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Background

The Dual Problem

m Consider the following problem (primal problem):
miny(f(x)) subject to Ax = b.

m Important components of this problem:
The Lagrangian: L(x,y) = f(x) + y"(Ax — b)

m We refer to the original x variable as the primal variable and
the y variable as the dual variable.
Dual function: g(y) = inf,(L(x,y))
m New function made purely out of the dual variable.
B Gives a lower bound on the objective value.

Dual problem: max,>o(g(y))
m The problem of finding the best lower bound.

m End goal: recover x* = arg min,(L(x, y*)), where x* and y*
are corresponding optimizers.



Recap
oe

Background

Methods Discussed

m Dual Ascent Method (DAM): General gradient type method.
Uses Lagrangian and dual variable updates to solve
optimization problem.

m Method of Multipliers (MM): Add to Lagrangian penalty
term: p/2||Ax — b||3.

Very robust method.
Penalty prevents decomposing the problem.

m Dual Decomposition (DD): Decompose dual variable, update
primal components in parallel, then update dual.

Need separable function.
Can be slow to converge.
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The Alternating Direction Method of Multipliers (ADMM)

Finds a way to combine advantages of DD and MM.

m Robustness of the Method of Multipliers.
m Supports Dual Decomposition — parallel x-updates possible.

Problem form: (where f and g are both convex)
min (f(x) + g(z)) subject to Ax + Bz = c,

Objective is separable into two sets of variables.

ADMM defines a special Augmented Lagrangian to enable
decomposition: (r = Ax+ Bz —c, u=y/p)

L(x2,y) = F(x) + 8(2) + ¥ (r) + £Irll3
= £(x) + &(2) + (p/2)llr + ul[3 ~ const
= Ly(x,z,u)
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ADMM Algorithm

m Repeat for k = 0 to specified n, or until convergence:

xUH1) = arg min, (L, (x, 209, u(¥))
21 = arg min, (L, (xk+Y), z, u(k)))
utk41) = (k) - (Ax(k+1) 4 Bz(k+1) _ ()

m Recall the proximal operator: (with v = Bz(k) — ¢ + u(¥))

prox; ,(v) := arg min(f(x) + (p/2)[| Ax + vI[3)

m If g(z) = Al|z]|1, then prox, ,(v) is computed by
soft-thresholding: (with v = Ax(k+1) — ¢ 4 (k)
(k+1) .

z;" = sign(vi)(|vil — M)+
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Project Goals

In this project...

m Our goal is to make ADMM easier to use in practice: upload
A, B, and c, then run appropriate function, or supply proximal
functions for f and g and run general ADMM.

m Maximizing ADMM'’s potential means tweaking parameters
such as step size p and more.

m Hope to create a comprehensive library for general ADMM
use.

m Generalized ADMM functionality (with customizable options).
m Adaptive step-size selection.

Ready to go optimized functions for problems ADMM is most
used for (with customizable options).

High performance computing capabilities (MPI).
Implementations in Python and Matlab.
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Project Goals

Goals for Fall Semester

Implement/test/validate a general ADMM function with fully
customizable options for users.
m Convergence checking of proximal operators.
m Stopping conditions.
m Complete run-time information.
Implement/test/validate the following 3 ADMM solvers:
m LASSO Problem: Least absolute shrinkage and selection
operator, a regularized form of the Least Squares Problem.
m Total Variation Minimization: Minimize overall variation in a
given signal.
m Linear Support Vector Machines (SMVs): Classifiers where
classes are linearly separable.

Devise an efficient adaptive step-size selection algorithm for
ADMM.
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The Progress So Far

m General ADMM and the three solvers are as finished as they
can be at this point.

m Testing and validation code has also been finished.

m User options, stopping conditions and convergence checking
are also finished. More can be done here.

m Adaptive ADMM has been programmed and studied. Some
issues here (discussed later).
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Stopping Conditions

m Primal (p) and Dual (d) residuals in ADMM at step k + 1:
m pFtl = Axktl 4 Bk _ ¢
= dk+1 — pATB(ZkJrl _ Zk)
m Reasonable stopping criteria: ||p¥||2 < €P and ||d¥||o < ea,
m Many ways to choose these tolerances.
m One common example, where p € R™ and d € R™:

m P = /e + e max(||AxK[, || BZ4]]2, || cl|2)
= 6dual — nzeabs + 6re/||ATyk||2

where €25 and € are chosen constants referred to as
absolute and relative tolerance.
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Convergence Checking

m Paper by He and Yuan gives way of constructing
monotonically decreasing residual norms:

K k+1)p2 k=1 _ k|2
[Iw" = w R < flw* = [

x! G O 0
where w' = | z/ | and H= |0 pB'B 0
pu’ 0 0 Im/p

m The H-norm squared can be easily calculated. We then
expect: (e.g., € = 10716, for k > 3)

k=1 _ | k|2 k=1 k—1|p2
[Iw™ ™" = wH[fly = [lw " = w [y <€

m User can specify tolerance ¢; algorithm stops if tolerance is
broken as convergence is compromised.
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General ADMM

A Model Problem

Consider: arg min, (||Ax — b||3 + ||Cx — d|[3), A, C € R™".

By setting derivative to 0 and solving, exact solution is
x=(ATA+ CTC)"Y(ATb+ CTd).
m In ADMM form: (with f(x) = ||Ax — b||3, g(z) = ||Cz — d||3)

arg min(||Ax — b|[3 + ||Cz — d||3), subject to x —z =0
X

Lo(x,z,u) = f(x) +g(z) + p/2||x — z + ul[3

Proximal operators:
prox; ,(x, ZK uk) = QAT A+ pl,)) Y (2AT b+ p(z* — u¥))
prox, ,(x*™1, z,uk) = (2CT C+ pl,)"1(2CTd + p(x* 1 + u¥))
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General ADMM

Model Problem: Example Output

>> admm test

For n 21, test 1 -- Relative error acceptable: 0

For n = 272, test 1 Relative error acceptable: 5.234732e-16
For n = 2°3, test 1 -- Relative error acceptable: 1.179740e-16
For n = 2°4, test 1 -- Relative error acceptable: 5.318879e-16
For n = 2°5, test 1 -- Relative error acceptable: 1.305104e-16
For n = 2™6, test 1 -- Relative error acceptable: 2.175807e-12
For n = 2°7, test 1 -- Relative error acceptable: 6.699444e-07

4

8 -- RELATIVE ERROR UNACCEPTABLE: 1.235201e-03; 2.269872e+01 vs. true 2.267071e+01
For n = 279, test 1 -- RELATIVE ERROR UNACCEPTABLE: 8.463742e-03; 4.152521e+01 vs. true 4.117671e+01
Average time for size 2°1: 0.092002 seconds.
Average time for size 089818 seconds.
12141 seconds.
11181 seconds.
16372 seconds.
25715 seconds.
62841 seconds.
8398 seconds.
Average time for size 279: 9.6431 seconds.
2 UNACCEPFTABLE ERROR(S) FOR TOLERANCE 0.001, for 1000 iterations!
b

2
For n = 2"8, test
2

Average time for size
Average time for size

Average time for size
Average time for size

£
22
23
2%
Average time for size 2°5:
276
2~7
Average time for size 278

[ = = R =)
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General ADMM

Plot of objective value for each iteration
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General ADMM

Breaking the Convergence Check

m Suppose we change the x—update in the model problem:
m Old: prox; ,(x,z", u ) (QATA+ pl,) Y (2AT b+ p(zX — u¥))
m New: prox; ,(x, zk uk) = (2ATA+p) 1 (2ATb + p(zX — u¥))
m Then, ADMM should not converge, as this is not convex.
m The H-norms for the original proximal operator are
monotonically decreasing, however.

¥» admm test
Error uging admm (line 268)
Iteration 3: H norms not converging to given relative tolerance: 3.253359e+06 vs. tol, 1,000000e-15

Error in admm test (line 62)
[results] = admm({proxf, proxg, options);

o

14 /25



Results
[e]e]e]e] )

General ADMM

H-norms on Model Problem

= Plot of H-norms for size 27
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LASSO Problem

m Standard LASSO formulation:

min(1/2| Dx — bl[3 + Al[x|]1)

m Can use transpose reduction. We note that
1/2||Dx — b||3 = 1/2xT (DT D)x — x"DTb +1/2||b||3

m Now, a central server needs only DTD and DT b. For tall,
large D, DT D has much fewer entries.

m Note that: DTD =", D/ D; and DTb=3", DI b;.

m Now each server need only compute local components and
aggregate on a central server.

m Once DTD and D' b are computed, solve with ADMM.

16 /25
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Unwrapped ADMM With Transpose Reduction

Sample LASSO Ouput

Plot of objective value for each iteration
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Unwrapped ADMM (Goldstein)

m Consider the problem min(g(Dx)), where g is convex and
D € R™*" is a large, distributed data matrix.

m In "unwrapped” ADMM form: min(g(z)) subject to
Dx — z =0 (f(x) = 0). The z update is typical, but special x
updated for distributed data: D¥(z* — u*), where
Dt =(DTD) DT,

m If g is decomposable, each component in z update is
decoupled. Analytical solution or look-up table is possible.

m As D =[D],..D]]", x update can be rewritten as:

XKL = DT (K — u¥) = WZ Di(zK — uf)

m Note that W = (3_; D] D;)~1. Each vector D;(z¥ — u¥) can

i
be computed locally, while only multiplication by W occurs on

central server.
18 /25
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Unwrapped ADMM With Transpose Reduction

Linear SVMs

m General Form: min(1/2||x||> + Ch(Dx)), C a regularization
parameter. The function h is the "hinge loss" function:

h(z) = Z,’y:l max(1 — lxz, 0).
m Unwrapped ADMM can solve this problem, along with the
" zero-one loss" function.
m For hinge loss: zK*1 = Dx + u + ¢ max(min(1 — v, C/p),0)
m For 0-1 loss: K<+ = (I(v > 1 or v < (1 —/2C/p))
m Here, v = ¢(Dx + u)
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Unwrapped ADMM With Transpose Reduction

Results for Hinge vs. 0-1 Loss on MNIST dataset

250 Iterations 250 Iterations

Error Percentages: 600 training, 100 test samples. Error Percentages: 6000 training, 1000 test samples.
Digit Hinge (Train) 0-1 (Train) Hinge (Test) 0-1 (Test) Digit Hinge (Train) 0-1 (Train) Hinge (Test) 0-1 (Test)

2.0000 2.0000 13.0000 13.0000 0 2.4667 2.8167 4.3000 4.7000
v 0.8333 0.8333 9.0000 9.0000 1 2.0833 2.6000 4.3000 4.7000
2 3.1667 3.3333 22.0000 20.0000 2 3.9333 4.0333 8.3000 7.7000
3 2.5000 2.1667 21.0000 22.0000 3 5.1833 4.5500 9.0000 2.0000
4 3.3333 3.1667 12.0000 12.0000 4 3.6333 4.2667 7.8000 8.8000
5 4.6667 4.6667 18.0000 18.0000 5 5.5833 4.5833 9.9000 2.8000
6 1.8333 1.8333 12.0000 12.0000 ] 2.4833 3.2833 5.2000 6.1000
7 2.5000 2.5000 23.0000 23.0000 ) 3.0500 3.7000 5.6000 6.4000
2 4.8333 4.6667 12.0000 20.0000 8 g.5833 16.5000 13.0000
9 3.5000 3.6667 30.0000 28.0000 9 8.2667 7.9333 12.7000 12.5000
Elapsed time is 10.735045 seconds. Elapsed time is 102.358839 seconds.

250 Iterations 2000 Iterations

Error Percentages: 60000 training, 10000 test samples. Ezzor Percemtages: 12000 tzaiming, 2000 test samples.
Digit (Train)  0-1 (Train) Hinge (Test) 0-1 (Test) Digit inge (Train) Hinge (Test) 0-1 (Test)
o 3.1417 3.0100 3.2400 0 2.1000 3.6500 3.0000
a 3.5200 2.7400 3.2200 1z 1.5667 2.8000 2.9000
2 5.1150 5.7300 5.2800 2 5.1167 5.9500 4.2000
3 6.3633 7.4500 6.6100 3 1000 7.1000 4.7500
4 5.3500 5.9700 6.2100 £l 4.1750 6.1000 5.0500
s 6.0067 7.5000 6.0600 s 5.8583 6.9000 4.5000
3 3.8583 4.2600 6 2.4667 4.0000 3.6000
7 4.4867 4.6800 7 4.2500 4.4500
8 15.0200 10.5783 11.3700 8 16.2500 10.1000
o 10.9150 10.0067 10.1800 ] 10.1500 7.6000
Elapsed time is 1016.346927 seconds. Elapsed time is 1694.761875 seconds.
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Adaptive Step-sizes

m Strategy for adaptive step-sizes:

m According to Esser’s paper, the Douglas Rachford Splitting
Method (DRSP) and ADMM are equivalent. ADMM is DRSP
applied to the dual problem

max,cg (inferm zerm (L(x, 2, u)))

m So ADMM is equivalent to finding u such that
0 € Y(u) + ¢(u), where (u) = Bdg*(B"u) — c and
(u) = AOF*(AT ).

m Form residuals equal to 1(u*) + ¢(u¥). Interpolate with last
residual over stepsize p.

m Solve this as least squares problem - closed form solution for
optimal p!

m Hard to compute these residuals. If either f or g is strictly
convex, can find closed form solution for either ¢ or 1.

21/25
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Issues with Adaptive Step-size Selection

m Various attempts gave
step-sizes that often
converged to high values.
These negatively impact
convergence.

m If the value of p does not
explode, actually can get
faster convergence!

m Still looking for a way to
stabilize step-sizes.

Iteration

Iteration T5:

Iteration

Iteration 77:

Iteration

Iteration 793:

Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration

T4: rho = 3.1008

75: rho = 7.8428

T6: rho = 15.2461

77: rho = 27.4974

T8: rho = 68.1072

T9: rho = 166.6155

80: rho = 248.9479

8l: rho = 509.6552

82: rho = 454.6806

83: rho = 1369.1802

84: rho = 145.9018

85: rho = 52.3052

B86: rho = 30.4316

87: rho = €8.4639

B&: rho = 75.2073

89: rho = 646.4078

90: rho = _348.0421

91: rho =Q1133.7667

92: rho =Q§19502.1342

93: rho =Q28235.6738

94: rho =J321925.8644
95: rho =Q§46418182.0565
96: rho =Q§62177105891.6655
97: rho =Q§1.196223850308673e+16
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Project Schedule

m End of Fall Semester Goals:

m End of October: Implement generic ADMM, solvers for the
Lasso problem, TV Minimization, and SVMs.

m Early November: Implement scripts for general testing,
convergence checking, and stopping condition strategies.

m Early December: Finalize bells and whistles on ADMM
options. Compile testing/validation data.

m End of November: Implement a working adaptive step-size
selection algorithm.

m Spring Semester Goals:

m End of February: Implement the full library of standard
problem solvers.

m End of March: Finish implementing MPI in ADMM library.

m End of April: Finishing porting code to Python version.

m Early May: Compile new testing/validation data.
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Thank you! Any questions?
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