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Abstract

The Alternating Direction Method of Multipliers (ADMM) is a method that solves
convex optimization problems of the form min(f(x) + g(z)) subject to Ax + Bz = c,
where A and B are suitable matrices and c is a vector, for optimal points (xopt, zopt). It is
commonly used for distributed convex minimization on large scale data-sets. However,
it can be technically difficult to implement and there is no known way to automatically
choose an optimal step size for ADMM. Our goal in this project is to simplify the
use of ADMM by making a robust, easy-to-use software library for all ADMM-related
needs, with an adaptive step-size selection algorithm to optimize performance on every
iteration. The library will contain a general ADMM method, as well as solvers for
common problems that ADMM is used for. It will also implement adaptive step-size
selection, utilize the Message Passing Interface (MPI) for parallel computing and have
user-friendly options and features.



Introduction

The generalization of ADMM’s usage is in solving convex optimization problems where the data
can be arbitrarily large. That is, we wish to find xopt ∈ X such that:

f(xopt) = min {f(x) : x ∈ X}, (1)

given some constraint Ax = b, where X ⊂ Rn is called the feasible set, f(x) : Rn 7−→ R is
the objective function, X and f are convex, matrix A ∈ Rm×n and vector b ∈ Rm. Our input x
here may have a huge amount of variables/dimensions, or an associated data matrix A for it can
simply be hundreds of millions of entries long. In such extreme cases, the traditional techniques
for minimization may be too slow, despite how fast they may be on normal sized problems.

Generally, such issues are solved by using parallel versions of algorithms to distribute the work-
load across multiple processors, thus speeding up the optimization. But our traditional optimization
algorithms are not suitable for parallel computing, so we must use a method that is. Such a method
would have to decentralize the optimization; one good way to do this is to use the Alternating Di-
rection Method of Multipliers (ADMM). This convex optimization algorithm is robust and splits
the problem into smaller pieces that can be optimized in parallel.

We will first give some background on ADMM, then describe how it works, with a brief example
of how it is used to solve problems in practice. Next, we will discuss some ideas for adaptive step-
size selection that we will try to implement and investigate. At the end, we discuss the design of
the software library in greater detail, as well as well as how the project will proceed.

Background

In the following sections, we briefly describe the general optimization strategy ADMM uses, and
the two algorithms ADMM is a hybrid of. For more information, refer to [1].

The Dual Problem

Consider the following equality-constrained convex optimization problem:

min
x

(f(x)) subject to Ax = b (2)

This is referred to as the primal problem (for a primal function f) and x is referred to as the
primal variable. To help us solve this, we formulate a different problem using the Lagrangian and
solve that. The Lagrangian is defined as

L(x, y) = f(x) + yT (Ax− b). (3)

We call the dual function g(y) = infx(L(x, y)) and the dual problem maxy(g(y)), where y is the
dual variable. With this formulation, we can recover xopt = arg minx(L(x, yopt)); f ’s minimizer.
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One method that gives us this solution is the Dual Ascent Method (DAM), characterized at
iteration k by computing until convergence:

1. x(k+1) := arg minx(L(x, y(k))) (minimization for f(x) on x)

2. y(k+1) := y(k) + α(k)(Ax(k+1) − b) (update y for next iteration)

Here, α(k) is a step size for the iteration k and we note that ∇g(y(k)) = Axopt − b, and
xopt = arg minx(L(x, y(k))). If g is differentiable, this algorithm strictly converges and seeks out
the gradient of g. If g is not differentiable, then we do not have monotone convergence and the
algorithm seeks out the negative of a sub-gradient of −g. Note that the term yT (Ax− b) acts as a
penalty function that guarantees minimization occurs on the given constraint.

Dual Decomposition

It’s important to realize that for high-dimensional input we may want to parallelize DAM for
better performance. The technique for this is described in this section. Suppose that our objective
is separable; i.e. f(x) = f1(x1) + · · · + fn(xn), and x = (x1, ..., xn)T . Then we can say the same
for the Lagrangian. From (3), we have: L(x, y) = L1(x1, y) + · · · + Ln(xn, y) − yT b, where Li =
f(xi) + yTAixi. Thus, our x-minimization step in the DAM is split into n separate minimizations
that can be carried out in parallel:

x
(k+1)
i := arg min

xi

(
Li(xi, y

(k))
)
.

This leads to a good plan for parallelization: disperse y(k), update xi in parallel then add up

the Aix
(k+1)
i . This is called Dual Decomposition (DD), and was originally proposed by Dantzig

and Wolfe [8, 6], and by Benders [7]. However, Dual Decomposition’s general idea is primarily due
to Everett [9]. The algorithm computes the above x-minimization step for i = 1, ..., n, in parallel,
then coordinates to update the dual variable:

y(k+1) := y(k) + α(k)

(
n∑
i=1

Aix
(k+1)
i − b

)
.

Initially, this seems great. But this algorithm requires several big assumptions (sufficiently
smooth and decomposible f), and can be slow at times. We need a faster method.

Method of Multipliers

What if we want to make DAM more robust, with faster iterations and convergence? The Method
of Multipliers (MM) can do this, as proposed by Hestenes [11, 12] and Powell [13]. Simply swap
the Lagrangian for an Augmented Lagrangian:

Lρ(x, y) = f(x) + yT (Ax− b) + (ρ/2)||Ax− b||22 , where ρ > 0. (4)

Note the addition of another penalty term that penalizes straying too far from the constraint during
minimization over the length of ρ. Now our iteration computes until convergence:
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1. x(k+1) := arg minx(Lρ(x, y
(k))) (minimization Lagrangian for x)

2. y(k+1) := y(k) + ρ(Ax(k+1) − b) (update y for next iteraton)

Here, ρ is the dual update step length, chosen to be the same as the penalty coefficient ρ in (4).
This Augmented Lagrangian can be shown to be differentiable under mild conditions for the primal
problem. According to [1], for a differentiable f , the optimality conditions are:

Primal Feasibility: Axopt − b = 0
Dual Feasibility: ∇f(xopt) +AT yopt = 0

At each iteration k, x(k+1) minimizes Lρ(x, y
(k)), so:

∇xLρ(x(k+1), y(k)) = ∇xf(x(k+1)) +AT (y(k) + ρ(Ax(k+1) − b))
= ∇xf(x(k+1)) +AT y(k+1) = 0

Thus, our dual update y(k+1) makes (x(k+1), y(k+1)) dual feasible; the primal feasibility is achieved
as (Ax(k+1) − b)→ 0 (convergence on constrained solution).

What does all this mean?

Generally, MM is faster, more robust (does not require a smooth f) and has more relaxed con-
vergence conditions than DD. However, MM’s quadratic penalty in the Augmented Lagrangian
prevents us from being able to parallelize the x-update like in DD. With this set-up, we cannot
have the advantages of both MM and DD. This is where ADMM comes into play.

The Alternating Method Of Multipliers (ADMM)

Having covered the background of ADMM, we can now begin discussing the algorithm itself.

The General ADMM Algorithm

ADMM combines the advantages of DD and MM. It solves problems of the form:

min (f(x) + g(z)) subject to Ax+Bz = c, (5)

where f and g are both convex. Note that the objective is separable into two sets of variables.
ADMM defines and uses a special Augmented Lagrangian to allow for decomposition:

Lρ(x, z, y) = f(x) + g(x) + yT (Ax+Bz − c) +
ρ

2
||Ax+Bz − c||22 (6)

The ρ in (6) is the step length. The original ADMM algorithm was proposed by Gabay and
Mercier [15], and Glowinski, and Marrocco [14]. Many further findings in ADMM were discovered
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by Eckstein and Bertsekas [16]. At iteration k, we minimize for x, then z, and finally, update y,
keeping the other variables constant during each minimization. This gives us the ADMM algorithm
shown in Algorithm 1.

Algorithm 1 The Alternating Direction Method of Multipliers (ADMM)

1: procedure ADMM(A, B, c, ρ, objective, argminx, argminz, stopcond)
2: Set x, z and y to some initial value.
3: while stopcond(x, z, y, A, B, c) 6= 1 do
4: x := argminx(x, z, y, ρ) (minimize f(x) for x)
5: z := argminz(x, z, y, ρ) (minimize g(z) for z)
6: y := y + ρ(Ax+Bz − c) (Dual variable update)

7: return (x, z, objective(x, z))

There are a few things to note about this formulation of ADMM. The way the algorithm
works does not require explicitly knowing the objective function f(x) + g(z); it only requires the
constraint variables (A, B, and c), minimizing functions argminx and argminz, and a stopping
condition function stopcond. The algorithm only cares about the objective function objective
for evaluating the final, minimized value. This can even be left up to the user. Another detail to
note is that the algorithm decouples the objective function on variables x and z and minimize on
them independently. This formulation changes our optimality conditions a little.

ADMM’s Optimality Conditions

Assume f and g are differentiable. We now have a second dual feasible condition due to the z-
minimization step in ADMM that did not exist in MM. The other conditions are slightly altered
from MM for the ADMM constraint:

Primal Feasibility: Ax+Bz − c = 0
Dual Feasibility: ∇f(x) +AT y = 0,

∇g(z) +BT y = 0

Assume z(k+1) minimizes Lρ(x
(k+1), z, y(k)); we want to show that the dual update makes

(x(k+1), z(k+1), y(k+1)) satisfy the dual feasible condition for g. We proceed using the same strategy
as was done in MM, using ADMM’s Augmented Lagrangian instead:

0 = ∇g(z(k+1)) +BT y(k) + ρBT (Ax(k+1) +Bz(k+1) − c)
= ∇g(z(k+1)) +BT y(k+1)

Thus, the dual update makes (x(k+1), z(k+1), y(k+1)) satisfy the second dual feasible condition.
As for the other dual and primal conditions, they are both achieved as k →∞.

Convergence of ADMM

What conditions need to be satisfied in order for ADMM to be guaranteed to converge? According
to [1, 16], ADMM requires two assumptions:
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1. The infinite domain of functions f and g must be closed, proper and convex. In Euclidean
space, a set is closed if its complement is an open set, a generalization of an open interval on
the reals in higher dimensions. A set is convex in Euclidean space if for every pair of points in
the set, all points on the line segment between them lie in the set as well. A convex function
f ’s domain is proper if its effective domain (all x such that f(x) <∞) is nonempty and never
reaches −∞.

2. The Augmented Lagrangian in (6) has a saddle point for ρ = 0.

Assumption 1 essentially states that the subproblems solved by ADMM in the minimization
steps for f and g must indeed be solvable, even if not uniquely. This condition allows for f and
g to be non-differentiable and take on the value of positive infinity. It also guarantees that for
assumption 2, the saddle point is finite.

Thus, the conditions are not to strict for convergence. These two assumptions guarantee that
residuals between iterates converge to 0, the objective approaches the optimal value, and that the
dual value also approaches the optimal value.

Scaled Dual Form of ADMM

By scaling the dual variable y in ADMM by 1/ρ, we can rewrite the algorithm in a simpler way.
Let residual r = Ax+Bz − c, then:

Lρ(x, z, y) = f(x) + g(z) + yT r + (ρ/2)||r||22
= f(x) + g(z) + (ρ/2)||r + (1/ρ)y||22 − (1/2ρ)||y||22
= f(x) + g(z) + (ρ/2)||r + u||22 − constanty
= Lρ(x, z, u),

(7)

where u = (1/ρ)y. Now the ADMM can be written in a simpler fashion, as shown in Algorithm 2.

Algorithm 2 Scaled Dual ADMM

1: procedure ScaledADMM(A, B, c, ρ, objective, argminx, argminz, stopcond)
2: Set x, z and u to some initial value.
3: while stopcond(x, z, u, A, B, c) 6= 1 do
4: x := argminx(x, z, u, ρ) (minimize f(x) for x)
5: z := argminz(x, z, u, ρ) (minimize g(z) for z)
6: u := u+ (Ax+Bz − c) (Dual variable update)

7: return (x, z, objective(x, z))

Writing General Convex Problems in ADMM Form

What if we want to use ADMM for a general convex optimization problem; that is, the generic prob-
lem: min f(x), subject to x ∈ S, with f and S convex? One way is to simply write: min (f(x) + g(z)),
subject to x − z = 0, hence x = z. The question is, what do we make g? A good idea is to let
g(z) = IS(z), the indicator function that z is in the set S (i.e., g(z) = 0 if x ∈ S, else g(z) = 1), as
it does not impact the problem we are trying to solve, but enforces the solution belonging in S.

5



Notice that in this formulation, B = −I, so z-minimization boils down to

arg min (g(z) + (ρ/2)||z − v||22) = proxg,ρ(v), (8)

with v = x(k+1) + u(k), where proxg(v) is the proximal operator of v on function g. The proximal
operator is defined as

proxg(v) = arg min
z

(g(z) +
1

2
||z − v||22) (9)

We add an additional parameter ρ to our version of the proximal operator for the step size.
Since we have the special case that g(z) is the indicator function, we can compute the proximal
operator by projecting v onto S, which is clearly the solution. Note that the indicator function is
only convex if the set S is convex. Therefore, this way of writing the problem is limited to convex
solution spaces.

One other common scenario is the situation where g(z) = λ||z||1, a proximal mapping of the l1
norm. This is often referred to as a “regularization term”, where λ is the regularization parame-
ter. It penalizes the solution from having extreme parameter values, thus preventing “overfitting”
(tending to describe noise instead of the observed relationship) and making the problem less ill-
posed. A good way to interpret this is that regularization affects the type of solution we will get
- how much does noise or randomness fit in to the model? Then, we can use a technique called
soft-thresholding, described in [1]. This gives the individual components of z in the minimization
by computing:

z
(k+1)
i := (vi − λ/ρ)+ − (−vi − λ/ρ)+ (10)

We can do this over all the components at once for our z-minimization step. Notice that both
the x and z-minimization steps in ADMM are proximal operators, by definition of the Augmented
Lagrangian. Thus, in a general ADMM program, we can ask for functions that compute the
proximal operators for both as input functions argminx and argminz for Algorithms 1 and 2.

This formulation allows us to solve problems of the form in (1). If there is already a constraint
like the one in (2), we can still use this formulation to solve it via ADMM. However, the constraint
Ax = b cannot simply be ignored; the parameters A and b will be incorporated into the x update
step; i.e., they are part of the minimization problem for x (the solutions for which are supplied by
the user as a function in generalized ADMM). How to handle the x update is dependent on the
problem, though there are solutions for general cases such as in Quadratic Programming.

What about inequality constrained problems, such as Ax ≤ b? There are some tricks one can
do to solve certain inequality constrained convex optimization problems. Using a slack variable
z, we can write the problem as Ax + z = b, with z ≥ 0. This is now in ADMM form, but with
the additional constraint that z ≥ 0. The additional constraint primarily affects the z update step
in this case, as we need to ensure a non-negative z is chosen. Considering g(z) = λ||z||1, which
can be solved in general via (10), we can modify the solution to select positive values for z. For
example, we can project (10) into the non-negative orthant by setting negative components to zero,
for v = Ax(k+1) + u(k).
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Convergence Checking

The paper by He and Yuan in [4] constructs a special norm derived from a variational formulation
of ADMM. Suppose you have a certain encoding of ADMM’s iterates in the form of

wi =
[
xi zi ρui

]T
(11)

where xi, zi, and ui are iteration i’s results for x, z, and scaled dual variable u, and ρ is the step
size. Let the matrix H be defined as follows:

H =

G 0 0
0 ρBTB 0
0 0 Im/ρ

 (12)

where B ∈ Rm×n2 is the same matrix as from the ADMM constraints, Im is the identity of size
m, and G ∈ Rn1×n1 is a special matrix dependent on the variational problem ADMM is trying to
solve. Then, as shown in [4], {||wi − wi+1||2H} are monotonically decreasing for all iterations i:

||wi − wi+1||2H ≤ ||wi−1 − wi||2H (13)

The matrix G is actually irrelevant in this computation; it ends up disappearing anyway in
the end result. Thus, you do not need to know G to compute the H-norms. Since these norms
must be monotonically decreasing for ADMM to converge, evaluating and checking these norms
every iteration and checking the condition (13) is a good strategy to check that ADMM is actually
converging. For example, say you are given the constraints for an ADMM problem and the proximal
operators that correspond to them. If the proximal operators are incorrect, or the constraints do not
match what the proximal operators compute, then it is not expected ADMM will actually converge.
In such a case, checking (13) will tell you immediately if there’s an issue, and the algorithm can
be stopped, reporting an error. This avoids needlessly running what could be long and expensive
operations that will not converge anyway.

Since the H-norms evaluations are not free (though they can be evaluated very quickly), this
would likely be an option the user specifies when they are initially trying out proximal operators
for a problem. Also, as there is the concern of round-off error, the condition (13) would likely be
checked in terms of relative error to some specified (or default) tolerance.

Stopping Conditions

By [1], we can define the primal (p) and dual (d) residuals in ADMM at step k + 1 as:

pk+1 = Axk+1 +Bzk+1 − c (14)

dk+1 = ρATB(zk+1 − zk) (15)

The primal residual is trivial. However the dual residual stems from the need to satisfy the first
dual optimality condition ∇f(x) +AT y = 0. More generally, for subgradients ∂f and ∂g for f and
g, and since xk+1 minimizes Lρ(x, z

k, yk):
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0 ∈ ∂f(xk+1) +AT yk + ρAT (Axk+1 +Bzk − c)
= ∂f(xk+1) +AT yk + ρAT (rk+1 +Bzk −Bzk+1)

= ∂f(xk+1) +AT yk + ρAT rk+1 + ρATB(zk − zk+1)

= ∂f(xk+1) +AT yk + ρATB(zk − zk+1)

So, one can say dk+1 = ρATB(zk+1 − zk) ∈ ∂f(xk+1) + AT yk, and the first dual optimality
condition is satisfied by (15). It is reasonable to say that the stopping criteria is based on some sort
of primal and dual tolerances that can be recomputed every iteration (or they could be constant,
but adaptive ones are generally better). I.e., ||pk||2 ≤ εpri and ||dk||2 ≤ εdual. There are many ways
to choose these tolerances. One common example, described in [1], where p ∈ Rn1 and d ∈ Rn2 :

εpri =
√
n1ε

abs + εrel max(||Axk||2, ||Bzk||2, ||c||2) (16)

εdual =
√
n2ε

abs + εrel||AT yk||2 (17)

where εabs and εrel are chosen constants referred to as absolute and relative tolerance. In practice,
the absolute tolerance specifies the precision of the result, while the relative tolerance specifies the
accuracy of the dual problem in relation to the primal.

Another option for stopping conditions would be the H-norms used in convergence checking.
The paper by He and Yuan in [4] also shows that the convergence rate of ADMM satisfies:

||wk − wk+1||2H ≤
1

k + 1
||w0 − w∗||2H (18)

for all solutions w∗ in the solution space of the problem. As a solution wk+1 for an ADMM problem
must satisfy ||wk − wk+1||2H = 0 (an extra iteration produced no difference), this implies that

||wk − wk+1||2H ≤ ε (19)

for some small, positive value ε is a good stopping condition for ADMM as well.

Parallelizing ADMM

The advantage of ADMM over the methods discussed in the background section is that it has the
desired robustness and speed, but doesn’t sacrifice the ability to parallelize. But how exactly could
a distributed ADMM work?

We can let A = I, B = −I and c = 0 to set the constraint as x = z. As a result, with a separable
f and x, we can minimize fi and require each xi = z at the end. Thus, we optimize each xi and
aggregate their solutions to update our z, so our Augmented Lagrangian looks like:

Lρ(x, z, y) =
∑
i

(fi(xi) + yT (xi − z) +
ρ

2
||xi − z||22) (20)

where each xi is a decomposed vector from the original x.

8



In general, ADMM actually solves a single convex function, which is decomposed into f(x)+g(z).
The function g(z) is ideally chosen as something artificial and easy to solve, like the proximal
mapping of the l1 norm with the solution in (10). Thus, the above distributed scheme works for
many uses of ADMM. More complicated schemes can be developed should the need arise. See
Algorithm 3 for a general distributed ADMM algorithm. Parallelization with ADMM, along with
other similar MM methods is discussed in further detail in [6] and [10].

Algorithm 3 Distributed ADMM (Scaled and Unscaled Dual)

1: procedure DistributedADMM(A, B, c, ρ, objective, argminx, argminz, stopcond)
2: Set x, z and u to some initial value.
3: while stopcond(x, z, u, A, B, c) 6= 1 do
4: for parallel machine labeled by index i do
5: xi := argminx(fi(x) + (yi)

T (x− z) + ρ
2 ||x− z||

2
2) (distributed x update)

6: z := argminz((yi)
T (xi − z) + ρ

2 ||xi − z||
2
2) = 1

n

∑n
i=1 (xi + 1

ρyi) = 1
n

∑n
i=1 (xi + ui)

7: for component index i do
8: yi := yi + ρ(xi − z) = 1

ρyi + xi − z = ui + xi − z

9: return (x, z, objective(x, z))

Unwrapped ADMM with Transpose Reduction

Consider the problem: min(g(Dx)), where g is convex and D ∈ Rm×n is a large, distributed data
matrix. In “unwrapped” ADMM form, described in [5], this can be written as:

min(g(z)) subject to Dx− z = 0 (21)

The z update is typical, but a special x update can be used for distributed data:

xk+1 = D+(zk − uk) (22)

where D+ = (DTD)−1DT (known as the pseudo-inverse). If g is a decomposable function, each
component in z update is decoupled. Then, an analytical solution or look-up table is possible. As
D = [DT

1 , ..., D
T
n ]T , x update can be rewritten as:

xk+1 = D+(zk − uk) = W
∑
i

Di(z
k
i − uki ) (23)

Note that W = (
∑

iD
T
i Di)

−1. Each vector Di(z
k
i − uki ) can be computed locally, while only

multiplication by W occurs on central server. This technique describes another way to approach
parallelizing ADMM in an efficient way, for certain problems.

Additionally, one can combine the strategy of Unwrapped ADMM with that of Transpose
Reduction. Consider the following problem:

min
x

(
1

2
||Dx− b||22 +H(x)

)
(24)

for some penalty term H(x). We know that:

9



1

2
||Dx− b||22 =

1

2
xT (DTD)x− xTDT b+

1

2
||b||22 (25)

With this observation, a central server needs only DTD and DT b. For tall, large D, DTD
has much fewer entries. Furthermore, we can see that DTD =

∑
iD

T
i Di and DT b =

∑
iD

T
i bi.

Now, each server needs to only compute local components and aggregate on a central server. This
is known as Transpose Reduction. Once the distributed servers compute DTD and DT b, we can
continue on and solve the problem with Unwrapped ADMM, as described before. This strategy
applies to many problems; thus, many ADMM solvers for these problems can be optimized and
written in an efficient, distributed method.
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The Implementation and Results of ADMM and Solvers

ADMM is capable of solving many general convex optimization problems. To name a few, according
to [1]:

• Basis Pursuit

• Sparse Inverse Covariance Selection

• Huber Fitting

• Intersection of Polyhedra

• Least Absolute Deviations

• Linear Programming

• `1 Regularized Logistic Regression

• Regressor Selection (nonconvex)

• Quadratic Programming

• Lasso Problem

• Support Vector Machines (SVMs)

• Total Variation Minimization (e.g., image denoising)

One can read about the problem statements for all of these optimization problems, as well as
ADMM solutions for them in [1]. For the first semester, we focused on getting a working generalized
ADMM implementation with adaptive step-size selection, and solvers for the last three problems
on the list. Solvers for these problems will set the groundwork for the rest on the problems, which
are solved in very similar ways, but with differences in input and proximal operators. However, we
first start with describing the general implementation of ADMM that was designed this semester.

General ADMM

We already have described a setup and algorithm for solving a general ADMM problem. The
minimal inputs for this algorithm are the constraint matrices A and B, the constraint vector c,
such that Ax+Bz = c, and the proximal operators proxf and proxg. However, there can be more
inputs. For example, the step size ρ, the absolute and relative errors for the standard stopping
conditions, maximum number of iterations to perform, etc. Thus, the implementation was designed
with accepting exactly three inputs: the two proximal operators for f and g (in that order), and
a structure options that contains additional parameters the user has set. Each parameter has a
default state if unset, save for the constraint variables, which must be set.

These options can allow the user to customize almost every step of the ADMM algorithm. They
are also exceedingly helpful in programming the solvers - as each solver will use the generalized
ADMM function. Simply customize general ADMM to the optimized way for solving a specific
problem and call the function.
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For validation and testing on this generalized ADMM function, we used the following model
problem:

arg min
x

(||Ax− b||22 + ||Cx− d||22), with A, C ∈ Rn×n and b, d ∈ Rn (26)

The derivative of the function to minimize is:

δ

δx
(||Ax− b||22 + ||Cx− d||22) = 2AT (Ax− b) + 2CT (Cx− d) (27)

Thus, setting this equal to 0 and solving for x yields the following exact minimizer:

x := (ATA+ CTC)−1(AT b+ CTd) (28)

Evaluating at this minimizer gives the exact objective value. Thus, if we solve this problem with
ADMM, we can check if the solution matches the true solution. In ADMM form, with f(x) =
||Ax− b||22, g(z) = ||Cz − d||22, the problem can be written as:

arg min
x

(||Ax− b||22 + ||Cz − d||22), subject to x− z = 0 (29)

Our scaled dual augmented Lagrangian for this problem is:

Lρ(x, z, u) = ||Ax− b||22 + ||Cz − d||22 + ρ/2||x− z + u||22 (30)

Thus, if we freeze the z and u variables at some iteration k, take the derivative for x, setting it to
0, and solving for x gives us the following expression for the x-minimization step (our proxf ):

proxf,ρ(x, z
k, uk) = (2ATA+ ρIn)−1(2AT b+ ρ(zk − uk)) (31)

Likewise, for the z variable, with x frozen at iteration k + 1 and u at k, we get the following
minimizer:

proxg,ρ(x
k+1, z, uk) = (2CTC + ρIn)−1(2CTd+ ρ(xk+1 + uk)) (32)

Plugging these proximal operators in our algorithm, for some ρ, we can test to see if ADMM
converges sufficiently to the true objective solution. The testing software generates random square
matrices for A and C of size n = 2x, with vectors c and d also generated randomly, for any range
of positive integer x values specified. The objective and proximal operators are formulated from
this random input. Then, the solution via ADMM is computed, as well as the true solution using
(28). The ADMM result is checked to be within some predefined expected relative tolerance of the
actual answer. These trials are run, timed, and checked for correctness multiple times for each size
n, and the resulting times are averaged. Any results not with the expected tolerance are reported.
Residual and objective plots are generated for the first trial of each size n, as well as a plot of the
average run-times for each size.
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Figure 1: Results for a test of general ADMM on the model problem. Only 3 trials were performed
for each size n, with ρ = 5.0, error tolerance 0.01 and convergence tolerance 0.001. Each trial
performed 1000 iterations, unconditionally.

In Figure 1, we can see the results of one of these trials. Only 3 random trials were done per size
of n so that the results could fit in the image. The test reports that all the results were within the
expected tolerances and that all H-norms were monotonically decreasing with the default tolerance
(relative error 0.001). However, we can see that the relative error for the true solution decreases
drastically as the size of n increases. This means that the 1000 iterations performed for each trial
are simply not enough for higher input sizes. The convergence rate tends to slow down.

Figure 2 shows the error norms and objective value for the first trial of size n = 29. The dashed
lines are the relative/absolute tolerances for the primal and dual error norms. Once ADMM is below
these dashed lines, it would have been considered to converge. As we can see, this convergence
already happened around iteration 100. Furthermore, the objective value is hardly changing over
the course of the algorithm. Thus, these results indicate that ADMM is slow to converge to precise
values on this type of problem. Figure 3 shows the H-norm squared values between current and
previous iterates. As expected, they are monotonically decreasing and tend to 0 as we get closer to
the solution, demonstrating that they can be used for stopping conditions as well. If the proximal
operators or the constraint matrices/vectors are changed at all in the model problem, the H-norm
squared values were found to not be decreasing, and the algorithm terminated early, as desired. In
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official testing, the number of trials per each size n was set to 100, and the range of values were all
power of 2 up to 29. The trials all gave positive results. Other features of ADMM were tested by
changing the options arguments before running ADMM.

Figure 2: Results for a test of general ADMM on the model problem, for random input of size
n = 29. The figure shows the progression of the objective value and the primal/dual error norms.

Total Variation Minimization

Total Variation (TV) measures the integral of the absolute value of the gradient of a signal x.
Minimizing this integral eliminates small variations in the signal data but preserves large variations,
thus removing noise from a noisy signal. Because of this, it has many applications. One example
is image denoising in the 2-dimensional case.

In 1-dimension, TV is defined as V (x) =
∑

i |xi+1 − xi|. We want to find a value close to a
given signal component bi that has smaller Total Variation. One way to measure such closeness is
the sum of square errors: E(x, b) = 1

2 ||x− b||
2
2. So our goal is to minimize for x, over a signal b:

E(x, b) + λV (x) (33)
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Figure 3: H-norm squared values for the same model random trial of size n = 29. We can see that
these values are monotonically decreasing and tend to 0, as expected.

The λ here is called the regularization parameter, and it dictates how much of an impact the
Total Variation has in the minimization by scaling it by λ. The problem, in ADMM form, can be
written as:

arg min
x

(E(x, b) + λ||z||1), subject to Dx− z = 0 (34)

First, let’s figure our the x-minimization step. We see that the gradient can be computed by
hand. So, using ADMM’s Augmented Lagrangian we minimize x by:

∇xLρ(x, z(k), u(k)) = ∇xE(x, b) +∇x||Dx− z(k) + u(k)||22

= ∇x
1

2
||x− b||22 + ρDT (Dx− z(k) + u(k))

= x− b+ ρDTDx− ρDT z(k) + ρDTu(k) = 0

(35)

We now solve (35) for x:
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x− b+ ρDTDx− ρDT z(k) + ρDTu(k) = 0

x+ ρDTDx = ρDT z(k) − ρDTu(k) + b

(I + ρDTD)x = ρDT (z(k) − u(k)) + b

x = (I + ρDTD)−1(ρDT (z(k) − u(k)) + b)

(36)

Thus, based off of the results in (36), our x-minimization step is:

x(k+1) := (I + ρDTD)−1(ρDT (z(k) − u(k)) + b) (37)

In real life, we would not form the inverse matrix in (37), but solve a system for xk+1. The z
and y minimization steps are as before for the general ADMM form, like in Algorithm 2. Thus,
the algorithm for solving TV remains the same as Algorithm 2 but with (37) as the x-minimization
step and soft-thresholding for the z step. This is shown in Algorithm 4

Algorithm 4 TV Minimization

1: procedure TVM(b, ρ, λ, stopcond)
2: Set x, z and u to some initial value.
3: Form matrix D using stencil [1− 1] (circular boundaries)
4: while stopcond(x, z, u, D b) 6= 1 do
5: x := (I + ρDTD)−1(ρDT (z − u) + b)
6: z := (v − λ/ρ)+ − (−v − λ/ρ)+, with v = −Dx− (u = y(k)/ρ)
7: u := u+Dx− z
8: return (x, z, Evaluate (16) for (x, z))

We tested this solver in the same way as the model problem. To figure out what the “true
solution” is for a randomly generated data set, we used the Matlab constrained optimization
solver cvx, which can be downloaded for free online. This solver can solve any linear constrained
optimization problem (very slowly, however). Thus, we simply feed the problem to cvx, which gives
us a good estimate for the true solution, and then we compare that to ADMM’s solution in the
same way as in the model problem. As in the model problem, all results came out positive for 100
trials at each size n.

Figure 4 shows the results of several trials of TV minimization on randomly generated signals
(black). ADMM’s results are shown in red. As we can see, the red signal is a denoised version of the
original. The parameter λ affects how “closely” the denoised signal should resemble the original.
Lower values dictate more lax conditions, while higher values require a more denoised result. The
results also show that the step-size/penalty parameter ρ also has an effect on how closely the result
should resemble the original signal.

LASSO Problem

The LASSO (Least Absolute Shrinkage and Selection Operator) method is a type of linear least
squares minimization problem with which adds a least squares penalty via the `1 norm, as in TV
minimization. One standard formulation is as follows:
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Figure 4: Results for a Matlab implementation of TV Minimization using ADMM for various
values of step-size ρ and λ.

min
x

(
1

2
||Dx− b||22 + λ||x||1

)
(38)

where D ∈ Rm×n and b ∈ Rm. The goal is to fit some data b to a linear model with the least
amount of variance. The matrix D contains some kind of data by which we fit our variable x. This
matrix could potentially be very tall (many training rows) or wide (many linear variables to fit).

Notice that the formulation of LASSO problem in (38) matches that of Transpose Reduction
for Unwrapped ADMM. Thus, we can use this strategy to obtain the proximal operators for solving
the LASSO problem. The solver is created directly from that. We test the LASSO solver using
randomly generated D and b such that b = D ∗ x0 + ε, where x0 is a normally distributed, sparse,
random vector, ε is a small perturbation vector which will generate something to minimize, and D
is z-scored to fit with normal distribution. This way of constructing the random trials guarantees
plausible linear solutions. Once again, we test the ADMM solution versus the solution computed
via cvx, which we accept as the true solution. As for the model problem, we performed 100 trials
for every power of 2 up to 27 (the size is limited as cvx is very slow to compute a true solution).
Likewise, all trials had positive results.

Linear SVMs

Linear Support Vector Machines (SVMs) strive to classify linearly separable data via training data.
That is, they seek a dividing hyperplane through some space of points such that all points are
correctly classified, given some prior training examples of correct classification. If one does not
want a dividing hyperplane that completely classifies everything, they can specify a regularization
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parameter that determines how “hard” the data should be classified. Such a general linear SVM
can be formulated as solving the following minimization problem:

min
x

(
1

2
||x||2 + Ch(Dx)

)
(39)

for a given matrix D containing training data on each classification (each column is a category to
classify into, each row a training sample). The parameter C here is a regularization parameter. If
C = 0, then the goal is to get a completely dividing hyperplane for the data. The function h here
is known as the Hinge-loss function, defined as:

h(w, (x, `)) = max(0, 1 + max
`′ 6=`

(w`′x− w`x)) := h(v) = max
i

(0, 1− ˆ̀
ivi) (40)

for some dividing hyperplane specified by w, where x is some point to classify and ` is a set of labels
on which we classify. The quantity v = Dx encodes all the labeling information between w and x, so
it can be written in a more concise, alternative form, as shown in (40) for a known ˆ̀of labels where
+1 denotes a positive classification and −1 a non-classification. These labels can be pre-computed
from the training data. The Hinge-loss function is a differentiable, linear abstraction of the 0-1-loss
function, which is a binary step function that returns only 0 (correctly classified) or 1 (incorrectly
classified). Thus, being incorrectly classified returns a penalty of 1, and so minimizing over the 0-1
loss function minimizes the number of incorrect classifications. Similarly, the Hinge-loss attempts
to do the same, but on what could be called a probability based scale.

Note that the formulation in (39) matches that of Unwrapped ADMM with Transpose reduction
in (24). So, we can already determine how the proximal operator will look for this situation in the
x variable. The z variable, which corresponds to the Hinge-loss function still needs to be figured
out. However, notice that the formulation of Unwrapped ADMM decouples the minimization
steps. It turns out that not only can minimization for the Hinge-loss be decoupled, but so can the
minimization for the 0-1-loss function! In most SVMs, it is impossible to use the actual 0-1-loss
function, so this is a unique feature of ADMM. For the Hinge-loss function, the minimization step
is:

z = Dx+ u+ `max(min(1− (`(Dx+ u)), C/ρ), 0) (41)

where the ` here is a vector of classification labels. For class i, `(i) = ±1, where a value of 1 indicates
correct classification and -1 indicates incorrect classification for that class. For the 0-1-loss:

z = Dx+ u+ `I01(Dx+ u, ρ/C) (42)

where the function I01(s, t) is vector indicator function that returns for every component of s the
value of every case where s ≥ 1 or s < (1−

√
(2/t)). This essentially returns the component value in

s wherever the label would be classified as incorrectly labeled. This is only possible because we’ve
already decoupled for every unknown label the information in D by forming the pseudo inverse D+.
Thus, the z minimization steps only depend on row information in matrix D for each component.

The general strategy is to formulate the classes as columns and training samples as rows in the
matrix D. Once the user has done that, they can run the SVM solver on their data D. ADMM
will perform the training phase on each class from the training data, returning a vector xclass as a
solution for each class (a one-vs-all scenario for each class). The user can then give testing samples
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which will be classified for the vector. This is done by computing the product between the test
vector t and the computed xclass. Each component that is non-positive is considered to not belong
in the class and each component that is positive is considered to be classified in that class.

For initial testing, we first tried classifying into two classes. The situation set up was to randomly
generate points on the x-y plane such that half the points were above the line y = x, and half were
below, with some points from the other class randomly entangled on the opposite side of the line.
The solution to this problem would be if the SVM returned weights of 1 for both the x and y
variables. Figure 5 shows a plot of one of the random results for C = 100. We can see that both
the Hinge and 0-1 loss functions classify approximately along the identity function between the two
variables, as expected.

Figure 5: Results for binary classification with linear SVMs, with C = 100. Red and green dots
are separate classes, with an approximate dividing line between most points of x1 = x2.

A more rigorous test of the linear SVM is to classify the digits in the MNIST handwritten
database, which contains many hand-drawn binary images of the digits 0-9. This is a multi-
classification problem. We assemble 10 columns in our D matrix which correspond to the the 10
digits, and try various subsets of the training and test data contained in the MNIST database.
First we train a subset of the training data using ADMM, then we classify a subset of the testing
data. We do this with both loss functions, and see how many were incorrectly classified for both
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functions, for both the testing and training data. Figure 6 shows results over various subsets of the
data. Note that there are 60,000 training samples and 10,000 testing samples, with exactly 6,000
training samples and 1,000 testing samples per digit. We can see that for larger training samples,
we tend to get lower percentages of incorrect results. If we increase the number of iterations, we
can also improve the results. Note that there appears to be some difficulty classifying the digits 8
and 9. This is likely due to the fact that they resemble each other. We get decently fast run-times
on this dataset and pretty good results, considering that the training and testing samples were
randomly selected. It would be better to sample and train repeatedly for each digit using some
sampling distribution as is often used to improve performance in machine learning. However, this
was just a test to see if the SVM solver is indeed working correctly.

Figure 6: Percentages of incorrect results for linear SVM multi-classification of various subsets of
testing and training samples of the MNIST database.

Adaptive ADMM

Adaptive ADMM would adaptively select a suitable step-size ρ each iteration, in an effort to decrease
the number of iterations required to converge. Our strategy is based on results from Ernie Esser’s
paper in [2]. In this paper, Esser shows a connection between ADMM and Split-Bregman. More
precisely, he demonstrates that ADMM is equivalent to the Douglas Rachford Splitting Method
(DRSM), in the sense that ADMM is DRSM applied to the dual problem:
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max
u∈Rd

( inf
x,z∈Rm1,m2

(L(x, z, u))) (43)

The implication of this proof is that ADMM is equivalent to finding u such that 0 ∈ ψ(u)+φ(u),
where ψ(u) = B∂g∗(BTu)−c and φ(u) = A∂f∗(ATu), where A, B, and c are the typical constraint
variables in ADMM. One strategy we tried is to form the residuals equal to ψ(uk) + φ(uk), for
each iteraton k, and interpolate with last residual (k − 1) over stepsize ρk. We would then like to
minimize this for a new step-size parameter. That is, we would like to solve:

r − rk

ρ
=
rk+1 − rk

ρk
⇐⇒ r = rk + (rk+1 − rk) ρ

ρk
⇐⇒ min

ρ
(rk + (rk+1 − rk) ρ

ρk
) (44)

This is simply the least squares problem in one dimension, and thus can be solved explicitly. If
we let r̂ = rk−1 − rk, the solution is:

ρk+1 = −ρkr̂
T rk−1

r̂T r̂
(45)

The idea is that assuming this linear regression situation, we can find what a better ρ would
have been for the last iteration - then use it in the next one. The hope would be that the change
in optimal ρ would not be too different between just one iteration.

However, results show that optimal ρ values found by this method tend explode when seeded
to a large ρ, or approach 0 for a small seed. Either situation produces too much round-off error.
The solution also doesn’t converge when the values are allowed to change so drastically. Figure 7
shows an example of these exploding values. One can see how these would pose an issue towards
the convergence and numerical stability of ADMM.

If such drastic changes are not allowed, i.e., checking relative change in these values of ρ and
requiring them to be within some realistic difference, setting them to the previous ρ if they are not,
then adaptive ADMM seems to “work”. However, it doesn’t converge in less iterations as often as it
should. Sometimes it will converge in the same number of iterations as regular ADMM. Sometimes
slightly less; rarely, even significantly less. On some occasions, it actually performs a little worse
(some low step-size values were chosen)! We would like to improve this performance to consistently
give significant lower iteration counts than a static step-size.

One option to try would be to select ρk+1 in some clever way from previous values of ρ. Perhaps
the linear model we minimize is insufficient and we should try to incorporate multiple values to
interpolate through. However, this may be too costly an approach. Another option is to interpolate
the H-norm evaluations. They are monotonic and decreasing, generally in a very smooth way, as
shown in Figure 7. The interpolation step might give results that are less wild, avoiding the sudden
explosion or disappearance of ρ values. Once more, a linear model might be insufficient here as
well, since Figure 7 shows a convergence pattern of O(1/k) that is described in [4].
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Figure 7: An example of the explosion of ρ values generated via adaptive ADMM.
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Project Schedule and Milestones

Below is the envisioned schedule for the project. The bold and italicized entries are milestones that
can objectively measure the progress of the project.

• Fall Semester Goals:

– End of October: Implement generic ADMM, solvers for the Lasso problem,
TV Minimization, and SVMs.

– Early November: Implement scripts for general testing, convergence checking, and
stopping condition strategies.

– End of November: Find a working adaptive step-size selection implementation.

– Early December: Finalize bells and whistles on ADMM options. Compile testing
and validation data.

• Spring Semester Goals:

– End of February: Implement the full library of standard problem solvers.

– End of March: Finish implementing MPI in ADMM library.

– End of April: Finishing porting code to Python version.

– Early May: Compile new testing/validation data.

Apart from getting a working implementation of adaptive ADMM, all of the items on the
checklist for the first semester have been finished. We plan to improve our results for adaptive
ADMM to get something that works better during the Winter break, so that we do not fall behind
schedule.

Deliverables

Below is a list of expected deliverables at the end of the project:

• ADMM Library: Python and Matlab versions

– Contain general ADMM with adaptive step size routines and standard solvers for com-
mon problems ADMM solves.

– Scripts for generating random test data and results.

– Scripts for validating performance of adaptive ADMM to regular ADMM.

• Report on observed testing/validation results and on findings with adaptive ADMM - may
lead to a paper eventually.

• Datasets used for testing the standard solvers (or references to where to obtain them, if they
are too big).
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