003.

We experimented with three different implementations of
the C&DCanal by treating it as: (1) an inflow river at different

-77.5 -77 -76.5 -76 -75.5 -75
36

36.5

37

37.5

38

38.5

39

39.5

40

Longitude

La
tit

ud
e

5

10

15

20

25

30

35

Depth(m)

(a)
-77.5 -77 -76.5 -76 -75.5

37

37.5

38

38.5

39

39.5

Longitude

La
tit

ud
e

Water Level Stations
T/S Stations
Velocity Station

Baltimore

Lewisetta

CBBT

CB3.1

C&D
Canal

CB4.2E

CB5.4

CB7.4

MB

NARR

Rappahannock
R.

Potomac
R.

James
R.

York R.

(b)

Fig. 1 a Model grid and bathymetry of ChesROMS and the location of the longitudinal transect; b locations of various datasets

240 Estuaries and Coasts (2012) 35:237–261

Figure 8: Curvilinear coordinates for Chesapeake ROMS model [4]

7 Timeline

• First Semester

– First half: October - Mid-November

∗ Project proposal presentation and paper

∗ 2D and 3D interpolation

– Second half: Mid-November - December

∗ 2D trajectory implementation and validation

∗ M function implementation and validation

∗ Mid-year report and presentation

• Second Semester

– First half: January - February

∗ 3D trajectory implementation and validation

∗ FTLE implementation

∗ Tailor all existing code to work with ROMS data

– Second half: March - April

∗ Apply tools to Chesapeake dataset

∗ Do deeper analysis based on FTLE and M -function

∗ Final presentation and paper

16



8 Deliverables

• Code

– Routines that lay down particle lattice and calculate trajectories from
velocity data

– Routines that calculate M-function and FTLE based on trajectories

• Results

– Series of visualizations (images, movies, graphs) based on these func-
tions, for Chesapeake Bay data and test problems

• Reports

– Project proposal and presentation

– Mid-year progress report and presentation

– Final paper and presentation

• Databases

– Chesapeake Bay ROMS dataset

References

[1] Shadden, S. C., Lekien, F. & Marsden, J. (2005). Definition and properties
of Lagrangian coherent structures from finite-time Lyapunov exponents in
two-dimensional aperiodic flows. Physica D, 212, pp. 271-304.

[2] Mendoza, C. & Mancho, A. M. (2010). Hidden geometry of ocean flows.
Physical Review Letters, 105 (038501), pp. 1-4.

[3] Ide, K. & Small, D. & Wiggins, S. (2002). Distinguished hyperbolic trajec-
tories in time-dependent fluid flows: analytical and computational approach
for velocity fields defined as data sets. Nonlinear Processes in Geophysics,
9, pp. 237-263.

[4] Xu, J. et al. (2012). Climate forcing and salinity variability in Chesapeake
Bay, USA. Estuaries and Coasts, 35, pp. 237-261.

[5] Regional Ocean Modeling System. (n.d.). Retrieved October 19, 2015, from
https://www.myroms.org.

[6] [Online image of Arakawa C-grid box]. Retrieved October 5, 2015 from
http://mitgcm.org/sealion/online documents/node45.html.

[7] Bilinear interpolation. (2015, November 21). In Wikipedia, The
Free Encyclopedia. Retrieved 06:11, December 13, 2015, from
https://en.wikipedia.org/w/index.php?title=Bilinear interpolation&oldid=691695764.

17



[8] Bicubic interpolation. (2015, November 13). In Wikipedia, The
Free Encyclopedia. Retrieved 06:42, December 13, 2015, from
https://en.wikipedia.org/w/index.php?title=Bicubic interpolation&oldid=690508277

[9] Salas, A. H. & Castillo H., J. E. (2014) Exact solution to Duffing equation
and the pendulum equation. Applied Mathematical Sciences, 8 (176) pp.
8781 - 8789.

[10] [Online image of Hill’s spherical vortex]. Retrieved Oc-
tober 5, 2015 from http://www.physics.ucla.edu/plasma-
exp/conferences/TopicalConferences/IPELS97/Spheromak.html.

18


