The Alternating Direction Method of Multipliers

Customizable software solver package

Peter Sutor, Jr.
Project Advisor: Professor Tom Goldstein

April 27, 2016

The Dual Problem

- Consider the following problem (primal problem):

$$
\min _{x}(f(x)) \text { subject to } A x=b .
$$

- Important components of this problem:

1 The Lagrangian: $L(x, y)=f(x)+y^{\top}(A x-b)$

- We refer to the original x variable as the primal variable and the y variable as the dual variable.
2 Dual function: $g(y)=\inf _{x}(L(x, y))$
■ New function made purely out of the dual variable.
■ Gives a lower bound on the objective value.
3 Dual problem: $\max _{y \geq 0}(g(y))$
- The problem of finding the best lower bound.

■ End goal: recover $x^{*}=\arg \min _{x}\left(L\left(x, y^{*}\right)\right)$, where x^{*} and y^{*} are corresponding optimizers.

The Alternating Direction Method of Multipliers (ADMM)

- Robustness of the Method of Multipliers.

■ Supports Dual Decomposition \rightarrow parallel x-updates possible.
■ Problem form: (where f and g are both convex)

$$
\min (f(x)+g(z)) \text { subject to } A x+B z=c
$$

- Objective is separable into two sets of variables.
- ADMM defines a special Augmented Lagrangian to enable decomposition: $(r=A x+B z-c, u=y / \rho)$

$$
\begin{aligned}
L_{\rho}(x, z, y) & =f(x)+g(z)+y^{\top}(r)+\frac{\rho}{2}\|r\|_{2}^{2} \\
& =f(x)+g(z)+(\rho / 2)\|r+u\|_{2}^{2}-\mathrm{const} \\
& =L_{\rho}(x, z, u)
\end{aligned}
$$

ADMM Algorithm

■ Repeat for $k=0$ to specified n, or until convergence:

$$
\begin{aligned}
& 1 \quad x^{(k+1)}:=\arg \min _{x}\left(L_{\rho}\left(x, z^{(k)}, u^{(k)}\right)\right) \\
& \mathbf{2} \quad z^{(k+1)}:=\arg \min _{z}\left(L_{\rho}\left(x^{(k+1)}, z, u^{(k)}\right)\right) \\
& \mathbf{3} \quad u^{(k+1)}:=u^{(k)}+\left(A x^{(k+1)}+B z^{(k+1)}-c\right)
\end{aligned}
$$

■ Recall the proximal operator: (with $v=B z^{(k)}-c+u^{(k)}$)

$$
\operatorname{prox}_{f, \rho}(v):=\underset{x}{\arg \min }\left(f(x)+(\rho / 2)\|A x+v\|_{2}^{2}\right)
$$

- If $g(z)=\lambda\|z\|_{1}$, then $\operatorname{prox}_{g, \rho}(v)$ is computed by soft-thresholding: (with $v=A x^{(k+1)}-c+u^{(k)}$)

$$
z_{i}^{(k+1)}:=\operatorname{sign}\left(v_{i}\right)\left(\left|v_{i}\right|-\lambda\right)_{+}
$$

In this project...

■ Our goal is to make ADMM easier to use in practice.

- Maximizing ADMM's potential means tweaking parameters such as step size ρ, starting values for x and z, efficient proximal operators, etc., for specific problem.
■ Want a comprehensive library for general ADMM use.
- Generalized ADMM functionality (with customizable options).
- Adaptive step-size selection.
- Ready to go optimized functions for problems ADMM is most used for (with customizable options).
- High performance computing capabilities (MPI).
- Implementations in Python and Matlab.

Prior Progress

1 Created a fully customizable general ADMM function:

- Convergence checking of proximal operators.
- Multiple types of stopping conditions.
- Over/under relaxation.
- Complete run-time information.
- Accelerated and Fast ADMM

2 Created library of solvers for problems ADMM is used for:

- Constrained Convex Optimization: Linear and Quadratic Programming.
- ℓ_{1} Norm Problems: Least Absolute Deviations, Huber Fitting, and Basis Pursuit.
- ℓ_{1} Regularization: Linear SVMs, LASSO, TVM, Sparse Inverse Covariance Selection, Logistic Regression.

Prior Progress (continued)

3 Testing and validation software for ADMM and solvers:

- For ADMM: general solver (simple quadratic model) to test on.
- For solvers: tester functions. Set up random problems and solve them, knowing the "correct" solution.
- Batch tester to run solvers over a problem size scaling function.
4 Adaptive Step Sizes:
■ Tried several interpolation +1 D least squares methods:
1 On Ye and Huan's $w=\left[x^{T}, z^{T}, u^{T}\right]^{T}$ values.
2 On Esser's ϕ and ψ based residual.
- Step sizes tended to explode.

Further Progress

- File organization and setup routines:
- With solvers, testers, and other files, about 30 programs.
- Organized into subfolders containing solvers, testers, examples.
- Nifty routine to automatically setup paths no matter what file is run.
- Code Restructuring:
- Streamlined solver code.
- Added different algorithms do some solvers.
- Prepped all code for parallel implementation.

■ Implemented local, parallel capabilities into ADMM to use all cores efficiently.

Decomposition In ADMM

- Suppose function f is separable in $x=\left(x_{1}, \cdots, x_{n}\right)^{T}$; then:

$$
f(x)=f_{n_{1}}\left(x_{n_{1}}\right)+\cdots+f_{n_{m}}\left(x_{n_{m}}\right), x=\left(x_{n_{1}}, \cdots, x_{n_{m}}\right), \sum_{i=1}^{m} n_{i}=n
$$

- Can decompose the proximal operator for f.

■ Thus, our x-minimization step in ADMM is split into m separate minimizations that can be carried out in parallel:

$$
x_{i}^{(k+1)}:=\operatorname{prox}_{f_{n_{i}}, \rho}\left(x_{n_{i}}, z, u\right)
$$

Parallelizing Updates

- Can use this observation to parallelize x-updates in ADMM.

■ No reason this can't be done for g as well!

- We often use simple z-updates (soft-thresholding, projections)
- Can be updated component-wise, or block component-wise.

■ For the u-update: $u^{(k+1)}:=u^{(k)}+\left(A x^{(k+1)}+B z^{(k+1)}-c\right)$

- Can compute $\hat{x}=A x^{(k+1)}$ and $\hat{z}=B z^{(k+1)}$ by similar parallel computation.
- Clearly can update $u^{(k+1)}$ component-wise:

$$
u_{i}^{(k+1)}:=u_{i}^{(k+1)}+\left(\hat{x}_{i}+\hat{u}_{i}-c_{i}\right)
$$

■ Note that update chunks n_{i} can differ between x, z, and u.

Implementing Parallel Updates

■ Interpret user provided proximal operators for f or g as component proximal operators:

- Normally given function proxf ($x, z, u, r h o$).

■ Change to $\operatorname{proxf}(\mathrm{x}, \mathrm{z}, \mathrm{u}, \mathrm{i})$ (Vector variables passed by reference)
■ Instead of looping over i, distribute workload to workers (processors) in each update.
■ User provides slices $\left(n_{1}, \cdots, n_{m}\right)$ for every update they wish to parallelize as acknowledgement to perform Parallel ADMM.
■ In Matlab, all this is easy to do for local parallel processes:

- Use parfor loop over i on each parallel update (x or z).
- Most matrix/vector operations already distributed among workers.

Example: LASSO Problem

- Standard LASSO formulation: $\min _{x}\left(1 / 2\|D x-s\|_{2}^{2}+\lambda\|x\|_{1}\right)$
- ADMM form: $\min (f(x)+g(z))$ subject to $x-z=0$, where $f(x)=1 / 2\|D x-s\|_{2}^{2}$ and $g(z)=\lambda\|z\|_{1}$.
■ $L_{\rho}(x, z, u)=f(x)+g(z)+(\rho / 2)\|x-z+u\|_{2}^{2}-\operatorname{const}(u)$
- Proximal operator for f is x such that:

$$
\nabla_{x}\left(L_{\rho}(x, z, u)\right)=D^{T}(D x-s)+\rho(x-z+u):=0
$$

- Update step: $x:=\left(D^{T} D+\rho I\right)^{-1}\left(D^{T} s+\rho(z-u)\right)$

■ Update for z can be parallel (soft-thresholding). What about the x update?

Parallel LASSO

■ Slice up rows of D and s into i chunks $\left\{D_{n_{i}}\right\}$ and $\left\{s_{n_{i}}\right\}$:

$$
x_{n_{i}}:=\left(D_{n_{i}}^{T} D_{n_{i}}+\rho l\right)^{-1}\left(D_{n_{i}}^{T} s_{n_{i}}+\rho\left(z_{n_{i}}-u_{n_{i}}\right)\right)
$$

- Consensus update $z=\mathbb{S}_{\lambda /(\rho N)}(\bar{x}+\bar{u})$.

■ In both serial and parallel LASSO, cache Cholesky factorizations ($X=Y^{T} Y$) of matrix to invert and solve the system for updating.

- Parallel preprocessing:
- You need to factor and store each chunk's decomposition.
- Solution: Add parameter to options struct, options.preprocess, a function handle to local preprocessing function in user's program.

LASSO Using Parallel ADMM

LASSO Serial vs. Parallel: 2^{11} Rows, 2^{3} Columns

LASSO Using Parallel ADMM

LASSO Serial vs. Parallel Thorough Test

Transpose Reduction

- Want more efficient parallel x-update for skinny matrix D, which is typical.
- Note: $1 / 2\|D x-s\|_{2}^{2}=1 / 2 x^{T}\left(D^{T} D\right) x-x^{T} D^{T} s+1 / 2\|s\|_{2}^{2}$

■ Now, a central server needs only $D^{T} D$ and $D^{T} b$. For tall, large $D, D^{T} D$ has much fewer entries.

- Note that: $D^{T} D=\sum_{i} D_{i}^{T} D_{i}$ and $D^{T} b=\sum_{i} D_{i}^{T} b_{i}$.

■ Now each server need only compute local components and aggregate on a central server.

- Once $D^{T} D$ and $D^{T} b$ are computed, solve with ADMM.

Unwrapped ADMM

■ Problem statement: $\min _{z}(g(z))$ subject to $z=D x$.

- ADMM form: $\min (f(x)+g(z))$ subject to $D x-z=0$, where $f(x)=0$, and $g(z)$ is the same.
- Define the pseudoinverse of D as $D^{+}=\left(D^{T} D\right)^{-1} D^{T}$
- As $f(x)=0$, proximal operator for f is simply x such that:

$$
\nabla_{x}\left(\rho / 2\|D x-z+u\|_{2}^{2}\right)=D^{T}(D x-z+u):=0
$$

which is simply $x=\left(D^{T} D\right)^{-1} D^{T}(z-u)=D^{+}(z-u)$.

- Cache D^{+}. For separable function g, can parallelize z update.
- Can we parallelize x update?

Unwrapped ADMM With Transpose Reduction

■ Abuse Transpose Reduction: slice D into $D=\left[D_{1}^{T} \cdots D_{N}^{T}\right]^{T}$.

- Then update $x=D^{+}(z-u)=W \sum_{i} D_{i}^{T}\left(z_{i}-u_{i}\right)$, where $W=\left(\sum_{i} D_{i}^{T} D_{i}\right)^{-1}$.
■ Note that for skinny D, W is very small and linear system solve much cheaper!
- In distributed setting, can:

1 Store $D_{i}^{T} D_{i}, D_{i}^{T}, z_{i}$ and u_{i} on each machine.
2 Have central server compute and cache W.
3 Central server adds up $d_{i}=D_{i}^{T}\left(z_{i}-u_{i}\right)$ into sum d and computes Wd.

- In local, parallel settings, can:

1 Do everything distributed does, but locally.
2 Compute summations in parallel.

Example: Linear SVMs

- General Form: $\min \left(1 / 2\|x\|^{2}+C h(D x)\right), C$ a regularization parameter. D is training data, with ℓ the training labels.
- "Hinge loss" function: $h(z)=\sum_{k=1}^{M} \max \left(1-\ell_{k} z_{k}, 0\right)$.

■ Unwrapped ADMM can solve this problem, even for 0-1 loss.
■ For hinge loss: $z^{k+1}=D x+u+\ell \max (\min (1-v, C / \rho), 0)$
■ For 0-1 loss: $z^{k+1}=\ell \mathbb{I}(v \geq 1$ or $v<(1-\sqrt{2 C / \rho}))$

- Here, $v=\ell(D x+u)$

■ Can use both parallel and serial Unwrapped ADMM, as z update is a component-wise computation.

- Perform parallel sums and preprocessing using options.preprocess.

Linear SVM Using Unwrapped ADMM and Transpose Reduction

Solution: Serial vs. Parallel SVM for 2^{9} Rows

Linear SVM Using Unwrapped ADMM and Transpose Reduction

Serial vs. Parallel: Thorough Test

Linear SVM Using Unwrapped ADMM and Transpose Reduction

Serial vs. Parallel: Thorough Test

Final Stretch

- Need to finish code restructuring on about 4 solvers.

■ Need to add parallel versions a few more solvers.

- Test and validate everything using testers.
- Documentation.
- Write final report.

High Performance Computing

- We have an efficient parallel implementation of ADMM. Can take full advantage of all cores on a machine.
- Would like a distributed version:
- Parallel ADMM allows for distributed computing.
- Distribute to many machines, then use all cores with clever parfor usage.
- Optimize my solvers for big data.

■ Looking into MatlabMPI to do this.
■ Distributed computing via MPI-like behavior.

- Potential to completely automate ADMM usage for big data.

Adaptive Step-Sizes

■ Previous attempts at adaptive step-sizes had issue of blowup of stepsizes.
■ Restarting at detection of blowups negates this. Tends to improve convergence regardless of starting stepsize.

- Drawback: no theoretical support for this.

■ Future work: adaptive stepsizes with strong theoretical support and better results.

A Better Software Library

■ Create general solvers and group more specific ones under them:

- Streamlines code.
- General solvers more useful for users.

■ More solvers:

- Need solvers for consensus and sharing problems.
- Need more distributed solvers for big data.
- More user friendliness, examples, and documentation. Want this to be a base for future ADMM research.

References

- S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, "Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers", Foundations and Trends in Machine Learning, vol. 3, no.1, pp. 1-122, 2010.
- T. Goldstein, G. Taylor, K. Barabin, and K. Sayre, "Unwrapping ADMM: Efficient Distributed Computing via Transpose Reduction", CoRR, vol. abs/1504.02147, 2015.
- E. Esser, Applications of Lagrangian-Based Alternating Direction Methods and Connections to Split Bregman, April 2009.
- B. He, X. Yuan, "On non-ergodic rate of Douglas-Rachford alternating direction method of multipliers," Numerishe Mathematik, vol. 130, iss. 3, pp. 567-577, 2014.
- H. Everett, "Generalized Lagrange multiplier method for solving problems of optimum allocation of resources," Operations Research, vol. 11, no. 3, pp. 399-417, 1963.

Thank you! Any questions?

