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1 Abstract

This project aims to effectively reconstruct an MRI signal using Fourier frames. We begin by describing the
theoretical framework of a Fourier frame on the Paley-Wiener space PW

B(0,R)
. We then invoke Beurling’s

theorem to prove that we can choose points along interleaving spirals in the spectral domain to construct a
Fourier frame for PW

B(0,R)
. We use frame notation to extend these results to the signal space of a square

image, forming a reconstruction algorithm that results in an overdetermined linear system. We implement
two different algorithms to solve the least-squares approximation in order to recover the spatial components
of the MRI signal.

2 Background

MRI signal reconstruction from spectral sampling is a common problem in the field of signal processing.
Formally stated, image reconstruction is an inversion problem: given frequency information, we want to
recover the spatial components of the image. MRI reconstruction in particular desires both speed and
accuracy, but often the former is neglected. Previous results have shown that sampling on interleaving
spirals in the spectral domain makes for much faster data acquisition than rectilinear spectral sampling
[8, 5]. We desire a reconstruction scheme that makes use of this data acquisition method. The standard
approach to MRI reconstruction relies on uniform sampling of the spectral domain [11]. We will show that
by sampling nonuniformly along the interleaving spirals, we can construct a Fourier frame approximant that
allows us to achieve perfect MRI reconstruction.

It is well-established that uniform sampling in the spectral domain of a band-limited signal can produce
perfect reconstruction (Shannon’s theorem), i.e. the reconstructed signal is a scaled, delayed version of
the original signal. This result leads to the Nyquist sampling theorem, which states that to obtain perfect
reconstruction, a band-limited signal must be sampled at a rate at least twice the maximum frequency [11].
Rectilinear sampling in the spectral domain consists of points (λ, µ) where λ = mhλ and µ = nhµ for
m,n ∈ Z and for fixed distances between coordinates hλ and hµ that satisfy the Nyquist criterion. The
typical MRI reconstruction algorithm samples rectilinearly and then applies the Fast Fourier Transform to
recover the image [6, 11].

A standard MRI machine measures the exact spectral components of the signal. Coils generate a magnetic
field that causes the body’s protons to align with it along a magnetic vector. A radio wave frequency (RF)
is then passed through the body to disrupt the magnetic field, forcing the protons out of equilibrium. Once
the pulse passes, the protons realign with the magnetic field. The time it takes for the particles to return
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to homeostasis and the amount of energy released indicate the type of tissue the pulses are moving through.
Localizing the magnetic field allows for the recovery of images such as Figure 1 [4, 12].

Figure 1: “Carolyn’s MRI”, by ClintJCL (Flickr)

3 Theoretical Approach

The Paley-Wiener space PWE is defined as

PWE = {ϕ ∈ L2(R̂d) : supp ϕ∨ ⊆ E},

where R̂d is the domain of the Fourier transforms of signals in d-dimensional Euclidean space, and L2(R̂d)
is the space of finite energy signals on R̂d with E ⊆ Rd compact. The Fourier transform of a signal f(x) is

defined as F : L2(Rd) → L2(R̂d) such that F(f)(ω) =
∫∞
−∞ f(x)e−2πix·ωdx. ϕ∨ denotes the inverse Fourier

transform of ϕ and supp ϕ∨ denotes the support of ϕ∨ [3].
In a separable Hilbert space H, a frame is defined as a sequence {xn : n ∈ Zd} ⊆ H for which there exist

A,B > 0 such that

∀y ∈ H, A||y||2 ≤
∑
n

|〈y, xn〉|2 ≤ B||y||2.

Let Λ ⊆ R̂d be a sequence and let E ⊆ Rd be compact. Define the sequence {eλ1E : λ ∈ Λ} ⊆ L2(Rd),
where eλ(x) = e−2πix·λ. In particular, note that (eλ1E)∧ ∈ PWE and L2(E) = (PWE)∨. The sequence
{eλ1E} is a frame for L2(E) (where we write L2(E) ⊆ L2(Rd) because (PWE)∨ ⊆ L2(Rd)), if and only if
there exist 0 < A ≤ B <∞ such that

∀f ∈ L2(E), A||f ||2L2(E) ≤
∑
λ∈Λ

|〈f, eλ1E〉L2(E)|2 ≤ B||f ||2L2(E)

where 〈f, eλ1E〉L2(E) =
∫
E
f(x)e−2πix·λdx = f̂(λ). We can further say that the sequence (eλ1E)∧ is a frame

for PWE if {eλ1E} is a frame for L2(E). We call such a sequence a Fourier frame for PWE [1, 3].
A set Λ is uniformly discrete if there exists r > 0 such that

∀λ, γ ∈ Λ, |λ− γ| ≥ r.
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When E is the closed ball B(0, R) ⊂ Rd centered at 0 with radius R, Beurling’s theorem tells us the following

[3]: Let Λ ⊆ R̂d be uniformly discrete and let dist(ξ,Λ) = infλ∈Λ

√∑d
i=1 |ξi − λi|2 denote the Euclidean

distance between the point ξ and the set Λ. Define

ρ = ρ(Λ) = sup
ξ∈R̂d

dist(ξ,Λ).

If Rρ < 1
4 , then Λ is a Fourier frame for PW

B(0,R)
⊆ L2(R̂d).

Define L : L2(E) → `2(Λ) of a Bessel map such that f → {f̂(λ) : λ ∈ Λ}. Let L∗ be its adjoint, and
define the frame operator

S = L∗L : L2(E)→ L2(E)

such that f → S(f) =
∑
λ∈Λ f̂(λ)eλ1E . If {eλ1E} is a frame for L2(E), then

f = SS−1f =
∑
λ∈Λ

(S−1f)∧(λ)eλ1E . (1)

From this we can conclude that every finite energy signal f ∈ L2(E) can be represented as

f(x) =
∑
λ∈Λ

aλ(f)eλ1E (2)

in L2(Rd), where aλ(f) = (S−1f)∧(λ) and
∑
λ∈Λ |aλ(f)|2 is finite.

Given the representation in (2), we must now choose a sequence ΛR ∈ R̂d such that ΛR is a Fourier frame
for PW

B(0,R)
. Let c,R > 0, and let {Ak : k = 0, 1, ...,m− 1} denote a finite set of interleaving Archimedean

spirals of the form
Ak = {cθe2πi(θ−(k/m)) : θ ≥ 0}.

Let B = ∪m−1
k=1 Ak. We will construct a uniformly discrete set ΛR ⊆ B that will form a Fourier frame for

PW
B(0,R)

.

First, choose m such that cR
m < 1/2. For any given ξ0 ∈ R̂2, we will write it as ξ0 = r0e

2πiθ0 where r0 ≥ 0
and θ0 ∈ [0, 1). Then either 0 ≤ r0 < cθ0 < c or there exists n0 ∈ N ∪ {0} for which

c(n0 + θ0) ≤ r0 < c(n0 + 1 + θ0).

In the second case, we can find k ∈ {0, · · · ,m− 1} such that

c(n0 + θ0 +
k

m
) ≤ r0 < c(n0 + θ0 +

k + 1

m
),

which implies

dist(ξ0, B) ≤ c

2m
.

Next, choose δ > 0 such that Rρ < 1/4, where ρ = (c/2m)+δ. For each k, we choose a uniformly discrete
set of points Λk along the spiral Ak, where the curve distance between consecutive points is less than 2δ,
beginning within 2δ of the origin. This rule guarantees that the distance from any point on the spiral Ak to
Λk is less than δ. Finally, set ΛR = ∪m−1

k=0 Λk. By the triangle inequality,

∀ξ ∈ R̂2, dist(ξ,ΛR) ≤ dist(ξ,B) + dist(B,ΛR)

≤ c

2m
+ δ = ρ.

Recall that by our choices of δ and m, we have that Rρ < 1/4, thus Beurling’s theorem tells us ΛR is a
Fourier frame for PW

B(0,R)
.
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4 Problem

We shall extend the results in Section 3 to the signal space of a generic square image f : R2 → R in a space
E ⊆ R2 [3]. Consider the image f ∈ L2(E), taken to be zero outside of E. Let χ1 = {�1

k, pk ∈ �1
k ∀k}

B−1
k=0

be a refined tagged partition of E. We approximate f using the piecewise constant function fχ1
due to lack

of access to real MRI data. This approximation incurs an error ε between the true, smooth image f and the
image fχ1

. However, for any choice of ε, we can refine χ1 such that ||f − fχ1
|| < ε, thus fχ1

is a reasonable
approximation of f . For a high-resolution image, the pixels act as the partition χ1. Under this partition,
the image has the representation

fχ1
=

B−1∑
k=0

f(pk)1�1
k

(3)

and the equivalent spectral representation

f̂χ1 =

B−1∑
k=0

f(pk)1̂�1
k
. (4)

Let χ2 = {�2
j , qj ∈ �2

j ∀j}
N1N2−1
j=0 be a coarse tagged partition of E such that fχ2

is piecewise constant.
χ2 is designed such that for each qj ∈ χ2, there is a corresponding pk ∈ χ1. Ideally, we would recover fχ2

from the spectral information f̂ from the MRI machine. Computationally, we reconstruct fχ2
given f̂χ1

, the

approximation of f̂ .
We restrict our view of the spectral domain to the square Ω ⊆ R̂2, where the frame contribution outside

the square is negligible. From our theoretical results, we can choose a set of points Λ ⊆ R̂2 along a set
of interleaving spirals that gives rise to a Fourier frame for L2(E). Within the restricted domain Ω, we
choose M ≥ N1N2 points αi = (λi, µi) for i = 0, 1, ...,M − 1 on the interleaving spirals such that the αi are
nonuniform in the square. Let Λ = {αi}. We extend this tiling to the entire spectral domain by utilizing
the periodic extension Λ +KZ2, giving rise to a frame {eαi}αi∈Λ for PWE , where E = [− 1

2 ,
1
2 ]2. The MRI

machine gathers true information about f̂ . Thus, by specifying the points αi ∈ Λ ∩ Ω, we have access to
{f̂χ1

(αi), i = 0, 1, ...,M − 1}, the approximation of {f̂(αi)}, where we compute

f̂χ1
(αi) =

B−1∑
k=0

f(pk)1̂�1
k
(αi). (5)

Let

g =

N1N2−1∑
j=0

cj1�2
j

(6)

be an image formed over the coarse partition χ2. Given the spectral information f̂χ1(αi), we wish to find
the image over the coarse partition that matches the frequency information of the high-resolution image at
the points on the frame. To that end, we want to find cj that solve

min
c

M−1∑
i=0

|f̂χ1
(αi)− ĝ(αi)|2. (7)

We then compare the actual recovered image g to the ideal recovered image fχ2 formed by local averaging
over the high-resolution image fχ1

.

Let Hj(αi) = 1̂�2
j
(αi). As the characteristic functions are separable by dimension, this is equivalent to

Hj(αi) = Hj(λi, µi) = 1̂−2
xj

(λi)1̂−2
yj

(µi), where

Hj(αi) = Hj(λi, µi) =
1

N1

1

N2
sinc

(
1

N1
λi

)
sinc

(
1

N2
µi

)
e−2πI(Tnλi+Tmµi) (8)
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We define sinc(x) as the standard sinc(x) = sinπx
πx , with sinc(0)=1, and (Tn, Tm) as the coordinates of

the center of the current square, with Tn = − 1
2 + 2n+1

2N1
for n ∈ {0, ..., N1 − 1} and Tm = − 1

2 + 2m+1
2N2

for
m ∈ {0, ..., N2 − 1}. This gives

g(αi) =

N1N2−1∑
j=0

cjHj(αi). (9)

To minimize |f̂χ1
(αi)− ĝ(αi)|2, we set

f̂χ1
(αi) =

N1N2−1∑
j=0

cjHj(αi). (10)

Let
F̂ = [f̂χ1

(α0) f̂χ1
(α1) ... f̂χ1

(αM−1)]T

and
F = [c0 c1 ... cN1N2−1]T.

Define H such that [H]i,j = Hj(αi), and (10) becomes

F̂ = HF. (11)

The matrix equation (11) contains M ≥ N1N2 points in the spectral domain and N1N2 points in the spatial

domain. F̂ is a length-M vector, F is a length-N1N2 vector, and H is size M × N1N2. This yields an
overdetermined system. F contains the spatial components of the image f that we wish to recover. In
the following section, we will show that this matrix representation is equivalent to the frame reconstruction
scheme.

5 Frame Reconstruction

The goal of this project is to use nonuniform sampling on interleaving spirals to define a Fourier frame in
R̂2 from which we can reconstruct an image f . Recall that we do not have access to real MRI data, thus we
use the spectral information over the fine partition χ1 to recover the spatial components of our image f over
a coarse partition χ2. We create a synthetic data set using high-resolution images.

Given a high resolution image fχ1
, generally of size 1024 × 1024, we form fχ2

, an N1×N2 approximant,
by averaging every d× d pixels of fχ1

, where d is our reduction factor. The N1 ×N2 approximant fχ2
is the

optimal available image at that resolution. We take this as our ideal reconstruction, from which the error will
be computed. From the high-resolution image fχ1 , we sample f̂χ1(αi) as defined in (5) for i = 0, 1, ...,M − 1
(with M ≥ N1N2) on a union of Archimedean spirals within the square Ω (Figure 2).

Beurling’s theorem allows us to develop a reconstruction scheme using the set of points Λ = {αi}. The
frame definition gives rise to a mapping H of N1N2 points to M points, thus H is the matrix representation
of the Bessel map L : `2({0, 1, ..., N1N2 − 1}) → `2({0, 1, ...,M − 1}), H∗ is its adjoint L∗, and H∗H is
equivalent to the frame operator S = L∗L. The frame reconstruction scheme is

g = (S−1L∗)Lg. (12)

Setting Lg = f̂χ1
, our reconstructed image g takes the form

g = S−1L∗f̂χ1
. (13)

Applying the construction in Section 4 yields the overdetermined system in (11). We can see that in our
frame terminology, the least-squares approximation

F = (H∗H)−1H∗F̂, (14)

where H∗ := H
T

, is equivalent to (12).
From g, we will compare our reconstruction with the optimal available image fχ2

by analyzing fχ2
− g.
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Figure 2: Problem overview. Top: High-resolution image fχ1
from which synthetic data is formed. Bottom

left: Sampling along interleaving spirals in the spectral domain of the high-resolution image. Bottom right:
Downsampled version of the high-resolution image that serves as the ideal reconstruction.

6 Approach

A typical MRI image f is of size N2 = 256 × 256. This is the ultimate image size that we will attempt to
reconstruct. Our primary concern is solving (14) to recover g by constructing F̂ and H as described Section
4. Assuming (H∗H)−1 exists, g can be reconstructed. Note that H∗H is fixed, which cuts down on storage
costs considerably.

We will consider two reconstruction algorithms that solve the system

H∗HF = H∗F̂. (15)

The first is transpose reduction, which is the direct approach but with efficient storage. The second algorithm
is the conjugate gradient method.

6.1 Transpose Reduction

This algorithm computes H∗H directly as a sum of vector products instead of inefficiently storing H and
then computing H∗H [3, 7].

6



Define Vi = (H0(αi), ...,HN1N2−1(αi))
∗ such that

H =


H0(α0) · · · HN1N2−1(α0)
H0(α1) · · · HN1N2−1(α1)

...
...

...
H0(αM−1) · · · HN1N2−1(αM−1)

 =


V ∗0
V ∗1
...

V ∗M−1

 .

Note that

H∗H =


∑M−1
i=0 H0(αi)H0(αi) · · ·

∑M−1
i=0 H0(αi)HN1N2−1(αi)

...∑M−1
i=0 HN1N2−1(αi)H0(αi) · · ·

∑M−1
i=0 HN1N2−1(αi)HN1N2−1(αi)



=

M−1∑
i=0

 H0(αi)H0(αi) · · · H0(αi)HN1N2−1(αi)
...

HN1N2−1(αi)H0(αi) · · · HN1N2−1(αi)HN1N2−1(αi)



=

M−1∑
i=0


H0(αi)

H1(αi)
...

HN1N2−1(αi)

 (H0(αi) H1(αi) · · · HN1N2−1(αi))

=

M−1∑
i=0

ViV
∗
i .

Similarly,

H∗F̂ =


∑M−1
i=0 H0(αi)F̂i

...∑M−1
i=0 HN1N2−1(αi)F̂i

 =

M−1∑
i=0

F̂iVi.

To construct A = H∗H and b = H∗F̂:

1. Let V0 = (H0(α0), ...,HN1N2−1(α0))∗

2. Set A = V0V
∗
0 and b = f̂0V0

3. For j = 1 : M − 1

Set Vj = (H0(αj), ...,HN1N2−1(αj))
∗

A← A+ VjV
∗
j

b← b+ f̂jVj

From here, (15) can be solved directly using a QR or Cholesky decomposition. This method uses a factor
of N2/M less memory than the direct approach with naive storage. In testing, as we increase the value of
M , we expect this savings to become more apparent.

6.2 Conjugate Gradient Algorithm

Given the construction of H∗H,

[H∗HF]` =

N1N2−1∑
j=0

Fj

M−1∑
i=0

H`(αi)Hj(αi),

where [H∗HF]` denotes the `th element of H∗HF. As in the Transpose Reduction algorithm, let A = H∗H

and b = H∗F̂. Then, for symmetric, positive definite A, we apply the conjugate gradient method [9] to solve
the system AF = b.
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1. Choose f0. Let r0 = b−Af0. Set p0 = r0.

2. for n = 1 until convergence

γ = (rTn rn)/((Apn)T pn)

fn+1 = fn + γpn

rn+1 = rn − γApn
if norm(rn+1) < tol, break

βn = (rTn+1rn+1)/(rTn rn)

pn+1 = rn+1 + βnpn

This algorithm generally has linear convergence, but the speed of convergence depends on the condition
number of A. We will also develop a modified implementation of the conjugate gradient algorithm that uses
only matrix-vector operations instead of explicitly storing the matrix A.

7 Validation

7.1 Validation Methods

The following measures were used to evaluate the results.

7.1.1 PSNR

A standard measure of a reconstructed image is the peak signal-to-noise ratio (PSNR) [6]. It is defined in
terms of the mean-squared error. Given our optimal available image fχ2 of dimension N1 × N2 and the
reconstructed image g,

MSE =
1

N1N2

N1−1∑
m=0

N2−1∑
n=0

(g(m,n)− fχ2
(m,n))2

Then the PSNR, expressed in decibels (dB), is

PSNR = 10 log
max2

fχ2

MSE
(16)

where maxfχ2
is the maximum possible pixel value for fχ2

. As we are using purely grayscale images for this
project, maxfχ2

= 255.

7.1.2 SSIM

The structural similarity (SSIM) index is a measure of similarity between two images [10]. Let x and y be
signals where one is assumed to be of perfect quality. The luminance of each image is estimated by the mean
intensities µx and µy. The standard deviations σx and σy are used to estimate the signal contrast. The
constants C1 and C2 are used as stabilizers for when µ2

x + µ2
y and σ2

x + σ2
y are close to zero. The final form

of the SSIM index is

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
.

7.2 Frame

The frame Λ was formed using the parameters c = 1, and R = 0.5
√

2
2 (half the diagonal of the square). It

was constructed from one spiral and contained 2N1N2 points in the complex plane.
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7.3 2x2 Recovery

A 2x2 low-resolution image was reproduced from high-resolution images of varying size. The frame Λ
consisted of the points

Real(αi) Imag(αi)
0 0.0050

0.0100 0.0149
0.0198 0.0247
0.0295 0.0342

0 0.0002
0.0006 0.0014
0.0025 0.0039
0.0056 0.0076

Figure 3: 2x2 reconstruction test. Top: 16x16 high-resolution image. Left: 2x2 ideal image. Right: 2x2
recovered image.
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The results of reconstructing the image from a 16x16 high-resolution image are shown in Figure 3, with
the accompanying details in the table below. This example showcases a reduction by a factor of eight in each
dimension. We expect similar reductions for larger problems will be reasonable. The peak signal-to-noise
ratio in this test was 32.4535 dB.

Ideal Recovered

132.6719 120.9063 142.0672 121.8891
98.6094 108.9688 91.8631 105.3507

Figure 4: PSNR for 2x2 reconstruction test.

In total, seven tests were conducted, where a 2x2 matrix was reconstructed from high-resolution images
of sizes 2k × 2k for k ∈ {2, ...8}. The matrix H in each case is of dimension 8x4, corresponding to eight
points in the frame and four pixels in the recovered image. The resulting PSNRs are shown in Figure 4.
Note the PSNR began to increase starting with a high-resolution image of size 32x32. While this trend did
not continue, it suggests that there may exist thresholds in which recovery would be maximized according to
our ideal image. It is also important to note that for each trial, the minimum PSNR was still greater than
28 dB, at least double the PSNR we would see with recovery from a singular matrix.

More details are shown in the table below. Total error was calculated as the sum of the nominal differences
between corresponding pixels of the ideal and recovered image. The average error per pixel stays within 4%
of the ideal value.

HR Square Image Size Total Error Average Error Per Pixel PSNR

4x4 7.9994 1.9999 41.4696
8x8 18.7343 4.6836 34.0317

16x16 20.7425 5.1856 32.4535
32x32 26.0165 6.5041 31.1978
64x64 19.4448 4.8612 33.4908

128x128 7.7677 1.9419 40.9905
256x256 36.6284 9.1571 28.5647
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8 Future Work

Testing will continue in the form of larger problems. We will reconstruct larger low-resolution images from
various size high-resolution images over the full data set. Still to be explored is the error convergence for
different problem sizes, as well as how the condition number of H∗H affects the reconstruction. Given that
a frame consisting of 2N1N2 points has been sufficient to reconstruct our 2x2 images, we expect this size
frame is reasonable. It is also possible that we could reduce the size of the frame to N1N2 points, if this
proves sufficient, in order to reduce computational time for larger problems.

9 Milestones

• Construct a Fourier frame via sampling on interleaving spirals.

• Implement the Transpose Reduction algorithm.

• Implement the conjugate gradient algorithm.

10 Timeline

• October 2015: Code the sampling routine to form the Fourier frame. [Complete]

• November 2015: Validation on small problems. [Complete]

• December 2015: Code the transpose reduction algorithm [Complete] and begin testing [Ongoing].

• January - February 2016: Code the conjugate gradient algorithm. Design and implement modified
conjugate gradient algorithm.

• February - March 2016: Error analysis/testing. Explore how much frequency information we need to
adequately recover fχ2

. Explore condition number of H∗H and how it affects the reconstruction.

• April 2016: Finalize results.

11 Deliverables

• Synthetic data set

• Fourier frame sampling routine

• Downsampling routine

• Routine to generate spectral data

• Transpose reduction routine

• Conjugate gradient routine

• Final report and error analysis
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