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Background

The Dual Problem

Consider the following problem (primal problem):
minx(f (x)) subject to Ax = b.

Important components of this problem:

1 The Lagrangian: L(x , y) = f (x) + yT (Ax − b)

We refer to the original x variable as the primal variable and
the y variable as the dual variable.

2 Dual function: g(y) = infx(L(x , y))

New function made purely out of the dual variable.
Gives a lower bound on the objective value.

3 Dual problem: maxy≥0(g(y))

The problem of finding the best lower bound.

End goal: recover x∗ = arg minx(L(x , y∗)), where x∗ and y∗

are corresponding optimizers.
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Background

Methods Discussed

Dual Ascent Method (DAM): General gradient type method.
Uses Lagrangian and dual variable updates to solve
optimization problem.

Method of Multipliers (MM): Add to Lagrangian penalty
term: ρ/2||Ax − b||22.

1 Very robust method.
2 Penalty prevents decomposing the problem.

Dual Decomposition (DD): Decompose dual variable, update
primal components in parallel, then update dual.

1 Need separable function.
2 Can be slow to converge.
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The Alternating Direction Method of Multipliers (ADMM)

The Alternating Direction Method of Multipliers (ADMM)

Finds a way to combine advantages of DD and MM.
Robustness of the Method of Multipliers.
Supports Dual Decomposition → parallel x-updates possible.

Problem form: (where f and g are both convex)
min (f (x) + g(z)) subject to Ax + Bz = c ,

Objective is separable into two sets of variables.

ADMM defines a special Augmented Lagrangian to enable
decomposition: (r = Ax + Bz − c , u = y/ρ)

Lρ(x , z , y) = f (x) + g(z) + yT (r) +
ρ

2
||r ||22

= f (x) + g(z) + (ρ/2)||r + u||22 − const

= Lρ(x , z , u)
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The Alternating Direction Method of Multipliers (ADMM)

ADMM Algorithm

Repeat for k = 0 to specified n, or until convergence:

1 x (k+1) := arg minx(Lρ(x , z (k), u(k)))
2 z (k+1) := arg minz(Lρ(x (k+1), z , u(k)))
3 u(k+1) := u(k) + (Ax (k+1) + Bz (k+1) − c)

Recall the proximal operator : (with v = Bz(k) − c + u(k))

proxf ,ρ(v) := arg min
x

(f (x) + (ρ/2)||Ax + v ||22)

If g(z) = λ||z ||1, then proxg ,ρ(v) is computed by

soft-thresholding: (with v = Ax (k+1) − c + u(k))

z
(k+1)
i := sign(vi )(|vi | − λ)+
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Project Goals

In this project...

Our goal is to make ADMM easier to use in practice: upload
A, B, and c , then run appropriate function, or supply proximal
functions for f and g and run general ADMM.

Maximizing ADMM’s potential means tweaking parameters
such as step size ρ and more.

Hope to create a comprehensive library for general ADMM
use.

Generalized ADMM functionality (with customizable options).
Adaptive step-size selection.
Ready to go optimized functions for problems ADMM is most
used for (with customizable options).
High performance computing capabilities (MPI).
Implementations in Python and Matlab.
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Project Goals

Goals for Fall Semester

1 Implement/test/validate a general ADMM function with fully
customizable options for users.

Convergence checking of proximal operators.
Stopping conditions.
Complete run-time information.

2 Implement/test/validate the following 3 ADMM solvers:

LASSO Problem: Least absolute shrinkage and selection
operator, a regularized form of the Least Squares Problem.
Total Variation Minimization: Minimize overall variation in a
given signal.
Linear Support Vector Machines (SMVs): Classifiers where
classes are linearly separable.

3 Devise an efficient adaptive step-size selection algorithm for
ADMM.
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The Progress So Far

The Progress So Far

General ADMM and the three solvers are as finished as they
can be at this point.

Testing and validation code has also been finished.

User options, stopping conditions and convergence checking
are also finished. More can be done here.

Adaptive ADMM has been programmed and studied. Some
issues here (discussed later).
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The Progress So Far

Stopping Conditions

Primal (p) and Dual (d) residuals in ADMM at step k + 1:

pk+1 = Axk+1 + Bzk+1 − c
dk+1 = ρATB(zk+1 − zk)

Reasonable stopping criteria: ||pk ||2 ≤ εpri and ||dk ||2 ≤ εdual .
Many ways to choose these tolerances.

One common example, where p ∈ Rn1 and d ∈ Rn2 :

εpri =
√
n1ε

abs + εrel max(||Axk ||2, ||Bzk ||2, ||c ||2)
εdual =

√
n2ε

abs + εrel ||AT yk ||2

where εabs and εrel are chosen constants referred to as
absolute and relative tolerance.
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The Progress So Far

Convergence Checking

Paper by He and Yuan gives way of constructing
monotonically decreasing residual norms:

||wk − wk+1||2H ≤ ||wk−1 − wk ||2H

where w i =

 x i

z i

ρui

 and H =

G 0 0
0 ρBTB 0
0 0 Im/ρ


The H-norm squared can be easily calculated. We then
expect: (e.g., ε = 10−16, for k ≥ 3)

||wk−1 − wk ||2H − ||wk−1 − wk−1||2H ≤ ε

User can specify tolerance ε; algorithm stops if tolerance is
broken as convergence is compromised.
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General ADMM

A Model Problem

Consider: arg minx(||Ax − b||22 + ||Cx − d ||22), A,C ∈ Rn×n.

By setting derivative to 0 and solving, exact solution is
x = (ATA + CTC )−1(ATb + CTd).

In ADMM form: (with f (x) = ||Ax − b||22, g(z) = ||Cz − d ||22)

arg min
x

(||Ax − b||22 + ||Cz − d ||22), subject to x − z = 0

Lρ(x , z , u) = f (x) + g(z) + ρ/2||x − z + u||22
Proximal operators:

1 proxf ,ρ(x , zk , uk) = (2ATA + ρIn)−1(2ATb + ρ(zk − uk))

2 proxg ,ρ(xk+1, z , uk) = (2CTC + ρIn)−1(2CTd + ρ(xk+1 + uk))

11 / 25



Recap Progress on Adaptive ADMM Library Results Issues and Problems Project Schedule

General ADMM

Model Problem: Example Output
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General ADMM
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General ADMM

Breaking the Convergence Check

Suppose we change the x-update in the model problem:
Old: proxf ,ρ(x , zk , uk) = (2ATA + ρIn)−1(2ATb + ρ(zk − uk))

New: proxf ,ρ(x , zk , uk) = (2ATA + ρ)−1(2ATb + ρ(zk − uk))

Then, ADMM should not converge, as this is not convex.

The H-norms for the original proximal operator are
monotonically decreasing, however.
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General ADMM

H-norms on Model Problem
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Unwrapped ADMM With Transpose Reduction

LASSO Problem

Standard LASSO formulation:

min
x

(1/2||Dx − b||22 + λ||x ||1)

Can use transpose reduction. We note that
1/2||Dx − b||22 = 1/2xT (DTD)x − xTDTb + 1/2||b||22
Now, a central server needs only DTD and DTb. For tall,
large D, DTD has much fewer entries.

Note that: DTD =
∑

i D
T
i Di and DTb =

∑
i D

T
i bi .

Now each server need only compute local components and
aggregate on a central server.

Once DTD and DTb are computed, solve with ADMM.
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Unwrapped ADMM With Transpose Reduction

Sample LASSO Ouput
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Unwrapped ADMM With Transpose Reduction

Unwrapped ADMM (Goldstein)

Consider the problem min(g(Dx)), where g is convex and
D ∈ Rm×n is a large, distributed data matrix.
In ”unwrapped” ADMM form: min(g(z)) subject to
Dx − z = 0 (f (x) = 0). The z update is typical, but special x
updated for distributed data: D+(zk − uk), where
D+ = (DTD)−1DT .
If g is decomposable, each component in z update is
decoupled. Analytical solution or look-up table is possible.
As D = [DT

1 , ...,D
T
n ]T , x update can be rewritten as:

xk+1 = D+(zk − uk) = W
∑
i

Di (z
k
i − uki )

Note that W = (
∑

i D
T
i Di )

−1. Each vector Di (z
k
i − uki ) can

be computed locally, while only multiplication by W occurs on
central server.
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Unwrapped ADMM With Transpose Reduction

Linear SVMs

General Form: min(1/2||x ||2 + Ch(Dx)), C a regularization
parameter. The function h is the ”hinge loss” function:
h(z) =

∑M
k=1 max(1− `kzk , 0).

Unwrapped ADMM can solve this problem, along with the
”zero-one loss” function.

For hinge loss: zk+1 = Dx + u + `max(min(1− v ,C/ρ), 0)

For 0-1 loss: zk+1 = `I(v ≥ 1 or v < (1−
√

2C/ρ))

Here, v = `(Dx + u)
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Unwrapped ADMM With Transpose Reduction

Results for Hinge vs. 0-1 Loss on MNIST dataset
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Adaptive Step-sizes

Adaptive Step-sizes

Strategy for adaptive step-sizes:
According to Esser’s paper, the Douglas Rachford Splitting
Method (DRSP) and ADMM are equivalent. ADMM is DRSP
applied to the dual problem

maxu∈Rd (infx∈Rm1 ,z∈Rm1 (L(x , z , u)))

So ADMM is equivalent to finding u such that
0 ∈ ψ(u) + φ(u), where ψ(u) = B∂g∗(BTu)− c and
φ(u) = A∂f ∗(ATu).
Form residuals equal to ψ(uk) + φ(uk). Interpolate with last
residual over stepsize ρ.
Solve this as least squares problem - closed form solution for
optimal ρ!

Hard to compute these residuals. If either f or g is strictly
convex, can find closed form solution for either φ or ψ.
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Adaptive Step-sizes

Issues with Adaptive Step-size Selection

Various attempts gave
step-sizes that often
converged to high values.
These negatively impact
convergence.

If the value of ρ does not
explode, actually can get
faster convergence!

Still looking for a way to
stabilize step-sizes.
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Project Schedule

Project Schedule

End of Fall Semester Goals:

End of October: Implement generic ADMM, solvers for the
Lasso problem, TV Minimization, and SVMs.
Early November: Implement scripts for general testing,
convergence checking, and stopping condition strategies.
Early December: Finalize bells and whistles on ADMM
options. Compile testing/validation data.
End of November: Implement a working adaptive step-size
selection algorithm.

Spring Semester Goals:

End of February: Implement the full library of standard
problem solvers.
End of March: Finish implementing MPI in ADMM library.
End of April: Finishing porting code to Python version.
Early May: Compile new testing/validation data.
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Project Schedule
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Project Schedule

Thank you! Any questions?

25 / 25


	Recap
	Background
	The Alternating Direction Method of Multipliers (ADMM)

	Progress on Adaptive ADMM Library
	Project Goals


