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Abstract

In this project, we will design and build a set of Lagrangian analysis
tools for an oceanic flow whose velocity is proscribed on a spatio-temporal
grid. The main tools will be the so-called M -function (arc-length over a
fixed time interval) and the maximal finite-time Lyapunov exponent, both
of which help elucidate the underlying coherent structures of the flow.
After validating them, we will test these tools on a dataset coming from
a modeled flow of the Chesapeake Bay.

1 Introduction

Ocean currents have all sorts of large-scale coherent structures that are generally
invisible to the naked eye. By coherent structure, we mean a “blob” of fluid that
moves as one [10]. Finding ways to unveil these structures is of general interest
to those who study mixing and transport; for example, the boundaries between
these coherent structures may serve as rough barriers to pollutant transport.

Viewing the ocean as a dynamical system, we can gain access to some useful
theoretical tools for our task, most notably the notions of stable and unstable
manifolds. Suppose we are given a system of ordinary differential equations (or
flow) ẋ = v(x, t), where x ∈ RN is position, t is time, v : RN × R → RN
is velocity, and ẋ denotes dx

dt . Let X(X0, t) denote the position at time t of
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the trajectory starting at X0 at time t0, so that Ẋ(X0, t) = v(X(X0, t)) for
all t ∈ R. A hyperbolic fixed point x∗ is a point such that v(x∗, t) ≡ 0 and the
Jacobian operator dv

dx (x∗, t) has eigenvalues with both positive and negative real
parts[1]. (In two dimensions, this means that locally, trajectories near x∗ look
like hyperbolas.) The stable manifold of x∗ is{

X0 ∈ RN : lim
t→∞

X(X0, t) = x∗
}

and the unstable manifold of x∗ is{
X0 ∈ RN : lim

t→−∞
X(X0, t) = x∗

}
.

Thus, points on the stable manifold eventually approach the fixed point, while
those on the unstable manifold have “originated from” the fixed point. These
manifolds are important because they serve as boundaries between exactly the
type of coherent structures we are interested in.

Although our discussion has applied to the case of a true hyperbolic fixed
point, in ocean applications, nothing is truly fixed, and so a more appropriate
notion is that of a distinguished hyperbolic trajectory, or DHT, which we will
not define here [6].

Velocity data from ocean models give us the raw material to bring out these
structures. To do so, it is useful to move from the grid-based (Eulerian) view-
point to a flow-following (Lagrangian) one. That is, set up a vast network of
fluid “particles” to be tracked through the flow, simulate their trajectories as
the flow evolves, and then analyze those trajectories to get structural informa-
tion. In Lagrangian terms, a coherent structure is nothing more than a group
of particles whose trajectories “go together” in some sense.

2 Approach

In our effort to numerically elucidate the coherent structures and stable and
unstable manifolds in an ocean flow, we will use two Lagrangian descriptor
functions. The first is the so-called M -function, proposed by Mendoza and
Mancho [8]:

M(X0, t0, τ) =

∫ t0+τ

t0−τ

∣∣∣Ẋ(X0, t)
∣∣∣ dt =

∫ t0+τ

t0−τ

(
2 or 3∑
i=1

(
Ẋi(X0, t)

)2
) 1

2

dt,

which is simply the distance traveled by the particle with initial position X0

over the time interval spanning forward and backward time τ from time t0.
Sometimes we will be interested in looking only forward or backward in time,
and will define M accordingly by

M(X0, t0, τ) =

∫ t0+τ

t0

∣∣∣Ẋ(X0, t)
∣∣∣ dt
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or

M(X0, t0, τ) =

∫ t0

t0−τ

∣∣∣Ẋ(X0, t)
∣∣∣ dt

The choice should be clear from the context. The logic here is that a structural
boundary will be evident where a region of fast-moving particles abuts a slow-
moving region, whether this difference in speed is happening at the time t0 or
further along in our domain of integration.

The other, more traditional descriptor function we use is the maximal finite-
time Lyapunov exponent of the flow, defined as

FTLE(X0, t0, τ) =
1

τ
ln (σmax(L(X0, t0, τ))

where

L(X0, t, τ) =
∂X(X0, t0 + τ)

∂X0

is the so-called transition operator, representing a linearization of the flow about
time t0 and position X0, and σmax denotes the largest singular value of L. We
allow τ to be negative, which would give a “backward” FTLE. The idea here
is that, for the locally linearized flow, its singular values (Lyapunov exponents)
represent exponential growth/decay rates of an infinitesimal sphere in the di-
rections of the corresponding singular vectors. Thus a large Lyapunov exponent
indicates a strong stretching along some axis. We expect the strongest such
stretching to occur along manifolds where the flow (eventually) bifurcates, as
we expect along our stable (forward FTLE) and unstable (backward FTLE)
manifolds.

Thus, given a velocity dataset, our general method is: lay down a fine grid of
particles at time t0, calculate their trajectories, use this information to obtain
M and FTLE for each particle, and produce color plots of these M and FTLE
fields at t0, for τ long enough to bring out the manifolds. A previous result
showing success with this method for M is shown in figure 1, in which the DHT
and stable and unstable manifolds are clearly visible.

3 Algorithms

Since our velocity data will only be available on a spatio-temporal grid, we need
to interpolate it to particle locations in time and space. Then we must integrate
these velocities to obtain trajectories. Finally, we must numerically calculate
our M and FTLE fields. Each of these tasks requires a choice of algorithms,
and in some cases we chose more than one method for comparison, with an
eye toward highlighting the speed vs. accuracy tradeoff often inherent in these
judgments.

3.1 Interpolation

Suppose we are given velocity component u on a spatio-temporal grid, i.e. in
three dimensions, uijkl = u(xi, yj , zk, tl) for a suitable domain of i, j, k, and l. To
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Figure 1: M -function coloring for a dataset from the Kuroshio current [8].
Red represents fast-moving regions, blue slow. Stable and unstable manifolds

appear as thin yellow lines.

interpolate this velocity to an arbitrary point x = (x, y, z, t) in R4, we first locate
the particular grid box [xi, xi+1] × [yj , yj+1] × [zk, zk+1] × [tl, tl+1] containing
this point. Then we interpolate in phases: first horizontally (two dimensions),
then vertically (one dimension), and finally temporally (one dimension). Thus
we need algorithms for one- and two-dimensional interpolation.

For the one-dimensional interpolation problem (for z and t), we used La-
grange polynomials, of degrees 1 and 3 for comparison. That is, we interpolate
a linear function through the two nearest neighboring points, or we interpolate a
cubic polynomial through the four nearest neighbors (note that this is different
from cubic splines, in which we only use two neighbors but match derivatives).
Thus, for example, in the linear case we can approximate u(xi, yj , z, tl) by

f(z) = w · ui,j,k,l + (1− w) · ui,j,k+1,l

where

w =
zk+1 − z
zk+1 − zk
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represents a weight from 0 to 1 (for bottom to top). For the cubic case we use

f(z) =
(z − zk)(z − zk+1)(z − zk+2)

(zk−1 − zk)(zk−1 − zk+1)(zk−1 − zk+2)
ui,j,k−1,l

+
(z − zk−1)(z − zk+1)(z − zk+2)

(zk − zk−1)(zk − zk+1)(zk − zk+2)
ui,j,k,l

+
(z − zk−1)(z − zk)(z − zk+2)

(zk+1 − zk−1)(zk+1 − zk)(zk+1 − zk+2)
ui,j,k+1,l

+
(z − zk−1)(z − zk)(z − zk+1)

(zk+2 − zk−1)(zk+2 − zk)(zk+2 − zk+1)
ui,j,k+2,l.

Approximation theory gives O(h2) accuracy for the linear case and O(h4) for
the cubic case (REFERENCE?). As for smoothness, both methods are only C0,
unlike cubic splines which are C1 by design.

For the two-dimensional interpolation problem, we again implement two
different-order methods for comparison: bilinear splines and bicubic splines. A
bilinear spline is a function of the form

f(x, y) =

1∑
m,n=0

cmnx
myn = c00 + c10x+ c01y + c11xy

defined on a single two-dimensional grid box, where the parameters c00, c10, c01, c11

are chosen so that the values of f at the corners match those of the given func-
tion. In other words, given data u, the interpolant f on [xi, xi+1] × [yj , yj+1]
must satisfy

f(xi, yj) = ui,j

f(xi+1, yj) = ui+1,j

f(xi, yj+1) = ui,j+1

f(xi+1, yj+1) = ui+1,j+1.

A bicubic spline is a function of the form

f(x, y) =

3∑
m,n=0

cmnx
myn

defined on a grid box. To solve for the sixteen unknowns cmn, we must fit not
only to the given values of u at the four corners, but also to estimated values
of the partial derivatives ∂xu, ∂yu, and ∂xyu at those corners. By analogy with
the one-dimensional case, we expect O(h2) accuracy for bilinear and O(h4) for
bicubic. As for smoothness, bilinear is again C0, while bicubic is at least C1.
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3.2 Integration

Assuming v is known (or interpolated) at all points of interest, we obtain a
trajectory X(X0, t) by integrating the velocity:

X(X0, t) =

∫ t

t0

v(X(X0, t
′), t′) dt′.

For our numerical integration, we use the famous fourth-order Runge Kutta
method, a classic high-order method that is nonetheless explicit and single-step,
and therefore fast and easy to implement:

k1 = ∆t · v (Xn, tn)

k2 = ∆t · v
(
Xn +

k1

2
, tn +

∆t

2

)
k3 = ∆t · v

(
Xn +

k2

2
, tn +

∆t

2

)
k4 = ∆t · v (Xn + k3, tn + ∆t)

Xn+1 = Xn +
1

6
(k1 + 2k2 + 2k3 + k4) .

3.3 Lagrangian Descriptor Functions

3.3.1 M Calculation

The M -function can be calculated in parallel with, and using the same integra-
tion schemes as, the trajectory computation.

3.3.2 FTLE Calculation

The two main aspects of the maximum Lyapunov exponent calculation are (i)
approximating the transition matrix L and (ii) calculating the eigenvalues of
LTL. For the two-dimensional case, we have

L(X(X0, t), t) =


∂X(X0,t)
∂X0

∂X(X0,t)
∂Y0

∂Y (X0,t)
∂X0

∂Y (X0,t)
∂Y0

 ,
and the idea is to approximate these partial derivatives using finite differences.
To that end, we initially lay four particles directly to the left and right of the
initial position of interest (with sufficiently small separation ∆X0) and up and
down (separation ∆Y0), calculate their trajectories up to the current time, and
approximate L by

X(X0+
∆X0

2 ,Y0,t)−X(X0−∆X0
2 ,Y0,t)

∆X0

X(X0,Y0+
∆Y0

2 ,t)−X(X0,Y0−∆Y0
2 ,t)

∆Y0

Y (X0+
∆X0

2 ,Y0,t)−Y (X0−∆X0
2 ,Y0,t)

∆X0

Y (X0,Y0+
∆Y0

2 ,t)−Y (X0,Y0−∆Y0
2 ,t)

∆Y0
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(A higher-order method could presumably be used here as well, but this was
not discussed.) The three-dimensional case is entirely analogous.

Calculating the eigenvalues of LTL is relatively simple, since it is either
a 2 × 2 or 3 × 3 matrix, leading to a characteristic polynomial that is either
quadratic or cubic. Solving the characteristic equation thus amounts to finding
the roots of a quadratic or cubic polynomial. Both of these problems have
tractable closed-form solutions (e.g. the quadratic formula in the 2 × 2 case),
and this is the approach we use.

4 Implementation

All programs are written in MATLAB (version 2015b). The majority of runs
were executed on a MacBook Pro laptop with a 2.6 GHz Intel Core i5 processor
and 8 GB of memory. However, beyond τ = 6 hours or so for the Chesapeake
ROMS data, these runs were moved to the Deepthought2 computing cluster at
the University of Maryland, mostly because the data storage capacities of the
laptop were too limited.

Despite the essentially parallel nature of the algorithms (each particle tra-
jectory depends only on the field, not on the other particles), no explicit par-
allelization was written into the code. However, all particle operations were
completely vectorized, to make use of MATLAB’s fast handling of vector oper-
ations. Thus, for example, at each time step, a single call to the interpolating
function was made, feeding in the particle positions as column vectors (rather
than a unique call for each particle).

5 Validation

To validate our interpolation, integration, and Lagrangian analysis tools, we
applied them to some simple analytical functions to see if they produced the
correct results.

5.1 Interpolation

To validate our two-dimensional interpolation routine, we applied it to the func-
tion f(x, y) = ey sin(πx) on the domain [−1, 1]2. We discretized this function

on an Arakawa C-grid (using ∆x = ∆y), interpolated f as f̂ on a finer grid
(∆xfine = ∆x

6 ), took ∆x,∆y → 0 (maintaining ∆xfine = ∆x
6 as the field was re-

interpolated at each step), and verified that the error went to 0 at the expected
rate. The appropriate error here is in the grid-function p-norm:

‖e‖p = ‖f − f̂‖p =

 M∑
i=1

N∑
j=1

‖f(xi, yj)− f̂(xi, yj)‖p ·∆xfine∆yfine

 1
p
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Figure 2: ‖f̂ − f‖2 vs. ∆x for bilinear and bicubic interpolation,
f(x, y) = ey sin(πx).

where the sum is over an M ×N fine grid. We tried p = 1, 2,∞, but show here
only the results of p = 2, though the others were similar. The errors are shown
in figure 2) along with estimated convergence rates in table 1, using the two
smallest values of ∆x. The plots confirm that i) the interpolation error does
indeed go to 0 with ∆x, ii) our algorithms closely match those of MATLAB’s
interp2 function, and iii) bilinear interpolation is second-order accurate, while
bicubic is third-order.

Similar procedures were used to validate our three-dimensional interpolation
methods for the function u(x, y, z) = ex cos 2πy cos 2πz on [−1, 1]3. In this case,
because the horizontal dimensions are decoupled from the vertical dimension, we
validated those two cases separately. For the horizontal dimensions, we fixed ∆z
while ∆x = ∆y → 0, comparing our interpolated function f̂ to the horizontally-

Convergence rate
(‖e‖2 ∼ hp)

Bilinear p ≈ 2.0064
Bicubic p ≈ 3.0175

Table 1: Convergence rates for bilinear and bicubic interpolation
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Figure 3: ‖f̂ − f̃‖2 vs. ∆x for bilinear and bicubic interpolation,
f(x, y) = ey sin(πx).

true, vertically-interpolated function f̃ (using the same vertical interpolation

method for f̂ and f̃ , so that f̂ should approach f̃ as ∆x→ 0). Results are shown
in figure ?? and table 2. Here again we see second-order accuracy for bilinear
horizontal interpolation (no matter the vertical method), and third-order for
bicubic horizontal interpolation. The inclusion of MATLAB’s linear and cubic
algorithms for its interp3 function is a bit messy: while our bilinear-linear
interpolation method seems to be equivalent to MATLAB’s three-dimensional
linear interpolation, its three-dimensional cubic interpolation is not decoupled in
the way that ours is, and so it is compared against the completely true solution
here, which somewhat muddies the interpretation (IS ∆z → 0.

The vertical component of our three-dimensional interpolation was validated
likewise, by fixing ∆x = ∆y and taking ∆z → 0. The results (figure 4 and
table 3) now show second-order convergence for linear vertical interpolation
and fourth-order for cubic.

The timing of these routines, in two and three dimensions, is shown in fig-
ures 5 and 6. Unsurprisingly, cubic and bicubic take significantly longer than
linear and bilinear. Interestingly, MATLAB significantly outperforms our im-
plementations, in some cases by as much as a factor of 60! For this reason, we
switched to MATLAB’s innate interpolation for our more expensive runs, where
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Horizontal(-vertical) Convergence rate
method (‖e‖2 ∼ hp)

Bilinear(-linear) p ≈ 2.0253
Bicubic(-linear) p ≈ 3.2675
Bicubic(-cubic) p ≈ 2.9192

MATLAB Cubic p ≈ 3.2675

Table 2: Convergence rates for horizontally bilinear and bicubic interpolation.

Figure 4: ‖f̂ − f̃‖2 vs. ∆x for bilinear and bicubic interpolation,
f(x, y) = ey sin(πx).

(Horizontal-)vertical Convergence rate
method (‖e‖2 ∼ hp)

(Bilinear-)linear p ≈ 2.0101
(Bicubic-)cubic p ≈ 4.0484
MATLAB cubic p ≈ 3.2836

Table 3: Convergence rates for vertically linear and cubic interpolation.
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Figure 5: CPU time vs. ∆x for two-dimensional interpolation methods

speed became essential.

5.2 Integration

To validate our integration methods and our analysis, we tested them on a few
ODE systems with well-known dynamics. In two dimensions, our primary test
system was the undamped Duffing oscillator, and in three dimensions, we used
Hill’s spherical vortex.

The Duffing oscillator [3] is an example of a simple nonlinear oscillator,
wherein the restoring force has a cubic as well as a linear term. The specific
version we will implement here has equations:

ẋ = y

ẏ = x− x3 + ε sin t

where ε is a forcing parameter. The unforced case (ε = 0) is an integrable
system with Hamiltonian H(x, y) = 1

2y
2 − 1

2x
2 + 1

4x
4, so that H is conserved

along trajectories. A phase portrait of several of these trajectories (level sets of
H) is shown in figure 7. Trajectories can also be explicitly given as functions of
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Figure 6: CPU time vs. ∆x for three-dimensional interpolation methods

time [9] via

x(t) = x0 · cn

(
t
√
x2

0 − 1,

√
x2

0

2(x2
0 − 1)

)

y(t) = −x0

√
x2

0 − 1 · sn

(
t
√
x2

0 − 1,

√
x2

0

2(x2
0 − 1)

)
· dn

(
t
√
x2

0 − 1,

√
x2

0

2(x2
0 − 1)

)

where cn, sn, and dn are the three types of Jacobi elliptic functions. These
exact trajectories provide a benchmark for comparison of our numerically in-
tegrated trajectories. A plot of three such trajectories against their analytical
counterparts is shown in figure 8. The trajectory beginning at (−

√
2, 0) is no-

table because it starts on the stable/unstable manifold of the hyperbolic fixed
point at the origin, and should thus remain there forever (which the numerical
version evidently does not). Despite the clear drift from the true solution with
time, we nonetheless expect the numerical trajectories to approach truth as the
interpolation mesh size ∆x goes to zero. In fact, this does happen for the sample
trajectory X0 = (−1.5, 0), as in figure 10, where we see the root-mean-square
error decrease with ∆x, for fixed ∆t and tf . We also observe that H becomes
closer and closer to constant in time as ∆x→ 0 (figure ??).

To validate our three-dimensional trajectory integration, we use Hill’s spher-
ical vortex [5] as a model system. This three-dimensional axisymmetric flow field
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Figure 7: Exact trajectories for the autonomous Duffing oscillator
(stable/unstable manifold in black)
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Figure 8: Computed vs. exact trajectories for the autonomous Duffing
oscillator with X0 = (−1.6, 0), (−1.5, 0), and (−

√
2, 0).

Figure 9: RMSE vs. ∆x for the autonomous Duffing oscillator, trajectory
X0 = (−1.5, 0), tf = 6, ∆t = 0.1
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Figure 10: Hamiltonian vs. time for autonomous Duffing oscillator,
X0 = (−1.5, 0), tf = 20, ∆t = 0.1, for various values of ∆x.

serves as a simple model for fluid flow in and around a sphere (figure 11). It
has a streamfunction given by

ψ(r, θ) = −3

4
Ur2

(
1− r2

a2

)
sin2 θ

where θ is the polar angle (measured from the positive z-axis), r is the dis-
tance to the origin, U is a velocity parameter, and a is the radius. From this
streamfunction, radial and azimuthal velocities can be generated via

ur =
1

r2 sin θ

∂ψ

∂θ

uθ = − 1

r sin θ

∂ψ

∂r
.

which, after some manipulation, gives Cartesian velocities

ẋ = −3Uxz

2a2

ẏ = −3Uyz

2a2

ż =
3U(2x2 + 2y2 + z2 − a2)

2a2
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Figure 11: Hill’s spherical vortex [11], z-axis pointing to the right. In our
version there is no flow into or out of the page for this cross-section.

The streamfunction ψ now plays the role of the Hamiltonian, that is, it
is conserved along trajectories. Thus, for U = a = 1, we looked at the
Hamiltonian of the trajectory X0 = (0.4, 0.3, 0) (bound inside the sphere) as
∆x = ∆y = ∆z → 0. Indeed, the Hamiltonian becomes constant in time in the
limit (figure 12). Additional validation came from a visual check (not shown)
that every trajectory was more or less confined to a plane containing the z-axis,
as is required of an axisymmetric flow.

5.3 Lagrangian Descriptor Functions

Beyond the properties of their trajectories, the Duffing and Hill systems have
well-known stable and unstable manifolds, which our M and FTLE Lagrangian
descriptor functions should both be able to “find” and bring out. We can also
validate these attempts against previous work in the same vein by Mancho et.
al. [7].

As alluded to before, the autonomous Duffing oscillator has a single hyper-
bolic fixed point at the origin, and its stable and unstable manifolds are both
given by the figure-eight shape 1

2y
2 − 1

2x
2 + 1

4x
4 = 0. This shape be broken

into two S-shapes, one of which spreads quickly away from the origin, and one
quickly toward the origin. Thus, as τ increases, we should see the former struc-
ture first when plotting the M and FTLE forward in time, and the latter first
when plotting backward. Figure 13 shows exactly that, with the low-M ridges
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Figure 12: Hamiltonian vs. time for Hill’s spherical vortex, X0 = (0.4, 0.3, 0),
tf = 10, ∆t = 0.1, for various values of ∆x.

(a) Forward (b) Backward

Figure 13: M for Duffing oscillator, τ = 5, ∆x = 0.1, ∆xfine = 0.005, ∆t = 0.1,
bilinear interpolation
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(a) ∆x = 0.1, ∆xfine = 0.005, ∆t = 0.1,
bilinear interpolation

tened’’ versions of short segments of manifolds of the unstable manifold of the hyperbolic trajectory. For the longer time the
contours of the finite time average of the horizontal component of velocity develop a more complex spatial structure that
obscures the underlying unstable manifold structure of the hyperbolic trajectory.

3. Applications to time dependent 3D flows

In this section we show that Lagrangian descriptors can also provide accurate information on the stable and unstable man-
ifolds of hyperbolic trajectories in three dimensional (3D) time dependent flows. Computation of the stable and unstable man-
ifolds of hyperbolic trajectories in aperiodically time dependent flows was discussed in [5], where an algorithm for their
calculation was developed and several ‘‘benchmark’’ examples were considered. The particular example that we will consider
is the perturbed Hill’s spherical vortex, which we will take as a benchmark for the performance of our methods in 3D. We give
a brief description of the velocity field. More details on the background of Hill’s spherical vortex can be found in [5].

The velocity field, v, has the general form:

v ¼ Hðx; y; zÞ þ Sðx; y; z; tÞ

where Hðx; y; zÞ is given by:

Hx ¼ ður sin Hþ uH cos HÞ cos U; ð31Þ
Hy ¼ ður sin Hþ uH cos HÞ sin U; ð32Þ
Hz ¼ ður cos H% uH sin HÞ: ð33Þ

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

x

Fig. 13. For the integrable Duffing equation: (a) the stable and unstable manifolds of the hyperbolic fixed point; (b) forward FTLE for s ¼ 10; (c) contours of
M1 for s = 10. For the periodically forced Duffing equation: (d) segments of the stable and unstable manifolds of the hyperbolic trajectory near the origin
computed for s ¼ 10 (and displayed at t ¼ 0); (e) forward FTLE for s ¼ 10; (f) contours of M1 for s = 10. For the aperiodically forced Duffing equation: (g)
segments of the stable and unstable manifolds of the hyperbolic trajectory near the origin computed for s ¼ 10 (and displayed at t ¼ 0); (h) forward FTLE for
s ¼ 10; (i) contours of M1 for s = 10.

A.M. Mancho et al. / Commun Nonlinear Sci Numer Simulat 18 (2013) 3530–3557 3545

(b) Mancho et al [7]

Figure 14: M for Duffing oscillator, τ = 10, forward and backward together

around the origin highlighting its stable and unstable manifolds, although we
also see low values of M near the elliptic fixed points at (−1, 0) and (1, 0), since
the cyclic trajectories around those points move slowly. The choice of τ = 5
here was deliberate to highlight these separate components. If we let the inte-
gration run long enough, both forward and backward, we can capture the whole
stable-unstable manifold in a single plot, as in figure 14. Our results correspond
closely to those of Mancho et al [7].

The corresponding FTLE plots for this case are shown in figures 15 and
16. The highlighting of the FTLE against the background is particularly stark
here–indeed, since the FTLE measures deformation in the flow, we see that it
is negligible near the elliptic fixed points, where there is almost no deformation.
One caveat of the FTLE, however, is that the spiraling structure coming off the
stable and unstable manifolds are neither part of those manifolds, nor are they
aligned with the trajectories themselves. Another drawback is that if we simply
overly the forward and backward FTLE fields in one figure, we get a partial
cancellation which tends to obscure both stable and unstable manifolds (thus
we use only the forward FTLE for validation against Mancho et al in figure 16).

To validate our Lagrangian descriptors on a time-dependent system, we set
ε = 0.1 in the Duffing equations. Adding this small forcing term perturbs the
stable and unstable manifolds in interesting ways. The results for τ = 10 are
shown alongside Mancho et al in figures 17 (M forward and backward) and 18
(FLTE forward). Note that the M plot contains the stable manifold highlighted
in the FTLE plot.

Finally we move to three-dimensional validation on Hill’s vortex. The fixed
points are x1 = (0, 0,−a) and x2 = (0, 0, a), and the sphere |x| = a, minus the
two points x1 and x2, forms part of the unstable manifold of x1 and the stable
manifold of x2. The remaining parts of these manifolds are merely portions
of the z-axis. Figures 19a and 19b show the results for M and FTLE after a
suitable τ . In both cases, the descriptor function “finds” the sphere, and even
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(a) Forward (b) Backward

Figure 15: FTLE for Duffing oscillator, τ = 5, ∆x = 0.1, ∆xfine = 0.005,
∆t = 0.1, bilinear interpolation

(a) ∆x = 0.1, ∆xfine = 0.005, ∆t = 0.1,
bilinear interpolation

tened’’ versions of short segments of manifolds of the unstable manifold of the hyperbolic trajectory. For the longer time the
contours of the finite time average of the horizontal component of velocity develop a more complex spatial structure that
obscures the underlying unstable manifold structure of the hyperbolic trajectory.

3. Applications to time dependent 3D flows

In this section we show that Lagrangian descriptors can also provide accurate information on the stable and unstable man-
ifolds of hyperbolic trajectories in three dimensional (3D) time dependent flows. Computation of the stable and unstable man-
ifolds of hyperbolic trajectories in aperiodically time dependent flows was discussed in [5], where an algorithm for their
calculation was developed and several ‘‘benchmark’’ examples were considered. The particular example that we will consider
is the perturbed Hill’s spherical vortex, which we will take as a benchmark for the performance of our methods in 3D. We give
a brief description of the velocity field. More details on the background of Hill’s spherical vortex can be found in [5].

The velocity field, v, has the general form:

v ¼ Hðx; y; zÞ þ Sðx; y; z; tÞ

where Hðx; y; zÞ is given by:

Hx ¼ ður sin Hþ uH cos HÞ cos U; ð31Þ
Hy ¼ ður sin Hþ uH cos HÞ sin U; ð32Þ
Hz ¼ ður cos H% uH sin HÞ: ð33Þ

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

x

Fig. 13. For the integrable Duffing equation: (a) the stable and unstable manifolds of the hyperbolic fixed point; (b) forward FTLE for s ¼ 10; (c) contours of
M1 for s = 10. For the periodically forced Duffing equation: (d) segments of the stable and unstable manifolds of the hyperbolic trajectory near the origin
computed for s ¼ 10 (and displayed at t ¼ 0); (e) forward FTLE for s ¼ 10; (f) contours of M1 for s = 10. For the aperiodically forced Duffing equation: (g)
segments of the stable and unstable manifolds of the hyperbolic trajectory near the origin computed for s ¼ 10 (and displayed at t ¼ 0); (h) forward FTLE for
s ¼ 10; (i) contours of M1 for s = 10.
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(b) Mancho et al [7]

Figure 16: FTLE for Duffing oscillator, τ = 10, forward and backward together
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(a) ∆x = 0.1, ∆xfine = 0.005, ∆t = 0.1,
bilinear interpolation

tened’’ versions of short segments of manifolds of the unstable manifold of the hyperbolic trajectory. For the longer time the
contours of the finite time average of the horizontal component of velocity develop a more complex spatial structure that
obscures the underlying unstable manifold structure of the hyperbolic trajectory.
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ifolds of hyperbolic trajectories in three dimensional (3D) time dependent flows. Computation of the stable and unstable man-
ifolds of hyperbolic trajectories in aperiodically time dependent flows was discussed in [5], where an algorithm for their
calculation was developed and several ‘‘benchmark’’ examples were considered. The particular example that we will consider
is the perturbed Hill’s spherical vortex, which we will take as a benchmark for the performance of our methods in 3D. We give
a brief description of the velocity field. More details on the background of Hill’s spherical vortex can be found in [5].

The velocity field, v, has the general form:

v ¼ Hðx; y; zÞ þ Sðx; y; z; tÞ

where Hðx; y; zÞ is given by:

Hx ¼ ður sin Hþ uH cos HÞ cos U; ð31Þ
Hy ¼ ður sin Hþ uH cos HÞ sin U; ð32Þ
Hz ¼ ður cos H% uH sin HÞ: ð33Þ
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Fig. 13. For the integrable Duffing equation: (a) the stable and unstable manifolds of the hyperbolic fixed point; (b) forward FTLE for s ¼ 10; (c) contours of
M1 for s = 10. For the periodically forced Duffing equation: (d) segments of the stable and unstable manifolds of the hyperbolic trajectory near the origin
computed for s ¼ 10 (and displayed at t ¼ 0); (e) forward FTLE for s ¼ 10; (f) contours of M1 for s = 10. For the aperiodically forced Duffing equation: (g)
segments of the stable and unstable manifolds of the hyperbolic trajectory near the origin computed for s ¼ 10 (and displayed at t ¼ 0); (h) forward FTLE for
s ¼ 10; (i) contours of M1 for s = 10.

A.M. Mancho et al. / Commun Nonlinear Sci Numer Simulat 18 (2013) 3530–3557 3545

(b) Mancho et al [7]

Figure 17: M for forced Duffing oscillator, τ = 10, both forward and backward

(a) ∆x = 0.1, ∆xfine = 0.005, ∆t = 0.1,
bilinear interpolation

tened’’ versions of short segments of manifolds of the unstable manifold of the hyperbolic trajectory. For the longer time the
contours of the finite time average of the horizontal component of velocity develop a more complex spatial structure that
obscures the underlying unstable manifold structure of the hyperbolic trajectory.

3. Applications to time dependent 3D flows

In this section we show that Lagrangian descriptors can also provide accurate information on the stable and unstable man-
ifolds of hyperbolic trajectories in three dimensional (3D) time dependent flows. Computation of the stable and unstable man-
ifolds of hyperbolic trajectories in aperiodically time dependent flows was discussed in [5], where an algorithm for their
calculation was developed and several ‘‘benchmark’’ examples were considered. The particular example that we will consider
is the perturbed Hill’s spherical vortex, which we will take as a benchmark for the performance of our methods in 3D. We give
a brief description of the velocity field. More details on the background of Hill’s spherical vortex can be found in [5].

The velocity field, v, has the general form:

v ¼ Hðx; y; zÞ þ Sðx; y; z; tÞ

where Hðx; y; zÞ is given by:

Hx ¼ ður sin Hþ uH cos HÞ cos U; ð31Þ
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Hz ¼ ður cos H% uH sin HÞ: ð33Þ
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Fig. 13. For the integrable Duffing equation: (a) the stable and unstable manifolds of the hyperbolic fixed point; (b) forward FTLE for s ¼ 10; (c) contours of
M1 for s = 10. For the periodically forced Duffing equation: (d) segments of the stable and unstable manifolds of the hyperbolic trajectory near the origin
computed for s ¼ 10 (and displayed at t ¼ 0); (e) forward FTLE for s ¼ 10; (f) contours of M1 for s = 10. For the aperiodically forced Duffing equation: (g)
segments of the stable and unstable manifolds of the hyperbolic trajectory near the origin computed for s ¼ 10 (and displayed at t ¼ 0); (h) forward FTLE for
s ¼ 10; (i) contours of M1 for s = 10.
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(b) Mancho et al [7]

Figure 18: FTLE for forced Duffing oscillator, τ = 10, forward

the z-axis portion of the manifold, in the case of M . The white space outside the
sphere comes from the exterior trajectories exiting the domain (and becoming
NaN) on a time scale faster than the period of the inner trajectories. Again,
for the FTLE, we see a slight spiraling effect near the manifold which is not
indicative of actual trajectories.

6 Application

We applied our Lagrangian analysis tools to a velocity dataset coming from a
modeled flow of the Chesapeake Bay. The Chesapeake Bay is an estuary in the
mid-Atlantic region of the east coast of the United States, surrounded by the
states of Maryland and Virginia. It is fed by an extensive river system including
the Potomac and Susquehanna rivers, and its outlet is the Atlantic Ocean. The
irregular topography, mixing of fresh and salt water, and tidal effects make it
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an interesting area for modeling.
The particular model used was the Chesapeake Bay ROMS Community

model, or ChesROMS for short (http://www.myroms.org). ChesROMS is an
implementation of the more general ROMS (Regional Ocean Modeling System)
developed by researchers at NOAA, the University of Maryland, CRC (Chesa-
peake Research Consortium) and MD DNR (Maryland Department of Natural
Resources). ROMS is an ocean-modeling platform that comes with a set of
specifications for grid type, coordinates, time-stepping schemes, boundary con-
ditions, and other parameters and methods of interest. In addition to generating
a grid-based velocity dataset by solving its equations of motion, it can be used
to create particle trajectories through this velocity field, which will serve as a
benchmark for our own trajectory calculations.

The ChesROMS model covers the whole bay, though not all of its river
system, as well as a large adjoining section of the Atlantic Ocean (see figure 20b).
The extent of this area is roughly 135 km by 482 km by 2.5 - 50 m, discretized
to a 150 x 480 x 50 grid, so the horizontal length scale is on the order of ∼ 1
km per grid box. The vertical coordinate is stretched extensively so that the
lowest coordinate surface follows the ocean floor, and the highest one follows
the free surface. The horizontal coordinates are aligned roughly with the Bay
rather than the Earth’s latitude and longitude, which in combination with the
Earth’s curvature leads to a slight stretching of these coordinates as well.

The Arakawa C-grid format means that horizontal indices (ξu, ηu) and (ξv, ηv),
for the u-grid and v-grid respectively, are offset by 1

2 from each other. All data
comes in the format of netCDF files, a common one for storing geophysical data,
which gives many field variables at each grid point. Of primary interest to us
are physical velocity components u := v · ξ̂ and v := v · η̂ (given in m/s). Also
of interest are longitude (λ), latitude (φ), local scale factors m := ∂ξ

∂(S·ξ̂)
and

n := ∂η
∂(S·η̂) (in m−1, S representing physical arc length), and depth h (in m).

The curvilinear coordinate system necessitated a few changes to our toolset,
most notably in tweaks to the interpolation and integration algorithms, which
are most easily implemented on a rectangular grid. Thus the interpolation
was performed in index space (using (ξ, η) as coordinates), though applied to
the given physical velocity components u and v. However, these interpolated
physical velocities were then normalized to index space via mu and nv (units
s−1), so that their integration could also be done in that space. Since the
M -function is a physical quantity (m), its own integration (embedded in the
RK4 time-stepping) had to use the true physical velocity components. Finally,
the FTLE calculation, which requires only initial and final positions, used an
approximation of physical distances via

∆x ≈ RE cosφavg∆λ

∆y ≈ RE∆φ

where RE ≈ 6371 km is the mean Earth radius and φavg represents an average
latitude for the domain.
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The particular data used for our application was from a model flow dated
February 2006, of which a total of up to 8 days worth of data was used, coming
in time slices separated by two minutes. Different integration time steps ranging
from 15 seconds to 2 minutes were used.

To validate the integration in the ChesROMS domain, trajectories of nine
particles scattered throughout the domain were obtained from a ROMS run of
4 days backward and forward in a static flow field, and compared with our com-
puted trajectories for the same velocity and initial position data (figures 21 and
22). The integration time step here was 2 minutes, the same as the interpolation
time step, so no actual temporal interpolation should have been performed. The
forward trajectories look qualitatively correct, although many seem to slightly
overshoot the ROMS trajectories, indicating a possible scaling problem. Most
trajectories are never more than about 5 km off the mark during this time, al-
though several do exit the domain. The largest error comes from a trajectory in
the eastern part of the bay, where the flow seems to bifurcate around an island.

The primary source of this relatively small error is unknown as of writing.
One possible culprit is that there is a slight misalignment in grids, since the
ROMS trajectories seem to slightly impede on the land mask in the figures.
Other possibilities are that ROMS is using higher-order (likely bicubic) inter-
polation in the horizontal, or a higher-order integration scheme.1

The M and FTLE function were calculated for a time-varying flow field
(starting at a different time now) for values of τ ranging from 6 hours to 4
days. (Unfortunately, time did not allow for a similar validation of the M and
FTLE fields for this domain, which would have been hampered by the inaccurate
trajectories anyway.) Results for τ = 6 hours, time step 45 s, are shown, for
backward integration only in figures 23 and 24, and forward only in figures 25
and 26. The general theme is that stable and unstable manifolds are revealed by
ridges of the FTLE field in forward time, and troughs in backward time, while
these same structures are revealed as sharp gradients in the M -field. Thus the
snaking lines that start to show up in the FTLE plots tend to outline regions
of relatively constant M . However, the density of those lines is rather sensitive
to the color axis used for the plot (figure 27), leading to possibly “phantom”
structures.

As the time interval is stretched to a day and beyond, the coherent structures
become even clearer (figure ??). For example, around τ = 2 days backwards,
the high-M structure around ξ = 115, η = 200 is clearly delineated from the

1ROMS documentation seems to indicate that ROMS uses a predictor-corrector method
[4] with fourth-order Milne for the predictor:

X̂n+1 = Xn−3 +
4∆t

3
(2v(Xn, tn) − v(Xn−1, tn−1) + 2v(Xn−2, tn−2))

and fourth-order Hamming for the corrector:

Xn+1 =
9

8
Xn −

1

8
Xn−2 +

3∆t

8

(
v(X̂n+1, tn+1) + 2v(Xn, tn) − v(Xn−1, tn−1)

)
for the corrector. Unfortunately, ROMS documentation was not forthcoming with its inter-
polation methods for Lagrangian drifters.
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low-M structures nearby, particularly to the northeast. This indication of a
group of particles eventually moving together fast in backward time (presum-
ably as they enter the mouth of the bay together) is further confirmed in the
τ = 4 days backward plot (figure 29), in which these particles disappear entirely,
indicating that they eventually exit the domain en masse. The corresponding
FTLE fields (figure 30) are in close correspondence with these M -fields, in par-
ticular highlighting the northeast boundary of the aforementioned structure, as
well as structural boundaries around ξ = 95, η = 105, ξ = 100, η = 155, and
ξ = 135, η = 180, all of which are visible as sharp gradients in M . It’s worth
noting, however, that the color scales are not constant in time in these FTLE
plots, rather they were specifically adjusted to bring out these very structures,
while suppressing some of the less obvious ones. This choice of color scale, as
well the corresponding colormap, is clearly an important aspect of any such
plot, and should be carefully considered and noted.

This disappearance of particles over long enough time scales (e.g. 4 days)
is obviously problematic for visualization. Of course, this is inevitable with the
current decision to ignore particles outside the domain, since more and more
will in fact come into contact with boundaries eventually. In the future, it would
be worth exploring how these plots change with different boundary conditions.
For example, a free-slip condition would allow particles to drift along coastlines
with the local tangential velocity, but this was not considered in the project.

7 Conclusions

We created tools for the M and FTLE and applied these tools to successfully re-
veal the dynamics of simple ODE systems in two and three dimensions. We then
applied slightly altered versions of these tools to a model two-dimensional flow
of the Chesapeake Bay and, although our trajectory integration had some po-
tential inaccuracies which merit further exploration, we nevertheless succeeded
in calculating these trajectories over time spans up to 4 days, and visualizing
the corresponding M and FTLE fields. As in the toy examples, these visualiza-
tions revealed the stable and unstable manifolds in the flow usually via ridges
and troughs of the FTLE field and sharp gradients in the M field. Immedi-
ate future work would involve diagnosing the possible errors in the ChesROMS
trajectory calculation (especially backwards), as well as applying the tools to
the full three-dimensional flow to see, how the coherent structures develop as τ
increases in a cross-section of the mouth of the bay. We would expect to iden-
tify clear structures indicating the boundaries between inflowing saltwater and
outgoing freshwater, and observe how their spatial placement is affected by the
Coriolis force. In addition, we might hope to implement more realistic boundary
conditions for particles, disabling the current tendency for white space to grow
over time.
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8 Timeline

• First Semester

– First half: October - Mid-November

∗ Project proposal presentation and paper

∗ 2D and 3D interpolation

– Second half: Mid-November - December

∗ 2D trajectory implementation and validation

∗ M function implementation and validation

∗ Mid-year report and presentation

• Second Semester

– First half: January - February

∗ 3D trajectory implementation and validation

∗ FTLE implementation

∗ Tailor all existing code to work with ROMS data

– Second half: March - April

∗ Apply tools to Chesapeake dataset

∗ Further analysis of Chesapeake dataset?

∗ Final presentation and paper

9 Deliverables

• Code

– Routines that lay down particle lattice and calculate trajectories from
velocity data

– Routines that calculate M-function and FTLE based on trajectories

• Results

– Series of visualizations (images, movies, graphs) based on these func-
tions, for Chesapeake Bay data and test problems

• Reports

– Project proposal and presentation

– Mid-year progress report and presentation

– Final paper and presentation

• Databases

– Chesapeake Bay ROMS dataset
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(a) Hill’s vortex, M , τ = 10, forward

(b) Hill’s vortex, FTLE, τ = 10, forward
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(a) The Chesapeake Bay [2]

(b) The horizontal domain of the ChesROMS
dataset, latitude vs. longitude, with land areas

blacked out.
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(a) Backward (b) Forward

Figure 21: Our computed trajectories (red) vs. ROMS trajectories (blue), τ =
4 days, backward and forward (ROMS trajectories courtesy of Bin Zhang,

Cooperative Institute for Climate and Satellites-Maryland)
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(a) Backward

(b) Forward

Figure 22: 2-norm index-space Chesapeake trajectory error (compared to
ROMS) vs. time, τ = 4 days, forward and backward. Each line represents one

of nine particles. Vertical units are roughly km.
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(a) M
τ

(b) FTLE

Figure 23: Comparison of average speed (Mτ ) vs. FTLE for τ = 6 hours,
backward only
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(a) M
τ

(b) FTLE

Figure 24: Closeup of figure 23, mouth of bay
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(a) M
τ

(b) FTLE

Figure 25: Comparison of average speed (Mτ ) vs. FTLE for τ = 6 hours,
forward only
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(a) M
τ

(b) FTLE

Figure 26: Closeup of figure 25, mouth of bay

(a) FTLE, color axis up to 10−4 (b) FTLE, color axis up to 2.2 · 10−4

Figure 27: Changing the color axis can affect one’s perception of the structure
of an FTLE field.
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(a) M
τ

(b) FTLE

Figure 28: Comparison of M
τ vs. FTLE for τ = 2 days, backward only
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(a) τ = 1 day (b) τ = 2 days (c) τ = 4 days

Figure 29: Evolution of M
τ for τ from 1 to 4 days, backward only
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(a) τ = 1 day (b) τ = 2 days (c) τ = 4 days

Figure 30: Evolution of FTLE for τ from 1 to 4 days, backward only
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