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Background

MRI Reconstruction
Common inversion problem: given frequency information,
reconstruct image in the spatial domain
Sampling on interleaving spirals make for fast data
acquisition (Bourgeois et al)

“Carolyn’s MRI”, by ClintJCL (Flickr)
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Paley-Wiener space

The Paley-Wiener space PWE is defined as

PWE = {ϕ ∈ L2(R̂d ) : supp ϕ∨ ⊆ E},

where
R̂d is the spectral equivalent of Rd

E ⊆ Rd is compact
F : L2(Rd )→ L2(R̂d ) such that
F(f )(ω) =

∫∞
−∞ f (x)e−2πix ·ωdx

ϕ∨ = F−1(ϕ)
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Fourier Frame

A frame is a sequence {xn : n ∈ Zd} ⊆ H, a separable Hilbert
space, for which there exist A,B > 0 such that

∀y ∈ H, A||y ||2 ≤
∑

n

|〈y , xn〉|2 ≤ B||y ||2.

Let Λ ⊆ R̂d be a sequence and let E ⊆ Rd be compact. The
sequence {eλ : λ ∈ Λ}, where eλ(x) = e−2πix ·λ, defines a frame
for PWE if and only if there exist 0 < A ≤ B <∞ such that

∀ϕ ∈ PWE , A||ϕ||L2(R̂d )
≤

∑
λ∈Λ

|ϕ(λ)|2 ≤ B||ϕ||L2(R̂d )
.

We call such a sequence a Fourier frame for PWE (Au-Yeung,
Benedetto).
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Beurling’s Theorem (Beurling; Benedetto,Wu)

Let E = B(0,R) ⊂ Rd .
Let Λ ⊆ R̂d be uniformly discrete.

Let dist(ξ,Λ) = infλ∈Λ

√∑d
i=1 |ξi − λi |2 denote the

Euclidean distance between the point ξ ∈ R̂d and the set Λ.

Define
ρ = ρ(Λ) = sup

ξ∈R̂d

dist(ξ,Λ).

If Rρ < 1
4 , then Λ is a Fourier frame for PWB(0,R) ⊆ L2(R̂d ).

Every finite energy signal f ∈ L2(E) can thus be represented as

f (x) =
∑
λ∈Λ

aλ(f )eλ1E
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Fourier Frame on Interleaving Spirals

Let {Ak : k = 0,1, ...,M − 1} ⊆ R̂d denote a finite set of
interleaving Archimedean spirals of the form

Ak = {cθe2πi(θ−(k/M)) : θ ≥ 0}.

1. Choose δ > 0 such that Rρ < 1/4.
2. For each k , choose a uniformly discrete set Λk of points

along Ak where the curve distance between consecutive
points is less than 2δ, beginning within 2δ of the origin.

The set ΛR = ∪M−1
k=0 Λk ⊆ B = ∪M−1

k=1 Ak defines a Fourier frame
for PWB(0,R) (Benedetto,Wu).
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Problem Overview

The goal of this project is to use nonuniform sampling on
interleaving spirals to define a Fourier frame in R̂d , from which
we can reconstruct a low-resolution MRI image.

Images courtesy of U.S. Patent US5485086 A and “Carolyn’s MRI”, by ClintJCL (Flickr)
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Computational Approach

f (p) = f (x , y) =
N2−1∑
bj =0

fbj1�bj
(x , y)

f̂ (α) = f̂ (λ, µ) =
N2−1∑
bj =0

fbj Hbj (λ, µ)

where

Hbj (α) = Hbj (λ, µ)

= 1̂�bj
(λ, µ)
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Computational Approach

Choose M ≥ N2 points αi = (λi , µi) on the interleaving spirals
to get

f̂ (αi) =
N2−1∑
j=0

fbj Hbj (αi). (1)

Let
F̂ = [̂f (α0) f̂ (α1) ... f̂ (αM−1)]T

and
F = [fb0 fb1 ... fbN2−1

]T.

Let H = [Hbj (αi)]i,j , and (1) becomes

F̂ = HF. (2)
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Implementation

We will solve the least-squares problem

F = (H∗H)−1H∗F̂, (3)

where
H is the Bessel map
`2({0,1, ...,N2 − 1})→ `2({0,1, ...,M − 1})
H∗ is its adjoint
H∗H is the frame operator

We consider the following algorithms:
Transpose reduction (direct approach with efficient storage)
Conjugate gradient algorithm

Christiana Sabett (AMSC) MRI Reconstruction via Fourier Frames on Interleaving Spirals



Transpose Reduction
Let A = H∗H and b = H∗ f̂ . Define Vj = (H0(αj ), ...,HN2−1(αj ))∗ s.t.

H =


H0(α0) · · · HN2−1(α0)
H0(α1) · · · HN2−1(α1)

...
...

...
H0(αM−1) · · · HN2−1(αM−1)

 =


V T

0
V T

1
...

V T
M−1

 .

Note that

A = H∗H =
M−1∑
k=0

 H0(αk )H0(αk ) · · · H0(αk )HN2−1(αk )
...

HN2−1(αk )H0(αk ) · · · HN2−1(αk )HN2−1(αk )



=
M−1∑
k=0


H0(αk )

H1(αk )
...

HN2−1(αk )

 (H0(αk ) H1(αk ) · · · HN2−1(αk ))

=
M−1∑
k=0

Vk V ∗
k .
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Transpose Reduction

b = H∗ f̂ =


∑M−1

k=0 H0(αk )f̂k
...∑M−1

k=0 HN2−1(αk )f̂k

 =
M−1∑
k=0

f̂kVk .

To construct A = H∗H and b = H∗ f̂ :
1. Let Vj = (H0(α0), ...,HN2−1(α0))∗

2. Set A = VjV ∗j and b = f̂0Vj

3. For j = 0 : M − 1
Set Vj = (H0(αj ), ...,HN2−1(αj ))∗

A = A + VjV ∗
j

b = b + f̂jVj

Factor of N2/M less memory than direct approach with naive
storage.
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Conjugate Gradient Method

Let A = H∗H and b = H∗ f̂ . To solve Af = b for symmetric,
positive definite A:

1. Choose f0. Let r0 = b − Af0. Set p0 = r0.
2. for n = 1 until convergence

γ = (rT
n rn)/((Apn)Tpn)

fn+1 = fn + γpn
rn+1 = rn − γApn
if norm(rn+1) < tol, break
βn = (rT

n+1rn+1)/(rT
n rn)

pn+1 = rn+1 + βnpn

Generally has linear convergence, but the speed of
convergence depends on the condition number of A.
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Validation and Testing

Validation
Small problems (on the order of 64 × 64 pixels) can be
solved directly.
CG algorithm should follow the same convergence
trajectory as Matlab’s version.

Testing will primarily consist of error analysis.

Error measures:
Signal-to-noise ratio (SNR)
Structural Similarity measure (SSIM) (Wang et al)

Software: Matlab. Hardware: Acer Aspire V5 (6GB RAM)
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Timeline

October 2015: Code the sampling routine to form the
Fourier frame.
November 2015: Proof of concept on small problems.
December 2015: Code the transpose reduction algorithm
and begin testing.
January 2016: Code the conjugate gradient algorithm.
February - March 2016: Error analysis/testing. Explore
how much frequency information we need to adequately
recover f . Explore condition number of H∗H and how it
affects the reconstruction.
April 2016: Finalize results.
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Deliverables

Synthetic data set
Fourier frame sampling routine
Transpose reduction routine
Conjugate gradient routine
Final report and error analysis
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Thank you!

Questions?
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