The Alternating Direction Method of Multipliers
With Adaptive Step Size Selection

Peter Sutor, Jr.

Project Advisor: Professor Tom Goldstein

December 2, 2015

Recap
e0

Background

The Dual Problem

m Consider the following problem (primal problem):
miny(f(x)) subject to Ax = b.

m Important components of this problem:
The Lagrangian: L(x,y) = f(x) + y"(Ax — b)

m We refer to the original x variable as the primal variable and
the y variable as the dual variable.
Dual function: g(y) = inf,(L(x,y))
m New function made purely out of the dual variable.
B Gives a lower bound on the objective value.

Dual problem: max,>o(g(y))
m The problem of finding the best lower bound.

m End goal: recover x* = arg min,(L(x, y*)), where x* and y*
are corresponding optimizers.

Recap
oe

Background

Methods Discussed

m Dual Ascent Method (DAM): General gradient type method.
Uses Lagrangian and dual variable updates to solve
optimization problem.

m Method of Multipliers (MM): Add to Lagrangian penalty
term: p/2||Ax — b||3.

Very robust method.
Penalty prevents decomposing the problem.

m Dual Decomposition (DD): Decompose dual variable, update
primal components in parallel, then update dual.

Need separable function.
Can be slow to converge.

Recap

e0
The Alternating Direction Method of Multipliers (ADMM)

The Alternating Direction Method of Multipliers (ADMM)

Finds a way to combine advantages of DD and MM.

m Robustness of the Method of Multipliers.
m Supports Dual Decomposition — parallel x-updates possible.

Problem form: (where f and g are both convex)
min (f(x) + g(z)) subject to Ax + Bz = c,

Objective is separable into two sets of variables.

ADMM defines a special Augmented Lagrangian to enable
decomposition: (r = Ax+ Bz —c, u=y/p)

L(x2,y) = F(x) + 8(2) + ¥ (r) + £Irll3
= £(x) + &(2) + (p/2)llr + ul[3 ~ const
= Ly(x,z,u)

Recap

o]]
The Alternating Direction Method of Multipliers (ADMM)

ADMM Algorithm

m Repeat for k = 0 to specified n, or until convergence:

xUH1) = arg min, (L, (x, 209, u(¥))
21 = arg min, (L, (xk+Y), z, u(k)))
utk41) = (k) - (Ax(k+1) 4 Bz(k+1) _ ()

m Recall the proximal operator: (with v = Bz(k) — ¢ + u(¥))

prox; ,(v) := arg min(f(x) + (p/2)[| Ax + vI[3)

m If g(z) = Al|z]|1, then prox, ,(v) is computed by
soft-thresholding: (with v = Ax(k+1) — ¢ 4 (k)
(k+1) .

z;" = sign(vi)(|vil — M)+

Progress on Adaptive ADMM Library
[le]

Project Goals

In this project...

m Our goal is to make ADMM easier to use in practice: upload
A, B, and c, then run appropriate function, or supply proximal
functions for f and g and run general ADMM.

m Maximizing ADMM'’s potential means tweaking parameters
such as step size p and more.

m Hope to create a comprehensive library for general ADMM
use.

m Generalized ADMM functionality (with customizable options).
m Adaptive step-size selection.

Ready to go optimized functions for problems ADMM is most
used for (with customizable options).

High performance computing capabilities (MPI).
Implementations in Python and Matlab.

Progress on Adaptive ADMM Library
o]]

Project Goals

Goals for Fall Semester

Implement/test/validate a general ADMM function with fully
customizable options for users.
m Convergence checking of proximal operators.
m Stopping conditions.
m Complete run-time information.
Implement/test/validate the following 3 ADMM solvers:
m LASSO Problem: Least absolute shrinkage and selection
operator, a regularized form of the Least Squares Problem.
m Total Variation Minimization: Minimize overall variation in a
given signal.
m Linear Support Vector Machines (SMVs): Classifiers where
classes are linearly separable.

Devise an efficient adaptive step-size selection algorithm for
ADMM.

Progress on Adaptive ADMM Library

@00
The Progress So Far

The Progress So Far

m General ADMM and the three solvers are as finished as they
can be at this point.

m Testing and validation code has also been finished.

m User options, stopping conditions and convergence checking
are also finished. More can be done here.

m Adaptive ADMM has been programmed and studied. Some
issues here (discussed later).

Progress on Adaptive ADMM Library

(o] le}
The Progress So Far

Stopping Conditions

m Primal (p) and Dual (d) residuals in ADMM at step k + 1:
m pFtl = Axktl 4 Bk _ ¢
= dk+1 — pATB(ZkJrl _ Zk)
m Reasonable stopping criteria: ||p¥||2 < €P and ||d¥||o < ea,
m Many ways to choose these tolerances.
m One common example, where p € R™ and d € R™:

m P = /e + e max(||AxK[, || BZ4]]2, || cl|2)
= 6dual — nzeabs + 6re/||ATyk||2

where €25 and € are chosen constants referred to as
absolute and relative tolerance.

Progress on Adaptive ADMM Library

[efe]]
The Progress So Far

Convergence Checking

m Paper by He and Yuan gives way of constructing
monotonically decreasing residual norms:

K k+1)p2 k=1 _ k|2
[Iw" = w R < flw* = [

x! G O 0
where w' = | z/ | and H= |0 pB'B 0
pu’ 0 0 Im/p

m The H-norm squared can be easily calculated. We then
expect: (e.g., € = 10716, for k > 3)

k=1 _ | k|2 k=1 k—1|p2
[Iw™ ™" = wH[fly = [lw " = w [y <€

m User can specify tolerance ¢; algorithm stops if tolerance is
broken as convergence is compromised.

10/25

Results
[JeJelele]

General ADMM

A Model Problem

Consider: arg min, (||Ax — b||3 + ||Cx — d|[3), A, C € R™".

By setting derivative to 0 and solving, exact solution is
x=(ATA+ CTC)"Y(ATb+ CTd).
m In ADMM form: (with f(x) = ||Ax — b||3, g(z) = ||Cz — d||3)

arg min(||Ax — b|[3 + ||Cz — d||3), subject to x —z =0
X

Lo(x,z,u) = f(x) +g(z) + p/2||x — z + ul[3

Proximal operators:
prox; ,(x, ZK uk) = QAT A+ pl,)) Y (2AT b+ p(z* — u¥))
prox, ,(x*™1, z,uk) = (2CT C+ pl,)"1(2CTd + p(x* 1 + u¥))

11/25

Results
[e] lelele]

General ADMM

Model Problem: Example Output

>> admm test

For n 21, test 1 -- Relative error acceptable: 0

For n = 272, test 1 Relative error acceptable: 5.234732e-16
For n = 2°3, test 1 -- Relative error acceptable: 1.179740e-16
For n = 2°4, test 1 -- Relative error acceptable: 5.318879e-16
For n = 2°5, test 1 -- Relative error acceptable: 1.305104e-16
For n = 2™6, test 1 -- Relative error acceptable: 2.175807e-12
For n = 2°7, test 1 -- Relative error acceptable: 6.699444e-07

4

8 -- RELATIVE ERROR UNACCEPTABLE: 1.235201e-03; 2.269872e+01 vs. true 2.267071e+01
For n = 279, test 1 -- RELATIVE ERROR UNACCEPTABLE: 8.463742e-03; 4.152521e+01 vs. true 4.117671e+01
Average time for size 2°1: 0.092002 seconds.
Average time for size 089818 seconds.
12141 seconds.
11181 seconds.
16372 seconds.
25715 seconds.
62841 seconds.
8398 seconds.
Average time for size 279: 9.6431 seconds.
2 UNACCEPFTABLE ERROR(S) FOR TOLERANCE 0.001, for 1000 iterations!
b

2
For n = 2"8, test
2

Average time for size
Average time for size

Average time for size
Average time for size

£
22
23
2%
Average time for size 2°5:
276
2~7
Average time for size 278

[= = R =)

12 /25

Library Results and Problems
[e]e] le]e)

General ADMM

Plot of objective value for each iteration

11 T T T T
w
= 10| g
5]
@
8§ 9 i
3 I L L L
0 200 400 600 800 1000
lteration k
0 Plot of Primal Residual Norm
., 10 T T T T
S
N
B e e e e e e R L L L e e e e
+
i 10_5 I 1 1 I
0 200 400 600 800 1000
lteration k
== 1" Plot of Dual Residual Norm
;'?‘
N~ 10 i
i o - g S S S |
= A
2 o I I I I
= 0 200 400 600 800 1000

lteration k

13 /25

Results
[e]e]e] o]

General ADMM

Breaking the Convergence Check

m Suppose we change the x—update in the model problem:
m Old: prox; ,(x,z", u) (QATA+ pl,) Y (2AT b+ p(zX — u¥))
m New: prox; ,(x, zk uk) = (2ATA+p) 1 (2ATb + p(zX — u¥))
m Then, ADMM should not converge, as this is not convex.
m The H-norms for the original proximal operator are
monotonically decreasing, however.

¥» admm test
Error uging admm (line 268)
Iteration 3: H norms not converging to given relative tolerance: 3.253359e+06 vs. tol, 1,000000e-15

Error in admm test (line 62)
[results] = admm({proxf, proxg, options);

o

14 /25

Results
[e]e]e]e])

General ADMM

H-norms on Model Problem

= Plot of H-norms for size 27
10 T T T T

H-norm value

| |
0] 200 400 600 800 1000
lteration k

15/25

Results

[JeJele]e]
Unwrapped ADMM With Transpose Reduction

LASSO Problem

m Standard LASSO formulation:

min(1/2| Dx — bl[3 + Al[x|]1)

m Can use transpose reduction. We note that
1/2||Dx — b||3 = 1/2xT (DT D)x — x"DTb +1/2||b||3

m Now, a central server needs only DTD and DT b. For tall,
large D, DT D has much fewer entries.

m Note that: DTD =", D/ D; and DTb=3", DI b;.

m Now each server need only compute local components and
aggregate on a central server.

m Once DTD and D' b are computed, solve with ADMM.

16 /25

n Adaptive ADMM Library Results d Problems { Schedule

Unwrapped ADMM With Transpose Reduction

Sample LASSO Ouput

Plot of objective value for each iteration

04 T T T T
@
=
& 03} B
o
© 072 1 1 1 1
0 o 10 15 20 25
lteration k
Plot of Primal Residual Norm
= 10 — T T T T
& 107} .
= e i e T
i ‘][)_4 L L 1 |
— 0 5 10 15 20 25
lteration k
== 0 Plot of Dual Residual Norm
T 10
B
s
Lm
= 5
g 10 5

lteration k

Results

[e]e] le]e]
Unwrapped ADMM With Transpose Reduction

Unwrapped ADMM (Goldstein)

m Consider the problem min(g(Dx)), where g is convex and
D € R™*" is a large, distributed data matrix.

m In "unwrapped” ADMM form: min(g(z)) subject to
Dx — z =0 (f(x) = 0). The z update is typical, but special x
updated for distributed data: D¥(z* — u*), where
Dt =(DTD) DT,

m If g is decomposable, each component in z update is
decoupled. Analytical solution or look-up table is possible.

m As D =[D],..D]]", x update can be rewritten as:

XKL = DT (K — u¥) = WZ Di(zK — uf)

m Note that W = (3_; D] D;)~1. Each vector D;(z¥ — u¥) can

i
be computed locally, while only multiplication by W occurs on

central server.
18 /25

Results

[e]e]e] o]
Unwrapped ADMM With Transpose Reduction

Linear SVMs

m General Form: min(1/2||x||> + Ch(Dx)), C a regularization
parameter. The function h is the "hinge loss" function:

h(z) = Z,’y:l max(1 — lxz, 0).
m Unwrapped ADMM can solve this problem, along with the
" zero-one loss" function.
m For hinge loss: zK*1 = Dx + u + ¢ max(min(1 — v, C/p),0)
m For 0-1 loss: K<+ = (I(v > 1 or v < (1 —/2C/p))
m Here, v = ¢(Dx + u)

19/25

Results

(o]e]e]e]]

Unwrapped ADMM With Transpose Reduction

Results for Hinge vs. 0-1 Loss on MNIST dataset

250 Iterations 250 Iterations

Error Percentages: 600 training, 100 test samples. Error Percentages: 6000 training, 1000 test samples.
Digit Hinge (Train) 0-1 (Train) Hinge (Test) 0-1 (Test) Digit Hinge (Train) 0-1 (Train) Hinge (Test) 0-1 (Test)

2.0000 2.0000 13.0000 13.0000 0 2.4667 2.8167 4.3000 4.7000
v 0.8333 0.8333 9.0000 9.0000 1 2.0833 2.6000 4.3000 4.7000
2 3.1667 3.3333 22.0000 20.0000 2 3.9333 4.0333 8.3000 7.7000
3 2.5000 2.1667 21.0000 22.0000 3 5.1833 4.5500 9.0000 2.0000
4 3.3333 3.1667 12.0000 12.0000 4 3.6333 4.2667 7.8000 8.8000
5 4.6667 4.6667 18.0000 18.0000 5 5.5833 4.5833 9.9000 2.8000
6 1.8333 1.8333 12.0000 12.0000] 2.4833 3.2833 5.2000 6.1000
7 2.5000 2.5000 23.0000 23.0000) 3.0500 3.7000 5.6000 6.4000
2 4.8333 4.6667 12.0000 20.0000 8 g.5833 16.5000 13.0000
9 3.5000 3.6667 30.0000 28.0000 9 8.2667 7.9333 12.7000 12.5000
Elapsed time is 10.735045 seconds. Elapsed time is 102.358839 seconds.

250 Iterations 2000 Iterations

Error Percentages: 60000 training, 10000 test samples. Ezzor Percemtages: 12000 tzaiming, 2000 test samples.
Digit (Train) 0-1 (Train) Hinge (Test) 0-1 (Test) Digit inge (Train) Hinge (Test) 0-1 (Test)
o 3.1417 3.0100 3.2400 0 2.1000 3.6500 3.0000
a 3.5200 2.7400 3.2200 1z 1.5667 2.8000 2.9000
2 5.1150 5.7300 5.2800 2 5.1167 5.9500 4.2000
3 6.3633 7.4500 6.6100 3 1000 7.1000 4.7500
4 5.3500 5.9700 6.2100 £l 4.1750 6.1000 5.0500
s 6.0067 7.5000 6.0600 s 5.8583 6.9000 4.5000
3 3.8583 4.2600 6 2.4667 4.0000 3.6000
7 4.4867 4.6800 7 4.2500 4.4500
8 15.0200 10.5783 11.3700 8 16.2500 10.1000
o 10.9150 10.0067 10.1800] 10.1500 7.6000
Elapsed time is 1016.346927 seconds. Elapsed time is 1694.761875 seconds.

20/25

Issues and Problems
[le]

Adaptive Step-sizes

Adaptive Step-sizes

m Strategy for adaptive step-sizes:

m According to Esser’s paper, the Douglas Rachford Splitting
Method (DRSP) and ADMM are equivalent. ADMM is DRSP
applied to the dual problem

max,cg (inferm zerm (L(x, 2, u)))

m So ADMM is equivalent to finding u such that
0 € Y(u) + ¢(u), where (u) = Bdg*(B"u) — c and
(u) = AOF*(AT).

m Form residuals equal to 1(u*) + ¢(u¥). Interpolate with last
residual over stepsize p.

m Solve this as least squares problem - closed form solution for
optimal p!

m Hard to compute these residuals. If either f or g is strictly
convex, can find closed form solution for either ¢ or 1.

21/25

Adaptive Step-sizes

Issues and Problems
oe

Issues with Adaptive Step-size Selection

m Various attempts gave
step-sizes that often
converged to high values.
These negatively impact
convergence.

m If the value of p does not
explode, actually can get
faster convergence!

m Still looking for a way to
stabilize step-sizes.

Iteration

Iteration T5:

Iteration

Iteration 77:

Iteration

Iteration 793:

Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration

T4: rho = 3.1008

75: rho = 7.8428

T6: rho = 15.2461

77: rho = 27.4974

T8: rho = 68.1072

T9: rho = 166.6155

80: rho = 248.9479

8l: rho = 509.6552

82: rho = 454.6806

83: rho = 1369.1802

84: rho = 145.9018

85: rho = 52.3052

B86: rho = 30.4316

87: rho = €8.4639

B&: rho = 75.2073

89: rho = 646.4078

90: rho = _348.0421

91: rho =Q1133.7667

92: rho =Q§19502.1342

93: rho =Q28235.6738

94: rho =J321925.8644
95: rho =Q§46418182.0565
96: rho =Q§62177105891.6655
97: rho =Q§1.196223850308673e+16

22 /25

Project Schedule
@00

Project Schedule

Project Schedule

m End of Fall Semester Goals:

m End of October: Implement generic ADMM, solvers for the
Lasso problem, TV Minimization, and SVMs.

m Early November: Implement scripts for general testing,
convergence checking, and stopping condition strategies.

m Early December: Finalize bells and whistles on ADMM
options. Compile testing/validation data.

m End of November: Implement a working adaptive step-size
selection algorithm.

m Spring Semester Goals:

m End of February: Implement the full library of standard
problem solvers.

m End of March: Finish implementing MPI in ADMM library.

m End of April: Finishing porting code to Python version.

m Early May: Compile new testing/validation data.

23 /25

Project Schedule
oeo

Project Schedule

References

m S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed Optimization and Statistical
Learning via the Alternating Direction Method of Multipliers”, Foundations and Trends in Machine
Learning, vol. 3, no.1, pp. 1-122, 2010.

m T. Goldstein, G. Taylor, K. Barabin, and K. Sayre, “Unwrapping ADMM: Efficient Distributed Computing
via Transpose Reduction”, CoRR, vol. abs/1504.02147, 2015.

m E. Esser, Applications of Lagrangian-Based Alternating Direction Methods and Connections to Split
Bregman, April 2009.

m B. He, X. Yuan, “On non-ergodic rate of Douglas-Rachford alternating direction method of multipliers,”
Numerishe Mathematik, vol. 130, iss. 3, pp. 567-577, 2014.

m H. Everett, “Generalized Lagrange multiplier method for solving problems of optimum allocation of
resources,” Operations Research, vol. 11, no. 3, pp. 399-417, 1963.

24 /25

Project Schedule
[e]e])

Project Schedule

Thank you! Any questions?

25 /25

	Recap
	Background
	The Alternating Direction Method of Multipliers (ADMM)

	Progress on Adaptive ADMM Library
	Project Goals

