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Introduction

The General Problem

Convex Optimization:

We wish to find an optimal x∗ ∈ X such that:

f (x∗) = min {f (x) : x ∈ X},

where X ⊂ Rn is called the feasible set and f (x) : Rn 7−→ R is
the objective function.
Objective function f is convex on Rn.
Feasible set X is a closed convex set.

Large scale optimization:

Huge data-sets.
Traditional techniques for minimization may be too slow.

Decentralized optimization.
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Introduction

How can ADMM help?

Need robust methods for:

Arbitrary scale optimization.
Decentralized optimization.

The Alternating Direction Method of Multipliers (ADMM):

Solves convex optimization problems by splitting them into
smaller, easier to handle pieces.
Can solve these pieces in parallel.
Is robust, and handles the forms of optimization we want.
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The Dual Ascent Method

The Dual Problem

Consider the following problem (primal problem):
minx(f (x)) subject to Ax = b.

Important components of this problem:

1 The Lagrangian: L(x , y) = f (x) + yT (Ax − b)

We refer to the original x variable as the primal variable and
the y variable as the dual variable.

2 Dual function: g(y) = infx(L(x , y))

New function made purely out of the dual variable.
Gives a lower bound on the objective value.

3 Dual problem: maxy≥0(g(y))

The problem of finding the best lower bound.

End goal: recover x∗ = arg minx(L(x , y∗)), where x∗ and y∗

are corresponding optimizers.
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The Dual Ascent Method

The Dual Ascent Method (DAM)

DAM is a gradient-type method that solves our dual problem;
characterized by the k-iteration:

y (k+1) = y (k) + α(k)∇g(y (k)),

where α(k) is a step size for the iteration k .

Note that ∇g(y (k)) = Ax∗ − b and x∗ = arg minx(L(x , y (k))).

Repeat for k = 0 to a given n number of steps, or until
convergence:

1 x (k+1) := arg minx(L(x , y (k)))
2 y (k+1) := y (k) + α(k)(Ax (k+1) − b)
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Dual Decomposition

Dual Decomposition (DD)

Let’s say that our objective is separable; then:

f (x) = f1(x1) + · · ·+ fm(xm), x = (x1, ..., xm)

The same goes for the Lagrangian:

L(x , y) = L1(x1, y) + · · ·+ Lm(xm, y)− yTb,

where Li = f (xi ) + yTAixi .

Thus, our x-minimization step in the DAM is split into m
separate minimizations that can be carried out in parallel:

x
(k+1)
i := arg min

xi
(Li (xi , y

(k)))
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Dual Decomposition

Dual Decomposition (continued)

Idea: decompose y (k), update xi in parallel then add up the

Aix
(k+1)
i terms.

DD as proposed by Everett, Dantzig, Wolfe, and Benders:

Repeat for k = 0 to a given n steps, or until convergence:

1 x
(k+1)
i := arg minxi (Li (xi , y

(k))), for i = 1, ...,m

2 y (k+1) := y (k) + α(k)

(
m∑
i=1

Aix
(k+1)
i − b

)
Solve large problem by solving parallel sub-problems,
coordinating at the dual variable.

Drawbacks:

Needs assumption that f is separable.
Can be slow at times.
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Method of Multipliers

Method of Multipliers (MM)

Need a more robust DAM? Use the Method of Multipliers.

Swap the Lagrangian for an Augmented Lagrangian:

Lρ(x , y) = f (x) + yT (Ax − b) + (ρ/2)||Ax − b||22, ρ > 0

Method of Multipliers as proposed by Hestenes and Powell:

Repeat for k = 0 to a given n, or until convergence:

1 x (k+1) := arg minx(Lρ(x , y (k)))
2 y (k+1) := y (k) + ρ(Ax (k+1) − b)

The ρ here is the dual update step length.
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Method of Multipliers

MM: The Dual Update Step

If f is differentiable, the optimality conditions are:

Primal Feasibility: Ax∗ − b = 0
Dual Feasibility: ∇f (x∗) + AT y∗ = 0

At each iteration k, x (k+1) minimizes Lρ(x , y (k)), so:

∇xLρ(x (k+1), y (k)) = ∇x(f (x (k+1))) + AT (y (k) + ρ(Ax (k+1) − b))

= ∇x(f (x (k+1))) + AT y (k+1) = 0

Thus, our dual update y (k+1) makes (x (k+1), y (k+1)) dual
feasible; primal feasibility is achieved as (Ax (k+1) − b)→ 0 as
k →∞.
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Method of Multipliers

MM: the good, the bad and the ugly

The Good: Conditions for convergence are much more
relaxed than DD; e.g., f doesn’t have to be differentiable.

The Bad: Quadratic penalty from using the Augmented
Lagrangian prevents us from being able to separate the
x-update like in DD; thus, we can’t use DD with MM.

The Ugly: We can’t use DD and MM simultaneously and
have the advantages of both methods, at least not with the
set-up we have here.
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The Alternating Direction Method of Multipliers (ADMM)

What is ADMM?

Finds a way to combine advantages of DD and MM.

Robustness of the Method of Multipliers.
Supports Dual Decomposition → parallel x-updates.

Problem form:
min (f (x) + g(z)) subject to Ax + Bz = c ,

where f and g are both convex.

Objective is separable into two sets of variables.

ADMM defines a special Augmented Lagrangian to enable
decomposition:

Lρ(x , z , y) = f (x)+g(x)+yT (Ax+Bz−c)+
ρ

2
||Ax+Bz−c||22
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The Alternating Direction Method of Multipliers (ADMM)

ADMM Algorithm

Algorithm proposed by Gabay, Mercier, Glowinski, and
Marrocco in:

Repeat for k = 0 to specified n, or until convergence:

1 x (k+1) := arg minx(Lρ(x , z (k), y (k)))
2 z (k+1) := arg minz(Lρ(x (k+1), z , y (k)))
3 y (k+1) := y (k) + ρ(Ax (k+1) + Bz (k+1) − c)

Doesn’t minimize x and z together, as in MM. It instead
solves a linear system of equations for the z-minimization step.

The Augmented Lagrangian uses the extra penalty term
ρ
2 ||Ax + Bz − c ||22 to enable this separation.
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Convergence of ADMM

Optimality Conditions for ADMM

For the differentiable case, the optimality conditions are:

Primal Feasibility: Ax + Bz − c = 0
Dual Feasibility: ∇f (x) + AT y = 0,

∇g(z) + BT y = 0

As z(k+1) minimizes Lρ(x (k+1), z , y (k)), it follows that:

0 = ∇g(z(k+1)) + BT y (k) + ρBT (Ax (k+1) + Bz(k+1) − c)

= ∇g(z(k+1)) + BT y (k+1)

Dual update makes (x (k+1), z(k+1), y (k+1)) satisfy the second
dual feasible condition.

Other conditions are achieved as k →∞.
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Convergence of ADMM

Convergence of ADMM

Assumptions required:
1 Functions f and g are closed, convex and proper.

A function is closed if for any α ∈ R, x ∈ dom(f ) : f (x) ≤ α
is a closed set.
A convex function is proper if f (x) <∞ for some x and
f (x) > −∞ for every x .

2 For ρ = 0, Lρ has a saddle point.

If assumptions are true, then ADMM converges:

Iterates approach feasibility.
Objective function approaches optimal value.
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Useful Tricks

Scaling Dual Variables

Let r = Ax + Bz − c, then:

Lρ(x , z , y) = f (x) + g(z) + yT r + (ρ/2)||r ||22
= f (x) + g(z) + (ρ/2)||r + (1/ρ)y ||22 − (1/2ρ)||y ||22
= f (x) + g(z) + (ρ/2)||r + u||22 − constanty

= Lρ(x , z , u),

where u = (1/ρ)y .

Now the algorithm is:

1 x (k+1) := arg minx(Lρ(x , z (k), u(k)))
2 z (k+1) := arg minz(Lρ(x (k+1), z , u(k)))
3 u(k+1) := u(k) + (Ax (k+1) + Bz (k+1) − c)
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Useful Tricks

Writing problems in ADMM form

Generic Problem: min(f (x)), subject to x ∈ S
ADMM Form: min(f (x) + g(z)), subject to x − z = 0, where
g(z) = IS(z), the indicator function that z is in S.

Notice that B = −I , so z-minimization boils down to:

arg min(g(z) + (ρ/2)|| − z − v ||22) = proxg ,ρ(v),

with v = x (k+1) + u(k) (Proximal Function).

Since g(z) is the indicator function, do this by projecting v
onto S. Use soft-thresholding:

z
(k+1)
i := (vi − λ/ρ)+ − (−vi − λ/ρ)+
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Common problems solved by ADMM

Common problems solved by ADMM

Basis Pursuit

Sparse Inverse Covariance Selection

Huber Fitting

Intersection of Polyhedra

Lasso Problem

Least Absolute Deviations

Linear Programming

`1 Regularized Logistic Regression

Regressor Selection (nonconvex)

Quadratic Programming

Support Vector Machines (SVMs)

Total Variation Minimization (e.g., image denoising)
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Example: Total Variation Minimization

Total Variation Minimization (1-D Case)

In essence, total variation is an infinitesimal version of
absolute value; definable for x in one dimension as
V (x) =

∑
i |xi+1 − xi |.

In one dimension, problem is of the following form:

E (x , b) + λV (x) = min
x

1

2
||x − b||22 + λ

∑
i

|xi+1 − xi |

where x , b ∈ Rn.

Let’s write the problem in ADMM form:

min
x

1

2
||x − b||22 + λ

∑
i

|xi+1 − xi |+ g(z)

subject to dx − z = 0, where x , b ∈ Rn and g(z) is the
indicator function as mentioned before.
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Example: Total Variation Minimization

Total Variation Minimization (continued)

What is the x-minimization step?

Using Augmented Lagrangian Lρ(x , z , u), the problem is
minimizing for x :

1

2
||x−b||22+λ

∑
i

|xi+1 − xi |+g(z)+
ρ

2
||dx−z+u||22−constanty

So set gradient in x to zero to minimize:

∇xLρ(x , z , u) = x − b + ρdT (dx − z + u) = 0

Group x terms on one side:

(I + ρdTd)x = ρdT (z − u) + b

So: x = (I + ρdTd)−1(ρdT (z − u) + b)
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Example: Total Variation Minimization

Total Variation Minimization (continued)

ADMM Algorithm to Solve T.V. Problem

1 Form difference matrix D approximating d in dx using stencil
[1,−1] along diagonal; circular wrapping.

2 Solve for x (k+1) (this is the x-update) the system:

(I + ρDTD)x (k+1) = b + ρDT (z(k) − y (k))

3 The ”shrinkage” of P = Dx (k+1) + y (k) is the z-update:

z(k+1) := max

(
0,P − λ

ρ

)
−max

(
0,−P − λ

ρ

)
4 Finally, the dual update:

y (k+1) := y (k) + Dx (k+1) − z(k+1)

5 Repeat steps 2-4 until convergence or n iterations is reached.
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Example: Total Variation Minimization

Examples of denoising in one dimension
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Project Goals

In this project...

Our goal is to make ADMM easier to use in practice: upload
A, B, and c , then run appropriate function.

Maximizing ADMM’s potential means tweaking parameters
such as step size ρ and more.

Hope to create a comprehensive library for general ADMM
use.

Generalized ADMM functionality.
Adaptive step-size selection.
Ready to go optimized functions for problems ADMM is most
used for.
High performance computing capabilities (MPI).
Implementations in Python and Matlab.
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Project Goals

Major Obstacles

1 There is no known step-size selection algorithm for ADMM:

In practice, choosing of ρ is typically done by fine-tuning and
testing.
Optimal ρ changes with the problem, and perhaps even data.
It may be possible to dynamically choose optimal ρ at every
iteration instead.

2 How to dynamically choose ρ?

Several possible strategies we will try.
Requires thorough testing to see which works and which works
best.

3 When should the algorithm stop? May require multiple types
of stopping conditions.

4 How to validate that given input will actually converge?
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Project Goals

Stopping Conditions

Primal (p) and Dual (d) residuals in ADMM at step k + 1:

pk+1 = Axk+1 + Bzk+1 − c
dk+1 = ρATB(zk+1 − zk)

Reasonable stopping criteria: ||pk ||2 ≤ εpri and ||dk ||2 ≤ εdual .
Many ways to choose these tolerances.

One common example, where p ∈ Rn1 and d ∈ Rn2 :

εpri =
√
n1ε

abs + εrel max(||Axk ||2, ||Bzk ||2, ||c ||2)
εdual =

√
n2ε

abs + εrel ||AT yk ||2

where εabs and εrel are chosen constants referred to as
absolute and relative tolerance.
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Project Goals

Adaptive Step Size Selection Strategies

1 Perform a partial step with a pre-existing estimate for
step-size. Perform linear interpolation of the residuals with
unknown full step-size. Solve this to find what a better step
size should have been. Use this as next step-size.

2 It is possible to optimize the dual problem’s step size. Can
keep the penalty term’s ρ constant and manipulate the dual’s
step size only.

3 ADMM can be viewed as a type of Douglas-Rachford Method.
Using results from Esser’s paper on DRM, can solve for
optimal step size via finding the gradient on the dual step in
DRM.
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Project Details

Testing and Validation

Testing:

Main functionality can be tested through randomized data:
random A, B and c . This is standard for convex optimization.
For specific problems, e.g. SVM classifiers, can compare to
existing solvers and datasets. For example: the MNIST
handwritten data.

Validation:

Can compare performances between adaptive step size
selection strategies.
Can also compare these strategies to normal ADMM
performance without adaptive step-size selection.
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Project Details

Project Timeline

Fall Semester Goals:
End of October: Implement generic ADMM, solvers for the
Lasso problem, TV Minimization, and SVMs.
Early November: Implement scripts for general testing,
convergence checking, and stopping condition strategies.
End of November: Try out implementations of all three
adaptive step-size selection strategies.
Early December: Finalize bells and whistles on ADMM
options. Compile testing/validation data.

Spring Semester Goals:
End of February: Implement the full library of standard
problem solvers.
End of March: Finish implementing MPI in ADMM library.
End of April: Finishing porting code to Python version.
Early May: Compile new testing/validation data.
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Project Details

Deliverables

ADMM Library: Python and Matlab versions

Contain general ADMM with adaptive step size routines and
standard solvers for common problems ADMM solves.
Scripts for generating random test data and results.
Scripts for validating performance of adaptive ADMM to
regular ADMM for each adaptive strategy.

Report on observed testing/validation results and on findings
with adaptive ADMM - may lead to a paper eventually.

Datasets used for testing the standard solvers (or references to
where to obtain them, if they are too big).
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Project Details
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