Recap	Progress on Adaptive ADMM Library	Results	Issues and Problems	Project Schedule
00	00	00000 00000		

The Alternating Direction Method of Multipliers With Adaptive Step Size Selection

Peter Sutor, Jr.

Project Advisor: Professor Tom Goldstein

December 2, 2015

イロト 不同下 イヨト イヨト

Recap ●0 ○○	Progress on Adaptive ADMM Library 00 000	Results 00000 00000	Issues and Problems	Project Schedule
Background				

The Dual Problem

- Consider the following problem (*primal problem*): min_x(f(x)) subject to Ax = b.
- Important components of this problem:
 - **1** The Lagrangian: $L(x, y) = f(x) + y^T(Ax b)$
 - We refer to the original x variable as the *primal variable* and the y variable as the *dual variable*.
 - **2** Dual function: $g(y) = \inf_x(L(x, y))$
 - New function made purely out of the dual variable.
 - Gives a lower bound on the objective value.
 - **3** Dual problem: $\max_{y \ge 0}(g(y))$
 - The problem of finding the best lower bound.

End goal: recover x* = arg min_x(L(x, y*)), where x* and y* are corresponding optimizers.

Recap O● ○○	Progress on Adaptive ADMM Library 00 000	Results 00000 00000	Issues and Problems	Project Schedule
Background				

Methods Discussed

- Dual Ascent Method (DAM): General gradient type method. Uses Lagrangian and dual variable updates to solve optimization problem.
- Method of Multipliers (MM): Add to Lagrangian penalty term: $\rho/2||Ax b||_2^2$.

1 Very robust method.

2 Penalty prevents decomposing the problem.

- Dual Decomposition (DD): Decompose dual variable, update primal components in parallel, then update dual.
 - 1 Need separable function.
 - 2 Can be slow to converge.

Recap	Progress on Adaptive ADMM Library	Results	Issues and Problems	Project Schedule
00 ••	00 000	00000 00000		
The Alternating Direction Method of Multipliers (ADMM)				

The Alternating Direction Method of Multipliers (ADMM)

- Finds a way to combine advantages of DD and MM.
 - Robustness of the Method of Multipliers.
 - Supports Dual Decomposition \rightarrow parallel *x*-updates possible.
- Problem form: (where f and g are both convex) $\min(f(x) + g(z))$ subject to Ax + Bz = c,
- Objective is separable into two sets of variables.
- ADMM defines a special Augmented Lagrangian to enable decomposition: $(r = Ax + Bz c, u = y/\rho)$

$$L_{\rho}(x, z, y) = f(x) + g(z) + y^{T}(r) + \frac{\rho}{2} ||r||_{2}^{2}$$

= f(x) + g(z) + (\rho/2)||r + u||_{2}^{2} - const
= L_{\rho}(x, z, u)

4 / 25

Recap ○○ ○●	Progress on Adaptive ADMM Library 00 000	Results 00000 00000	Issues and Problems	Project Schedule
The Alternatin	ng Direction Method of Multipliers (ADMM)			

ADMM Algorithm

Repeat for k = 0 to specified *n*, or until convergence:

 1
 $x^{(k+1)} := \arg \min_x (L_\rho(x, z^{(k)}, u^{(k)}))$

 2
 $z^{(k+1)} := \arg \min_z (L_\rho(x^{(k+1)}, z, u^{(k)}))$

 3
 $u^{(k+1)} := u^{(k)} + (Ax^{(k+1)} + Bz^{(k+1)} - c)$

• Recall the proximal operator: (with $v = Bz^{(k)} - c + u^{(k)}$)

$$prox_{f,\rho}(v) := argmin_{x}(f(x) + (\rho/2)||Ax + v||_{2}^{2})$$

If g(z) = λ||z||₁, then prox_{g,ρ}(v) is computed by soft-thresholding: (with v = Ax^(k+1) − c + u^(k))

$$z_i^{(k+1)} := sign(v_i)(|v_i| - \lambda)_+$$

Recap	Progress on Adaptive ADMM Library	Results	Issues and Problems	Project Schedule
00 00	● ○ ○○○	00000 00000		
Project Goals				

In this project ...

- Our goal is to make ADMM easier to use in practice: upload A, B, and c, then run appropriate function, or supply proximal functions for f and g and run general ADMM.
- Maximizing ADMM's potential means tweaking parameters such as step size ρ and more.
- Hope to create a comprehensive library for general ADMM use.
 - Generalized ADMM functionality (with customizable options).
 - Adaptive step-size selection.
 - Ready to go optimized functions for problems ADMM is most used for (with customizable options).
 - High performance computing capabilities (MPI).
 - Implementations in Python and Matlab.

	Progress on Adaptive ADMM Library	Results	Issues and Problems	Project Schedule
00 00	00 000	00000	00	000
Project Goals				

Goals for Fall Semester

- **1** Implement/test/validate a general ADMM function with fully customizable options for users.
 - Convergence checking of proximal operators.
 - Stopping conditions.
 - Complete run-time information.
- 2 Implement/test/validate the following 3 ADMM solvers:
 - LASSO Problem: Least absolute shrinkage and selection operator, a regularized form of the Least Squares Problem.
 - Total Variation Minimization: Minimize overall variation in a given signal.
 - Linear Support Vector Machines (SMVs): Classifiers where classes are linearly separable.
- **3** Devise an efficient adaptive step-size selection algorithm for ADMM.

Recap	Progress on Adaptive ADMM Library	Results	Issues and Problems	Project Schedule
00		00000		
The Progress	So Far			

The Progress So Far

- General ADMM and the three solvers are as finished as they can be at this point.
- Testing and validation code has also been finished.
- User options, stopping conditions and convergence checking are also finished. More can be done here.
- Adaptive ADMM has been programmed and studied. Some issues here (discussed later).

Recap	Progress on Adaptive ADMM Library	Results	Issues and Problems	Project Schedule	
	00				
00	000	00000			
The Progress So Far					

Stopping Conditions

Primal (p) and Dual (d) residuals in ADMM at step k + 1:

$$p^{k+1} = Ax^{k+1} + Bz^{k+1} - c$$

$$d^{k+1} = \rho A^T B(z^{k+1} - z^k)$$

- Reasonable stopping criteria: $||p^k||_2 \le e^{pri}$ and $||d^k||_2 \le e^{dual}$.
- Many ways to choose these tolerances.
- One common example, where $p \in \mathbb{R}^{n_1}$ and $d \in \mathbb{R}^{n_2}$:

•
$$\epsilon^{pri} = \sqrt{n_1} \epsilon^{abs} + \epsilon^{rel} \max(||Ax^k||_2, ||Bz^k||_2, ||c||_2)$$

• $\epsilon^{dual} = \sqrt{n_2} \epsilon^{abs} + \epsilon^{rel} ||A^T y^k||_2$

where ϵ^{abs} and ϵ^{rel} are chosen constants referred to as *absolute* and *relative* tolerance.

Recap 00	Progress on Adaptive ADMM Library	Results	Issues and Problems	Project Schedule
00	00 000	00000	00	000
The Progress S	So Far			

Convergence Checking

Paper by He and Yuan gives way of constructing monotonically decreasing residual norms:

$$||w^{k} - w^{k+1}||_{H}^{2} \le ||w^{k-1} - w^{k}||_{H}^{2}$$

where
$$w^{i} = \begin{bmatrix} x^{i} \\ z^{i} \\ \rho u^{i} \end{bmatrix}$$
 and $H = \begin{bmatrix} G & 0 & 0 \\ 0 & \rho B^{T} B & 0 \\ 0 & 0 & I_{m}/\rho \end{bmatrix}$

The H-norm squared can be easily calculated. We then expect: (e.g., $\epsilon = 10^{-16}$, for $k \ge 3$)

$$||w^{k-1} - w^k||_H^2 - ||w^{k-1} - w^{k-1}||_H^2 \le \epsilon$$

 User can specify tolerance ε; algorithm stops if tolerance is broken as convergence is compromised.

Recap 00 00	Progress on Adaptive ADMM Library 00 000	Results •0000 •0000	Issues and Problems	Project Schedule
General ADM	М			

A Model Problem

- Consider: $\arg \min_x (||Ax b||_2^2 + ||Cx d||_2^2)$, $A, C \in \mathbb{R}^{n \times n}$.
- By setting derivative to 0 and solving, exact solution is $x = (A^T A + C^T C)^{-1} (A^T b + C^T d).$
- In ADMM form: (with $f(x) = ||Ax b||_2^2$, $g(z) = ||Cz d||_2^2$)

$$\arg\min_{x}(||Ax - b||_{2}^{2} + ||Cz - d||_{2}^{2}), \text{ subject to } x - z = 0$$

• $L_{\rho}(x, z, u) = f(x) + g(z) + \rho/2||x - z + u||_2^2$

Proximal operators:

1 prox_{f,\rho}(x, z^k, u^k) =
$$(2A^{T}A + \rho I_{n})^{-1}(2A^{T}b + \rho(z^{k} - u^{k}))$$

2 prox_{g,\rho}(x^{k+1}, z, u^k) = $(2C^{T}C + \rho I_{n})^{-1}(2C^{T}d + \rho(x^{k+1} + u^{k}))$

Recap 00 00	Progress on Adaptive ADMM Library 00 000	Results 0●000 00000	Issues and Problems	Project Schedule
General AD	MM			

Model Problem: Example Output

>> admm test For n = 2^1. test 1 -- Relative error acceptable: 0 For n = 2^2, test 1 -- Relative error acceptable: 5.234732e-16 For n = 2^3, test 1 -- Relative error acceptable: 1.179740e-16 For n = 2^4, test 1 -- Relative error acceptable: 5.318879e-16 For n = 2^5, test 1 -- Relative error acceptable: 1.305104e-16 For n = 2^6, test 1 -- Relative error acceptable: 2.175907e-12 For n = 2^7, test 1 -- Relative error acceptable: 6.699444e-07 For n = 2^8, test 1 -- RELATIVE ERROR UNACCEPTABLE: 1.235201e-03; 2.269872e+01 vs. true 2.267071e+01 For n = 2^9, test 1 -- RELATIVE ERROR UNACCEPTABLE: 8.463742e-03; 4.152521e+01 vs. true 4.117671e+01 Average time for size 2^1: 0.092002 seconds. Average time for size 2^2: 0.089818 seconds. Average time for size 2^3: 0.12141 seconds. Average time for size 2^4: 0.11181 seconds. Average time for size 2^5: 0.16372 seconds. Average time for size 2^6: 0.25715 seconds. Average time for size 2^7: 0.62841 seconds. Average time for size 2^8: 1.8398 seconds. Average time for size 2^9: 9.6431 seconds. 2 UNACCEPTABLE ERROR(S) FOR TOLERANCE 0.001, for 1000 iterations! >>

Recap 00 00	Progress on Adaptive ADMM Library 00 000	Results 00●00 00000	Issues and Problems	Project Schedule
General ADM	М			



Recap 00 00	Progress on Adaptive ADMM Library 00 000	Results 000●0 00000	Issues and Problems	Project Schedule
General ADM	M			

Breaking the Convergence Check

Suppose we change the x-update in the model problem:

• Old:
$$\operatorname{prox}_{f,\rho}(x, z^k, u^k) = (2A^T A + \rho I_n)^{-1}(2A^T b + \rho(z^k - u^k))$$

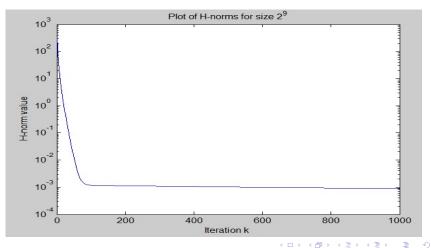
• New:
$$\operatorname{prox}_{f,\rho}(x, z^k, u^k) = (2A^T A + \rho)^{-1}(2A^T b + \rho(z^k - u^k))$$

- Then, ADMM should not converge, as this is not convex.
- The H-norms for the original proximal operator are monotonically decreasing, however.

```
>> admm_test
Error using admm (line 268)
Iteration 3: H norms not converging to given relative tolerance: 3.253359e+06 vs. tol. 1.000000e-15
Error in admm_test (line 62)
        [results] = admm(proxf, proxg, options);
```

	Progress on Adaptive ADMM Library	Results	Issues and Problems	Project Schedule
00 00	00 000	00000		
General ADMN	Λ			

H-norms on Model Problem



Recap 00 00	Progress on Adaptive ADMM Library 00 000	Results ○○○○○ ●○○○○	Issues and Problems	Project Schedule
Unwrapped <i>I</i>	ADMM With Transpose Reduction			

LASSO Problem

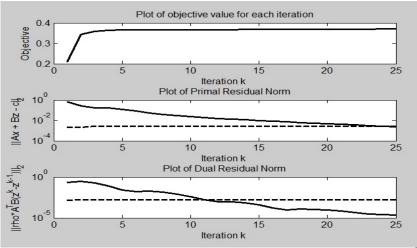
Standard LASSO formulation:

$$\min_{x}(1/2||Dx - b||_{2}^{2} + \lambda||x||_{1})$$

- Can use transpose reduction. We note that $1/2||Dx b||_2^2 = 1/2x^T(D^TD)x x^TD^Tb + 1/2||b||_2^2$
- Now, a central server needs only D^TD and D^Tb. For tall, large D, D^TD has much fewer entries.
- Note that: $D^T D = \sum_i D_i^T D_i$ and $D^T b = \sum_i D_i^T b_i$.
- Now each server need only compute local components and aggregate on a central server.
- Once $D^T D$ and $D^T b$ are computed, solve with ADMM.

Recap	Progress on Adaptive ADMM Library	Results	Issues and Problems	Project Schedule	
00	00	00000			
00	000	0000			
Unwrapped ADMM With Transpose Reduction					

Sample LASSO Ouput



Recap	Progress on Adaptive ADMM Library	Results	Issues and Problems	Project Schedule	
		00000			
00	000	00000			
Unwrapped ADMM With Transpose Reduction					

Unwrapped ADMM (Goldstein)

- Consider the problem $\min(g(Dx))$, where g is convex and $D \in \mathbb{R}^{m \times n}$ is a large, distributed data matrix.
- In "unwrapped" ADMM form: min(g(z)) subject to Dx − z = 0 (f(x) = 0). The z update is typical, but special x updated for distributed data: D⁺(z^k − u^k), where D⁺ = (D^TD)⁻¹D^T.
- If g is decomposable, each component in z update is decoupled. Analytical solution or look-up table is possible.
- As $D = [D_1^T, ..., D_n^T]^T$, x update can be rewritten as:

$$x^{k+1} = D^+(z^k - u^k) = W \sum_i D_i(z_i^k - u_i^k)$$

Note that $W = (\sum_{i} D_{i}^{T} D_{i})^{-1}$. Each vector $D_{i}(z_{i}^{k} - u_{i}^{k})$ can be computed locally, while only multiplication by W occurs on central server.

Recap 00 00	Progress on Adaptive ADMM Library 00 000	Results ○○○○○ ○○○○○	Issues and Problems	Project Schedule
Unwrapped a	ADMM With Transpose Reduction			

Linear SVMs

- General Form: $\min(1/2||x||^2 + Ch(Dx))$, C a regularization parameter. The function h is the "hinge loss" function: $h(z) = \sum_{k=1}^{M} \max(1 - \ell_k z_k, 0).$
- Unwrapped ADMM can solve this problem, along with the "zero-one loss" function.
- For hinge loss: $z^{k+1} = Dx + u + \ell \max(\min(1 v, C/\rho), 0)$
- For 0-1 loss: $z^{k+1} = \ell \mathbb{I}(v \ge 1 \text{ or } v < (1 \sqrt{2C/\rho}))$

• Here,
$$v = \ell(Dx + u)$$

Recap	Progress on Adaptive ADMM Library	Results	Issues and Problems	Project Schedule
00	00	00000		
00	000	00000		

Unwrapped ADMM With Transpose Reduction

Results for Hinge vs. 0-1 Loss on MNIST dataset

250 Iterations

Error Percentages: 600 training, 100 test samples.

Digit	Hinge (Train)	0-1 (Train)	Hinge (Test)	0-1 (Test)
0	2.0000	2.0000	13.0000	13.0000
1	0.8333	0.8333	9.0000	9.0000
2	3.1667	3.3333	22.0000	20.0000
3	2.5000	2.1667	21.0000	22.0000
4	3.3333	3.1667	12.0000	12.0000
5	4.6667	4.6667	18.0000	18.0000
6	1.8333	1.8333	12.0000	12.0000
7	2.5000	2.5000	23.0000	23.0000
8	4.8333	4.6667	18.0000	20.0000
9	3.5000	3.6667	30.0000	28.0000

Elapsed time is 10.735045 seconds.

250 Iterations

Error Percentages: 60000 training, 10000 test samples.

Digit	Hinge (Train)	0-1 (Train)	Hinge (Test)	0-1 (Test)
0	2.9850	3.1417	3.0100	3.2400
1	3.0050	3.5200	2.7400	3.2200
2	5.9383	5.1150	5.7300	5.2900
3	7.4017	6.3633	7.4500	6.6100
4	5.2450	5.3500	5.9700	6.2100
5	7.4867	6.0067	7.5000	6.0600
6	3.7483	3.8583	4.1300	4.2600
7	4.2467	4.4667	4.2800	4.6800
8	15.0200	10.5783	15.3800	11.3700
9	10.9150	10.0067	11.0600	10.1800
Elapsed	i time is 1016.9	46927 seconds		

250 Iterations

Error Percentages: 6000 training, 1000 test samples.

Digit	Hinge (Train)	0-1 (Train)	Hinge (Test)	0-1 (Test)
0	2.4667	2.8167	4.3000	4.7000
1	2.0833	2.6000	4.3000	4.7000
2	3.9333	4.0333	8.3000	7.7000
3	5.1833	4.5500	9.0000	8.0000
4	3.6333	4.2667	7.8000	8.8000
5	5.5833	4.5833	9.9000	8.8000
6	2.4833	3.2833	5.2000	6.1000
7	3.0500	3.7000	5.6000	6.4000
8	13.2500	8.5833	16.5000	13.0000
9	8.2667	7.9333	12.7000	12.5000

Elapsed time is 102.358839 seconds.

2000 Iterations

Error Percentages: 12000 training, 2000 test samples.

Digit	Hinge (Train)	0-1 (Train)	Hinge (Test)	0-1 (Test)
0	2.1000	1.8750	3.6500	3.0000
1	1.5667	1.7583	2.8000	2.9000
2	5.1167	2.7583	5.9500	4.2000
3	7.1000	3.6833	7.1000	4.7500
4	4.1750	3.2333	6.1000	5.0500
5	5.8583	3.3583	6.9000	4.5000
6	2.4667	1.9000	4.0000	3.6000
7	3.2917	2.8833	4.2500	4.4500
8	13.5750	6.8000	16.2500	10.1000
9	9.0083	6.5750	10.1500	7.6000
Elapsed	time is 1694.7	61875 seconds		

590

Recap 00 00	Progress on Adaptive ADMM Library 00 000	Results 00000 00000	lssues and Problems ●0	Project Schedule
Adaptive Step	-sizes			

Adaptive Step-sizes

- Strategy for adaptive step-sizes:
 - According to Esser's paper, the Douglas Rachford Splitting Method (DRSP) and ADMM are equivalent. ADMM is DRSP applied to the dual problem

$$max_{u \in \mathbb{R}^d}(inf_{x \in \mathbb{R}^{m_1}, z \in \mathbb{R}^{m_1}}(L(x, z, u)))$$

- So ADMM is equivalent to finding u such that $0 \in \psi(u) + \phi(u)$, where $\psi(u) = B\partial g^*(B^T u) - c$ and $\phi(u) = A\partial f^*(A^T u)$.
- Form residuals equal to $\psi(u^k) + \phi(u^k)$. Interpolate with last residual over stepsize ρ .
- Solve this as least squares problem closed form solution for optimal ρ!
- Hard to compute these residuals. If either *f* or *g* is strictly convex, can find closed form solution for either ϕ or ψ .

Recap	Progress on Adaptive ADMM Library	Results	Issues and Problems	Project Schedule
00	00	00000 00000	00	
Adamatica Ca	ing stars			

Issues with Adaptive Step-size Selection

- Various attempts gave step-sizes that often converged to high values. These negatively impact convergence.
- If the value of ρ does not explode, actually can get faster convergence!
- Still looking for a way to stabilize step-sizes.

Iteration	74:	rho	=	3.1008
Iteration	75:	rho	=	7.8428
Iteration	76:	rho	=	15.2461
Iteration	77:	rho	=	37.4974
Iteration	78:	rho	=	68.1072
Iteration	79:	rho	=	166.6155
Iteration	80:	rho	=	248.9479
Iteration	81:	rho	=	509.6552
Iteration	82:	rho	=	454.6806
Iteration	83:	rho	=	1369.1802
Iteration	84:	rho	=	145.9018
Iteration	85:	rho	=	52.3052
Iteration	86:	rho	=	30.4316
Iteration	87:	rho	=	68.4639
Iteration	88:	rho	=	75.2073
Iteration	89:	rho	=	646.4078
Iteration	90:	rho	=	349.0421
Iteration	91:	rho	=	1133.7667
Iteration	92:	rho	=	1902.1342
Iteration	93:	rho	=	28235.6798
Iteration	94:	rho	=	321928.8644
Iteration	95:	rho	=	46418182.0565
Iteration	96:	rho	=	62177105891.6655
Iteration	97:	rho	=	1.196223850308679e+16

Recap 00 00	Progress on Adaptive ADMM Library 00 000	Results 00000 00000	Issues and Problems	Project Schedule ●○○		
Project Schedule						

Project Schedule

• End of Fall Semester Goals:

- End of October: Implement generic ADMM, solvers for the Lasso problem, TV Minimization, and SVMs.
- Early November: Implement scripts for general testing, convergence checking, and stopping condition strategies.
- Early December: Finalize bells and whistles on ADMM options. Compile testing/validation data.
- End of November: Implement a working adaptive step-size selection algorithm.
- Spring Semester Goals:
 - End of February: Implement the full library of standard problem solvers.
 - **End of March:** Finish implementing MPI in ADMM library.
 - **End of April:** Finishing porting code to Python version.
 - **Early May:** Compile new testing/validation data.

	Progress on Adaptive ADMM Library	Results	Issues and Problems	Project Schedule
00 00	00 000	00000		000
Project Sched	ule			

References

- S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, "Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers", *Foundations and Trends in Machine Learning*, vol. 3, no.1, pp. 1-122, 2010.
- T. Goldstein, G. Taylor, K. Barabin, and K. Sayre, "Unwrapping ADMM: Efficient Distributed Computing via Transpose Reduction", CoRR, vol. abs/1504.02147, 2015.
- E. Esser, Applications of Lagrangian-Based Alternating Direction Methods and Connections to Split Bregman, April 2009.
- B. He, X. Yuan, "On non-ergodic rate of Douglas-Rachford alternating direction method of multipliers," Numerishe Mathematik, vol. 130, iss. 3, pp. 567-577, 2014.
- H. Everett, "Generalized Lagrange multiplier method for solving problems of optimum allocation of resources," *Operations Research*, vol. 11, no. 3, pp. 399-417, 1963.

Recap 00 00	Progress on Adaptive ADMM Library 00 000	Results 00000 00000	Issues and Problems	Project Schedule 00●	
Project Schedule					

Thank you! Any questions?