
Recap Progress on ADMM Library Parallel ADMM Unwrapped ADMM Next Steps The End

The Alternating Direction Method of Multipliers
Customizable software solver package

Peter Sutor, Jr.

Project Advisor: Professor Tom Goldstein

April 27, 2016

1 / 28

Recap Progress on ADMM Library Parallel ADMM Unwrapped ADMM Next Steps The End

Background

The Dual Problem

Consider the following problem (primal problem):
minx(f (x)) subject to Ax = b.

Important components of this problem:

1 The Lagrangian: L(x , y) = f (x) + yT (Ax − b)

We refer to the original x variable as the primal variable and
the y variable as the dual variable.

2 Dual function: g(y) = infx(L(x , y))

New function made purely out of the dual variable.
Gives a lower bound on the objective value.

3 Dual problem: maxy≥0(g(y))

The problem of finding the best lower bound.

End goal: recover x∗ = arg minx(L(x , y∗)), where x∗ and y∗

are corresponding optimizers.

2 / 28

Recap Progress on ADMM Library Parallel ADMM Unwrapped ADMM Next Steps The End

Background

The Alternating Direction Method of Multipliers (ADMM)

Robustness of the Method of Multipliers.

Supports Dual Decomposition → parallel x-updates possible.

Problem form: (where f and g are both convex)
min (f (x) + g(z)) subject to Ax + Bz = c ,

Objective is separable into two sets of variables.

ADMM defines a special Augmented Lagrangian to enable
decomposition: (r = Ax + Bz − c , u = y/ρ)

Lρ(x , z , y) = f (x) + g(z) + yT (r) +
ρ

2
||r ||22

= f (x) + g(z) + (ρ/2)||r + u||22 − const

= Lρ(x , z , u)

3 / 28

Recap Progress on ADMM Library Parallel ADMM Unwrapped ADMM Next Steps The End

Background

ADMM Algorithm

Repeat for k = 0 to specified n, or until convergence:

1 x (k+1) := arg minx(Lρ(x , z (k), u(k)))
2 z (k+1) := arg minz(Lρ(x (k+1), z , u(k)))
3 u(k+1) := u(k) + (Ax (k+1) + Bz (k+1) − c)

Recall the proximal operator : (with v = Bz(k) − c + u(k))

proxf ,ρ(v) := arg min
x

(f (x) + (ρ/2)||Ax + v ||22)

If g(z) = λ||z ||1, then proxg ,ρ(v) is computed by

soft-thresholding: (with v = Ax (k+1) − c + u(k))

z
(k+1)
i := sign(vi)(|vi | − λ)+

4 / 28

Recap Progress on ADMM Library Parallel ADMM Unwrapped ADMM Next Steps The End

Progress on ADMM Library

In this project...

Our goal is to make ADMM easier to use in practice.

Maximizing ADMM’s potential means tweaking parameters
such as step size ρ, starting values for x and z , efficient
proximal operators, etc., for specific problem.

Want a comprehensive library for general ADMM use.

Generalized ADMM functionality (with customizable options).
Adaptive step-size selection.
Ready to go optimized functions for problems ADMM is most
used for (with customizable options).
High performance computing capabilities (MPI).
Implementations in Python and Matlab.

5 / 28

Recap Progress on ADMM Library Parallel ADMM Unwrapped ADMM Next Steps The End

Progress on ADMM Library

Prior Progress

1 Created a fully customizable general ADMM function:

Convergence checking of proximal operators.
Multiple types of stopping conditions.
Over/under relaxation.
Complete run-time information.
Accelerated and Fast ADMM

2 Created library of solvers for problems ADMM is used for:

Constrained Convex Optimization: Linear and Quadratic
Programming.
`1 Norm Problems: Least Absolute Deviations, Huber
Fitting, and Basis Pursuit.
`1 Regularization: Linear SVMs, LASSO, TVM, Sparse
Inverse Covariance Selection, Logistic Regression.

6 / 28

Recap Progress on ADMM Library Parallel ADMM Unwrapped ADMM Next Steps The End

Progress on ADMM Library

Prior Progress (continued)

3 Testing and validation software for ADMM and solvers:

For ADMM: general solver (simple quadratic model) to test
on.
For solvers: tester functions. Set up random problems and
solve them, knowing the “correct” solution.
Batch tester to run solvers over a problem size scaling
function.

4 Adaptive Step Sizes:
Tried several interpolation + 1D least squares methods:

1 On Ye and Huan’s w =
[
xT , zT , uT

]T
values.

2 On Esser’s φ and ψ based residual.

Step sizes tended to explode.

7 / 28

Recap Progress on ADMM Library Parallel ADMM Unwrapped ADMM Next Steps The End

Progress on ADMM Library

Further Progress

File organization and setup routines:

With solvers, testers, and other files, about 30 programs.
Organized into subfolders containing solvers, testers, examples.
Nifty routine to automatically setup paths no matter what file
is run.

Code Restructuring:

Streamlined solver code.
Added different algorithms do some solvers.
Prepped all code for parallel implementation.

Implemented local, parallel capabilities into ADMM to use all
cores efficiently.

8 / 28

Recap Progress on ADMM Library Parallel ADMM Unwrapped ADMM Next Steps The End

Parallel Updates

Decomposition In ADMM

Suppose function f is separable in x = (x1, · · · , xn)T ; then:

f (x) = fn1(xn1) + · · ·+ fnm(xnm), x = (xn1 , · · · , xnm),
m∑
i=1

ni = n

Can decompose the proximal operator for f .

Thus, our x-minimization step in ADMM is split into m
separate minimizations that can be carried out in parallel:

x
(k+1)
i := proxfni ,ρ

(xni , z , u)

9 / 28

Recap Progress on ADMM Library Parallel ADMM Unwrapped ADMM Next Steps The End

Parallel Updates

Parallelizing Updates

Can use this observation to parallelize x-updates in ADMM.

No reason this can’t be done for g as well!

We often use simple z-updates (soft-thresholding, projections)
Can be updated component-wise, or block component-wise.

For the u-update: u(k+1) := u(k) + (Ax (k+1) + Bz(k+1) − c)

Can compute x̂ = Ax (k+1) and ẑ = Bz (k+1) by similar parallel
computation.
Clearly can update u(k+1) component-wise:

u
(k+1)
i := u

(k+1)
i + (x̂i + ûi − ci)

Note that update chunks ni can differ between x , z , and u.

10 / 28

Recap Progress on ADMM Library Parallel ADMM Unwrapped ADMM Next Steps The End

Parallel Updates

Implementing Parallel Updates

Interpret user provided proximal operators for f or g as
component proximal operators:

Normally given function proxf(x,z,u,rho).
Change to proxf(x,z,u,i) (Vector variables passed by
reference)

Instead of looping over i , distribute workload to workers
(processors) in each update.

User provides slices (n1, · · · , nm) for every update they wish
to parallelize as acknowledgement to perform Parallel ADMM.

In Matlab, all this is easy to do for local parallel processes:

Use parfor loop over i on each parallel update (x or z).
Most matrix/vector operations already distributed among
workers.

11 / 28

Recap Progress on ADMM Library Parallel ADMM Unwrapped ADMM Next Steps The End

LASSO Using Parallel ADMM

Example: LASSO Problem

Standard LASSO formulation: minx(1/2||Dx − s||22 + λ||x ||1)

ADMM form: min(f (x) + g(z)) subject to x − z = 0, where
f (x) = 1/2||Dx − s||22 and g(z) = λ||z ||1.

Lρ(x , z , u) = f (x) + g(z) + (ρ/2)||x − z + u||22 − const(u)

Proximal operator for f is x such that:

∇x(Lρ(x , z , u)) = DT (Dx − s) + ρ(x − z + u) := 0

Update step: x := (DTD + ρI)−1(DT s + ρ(z − u))

Update for z can be parallel (soft-thresholding). What about
the x update?

12 / 28

Recap Progress on ADMM Library Parallel ADMM Unwrapped ADMM Next Steps The End

LASSO Using Parallel ADMM

Parallel LASSO

Slice up rows of D and s into i chunks {Dni} and {sni}:

xni := (DT
ni
Dni + ρI)−1(DT

ni
sni + ρ(zni − uni))

Consensus update z = Sλ/(ρN)(x̄ + ū).

In both serial and parallel LASSO, cache Cholesky
factorizations (X = Y TY) of matrix to invert and solve the
system for updating.

Parallel preprocessing:

You need to factor and store each chunk’s decomposition.
Solution: Add parameter to options struct,
options.preprocess, a function handle to local
preprocessing function in user’s program.

13 / 28

Recap Progress on ADMM Library Parallel ADMM Unwrapped ADMM Next Steps The End

LASSO Using Parallel ADMM

LASSO Serial vs. Parallel: 211 Rows, 23 Columns

14 / 28

Recap Progress on ADMM Library Parallel ADMM Unwrapped ADMM Next Steps The End

LASSO Using Parallel ADMM

LASSO Serial vs. Parallel Thorough Test

15 / 28

Recap Progress on ADMM Library Parallel ADMM Unwrapped ADMM Next Steps The End

Unwrapped ADMM

Transpose Reduction

Want more efficient parallel x-update for skinny matrix D,
which is typical.

Note: 1/2||Dx − s||22 = 1/2xT (DTD)x − xTDT s + 1/2||s||22
Now, a central server needs only DTD and DTb. For tall,
large D, DTD has much fewer entries.

Note that: DTD =
∑

i D
T
i Di and DTb =

∑
i D

T
i bi .

Now each server need only compute local components and
aggregate on a central server.

Once DTD and DTb are computed, solve with ADMM.

16 / 28

Recap Progress on ADMM Library Parallel ADMM Unwrapped ADMM Next Steps The End

Unwrapped ADMM

Unwrapped ADMM

Problem statement: minz(g(z)) subject to z = Dx .

ADMM form: min(f (x) + g(z)) subject to Dx − z = 0, where
f (x) = 0, and g(z) is the same.

Define the pseudoinverse of D as D+ = (DTD)−1DT

As f (x) = 0, proximal operator for f is simply x such that:

∇x(ρ/2||Dx − z + u||22) = DT (Dx − z + u) := 0

which is simply x = (DTD)−1DT (z − u) = D+(z − u).

Cache D+. For separable function g , can parallelize z update.

Can we parallelize x update?

17 / 28

Recap Progress on ADMM Library Parallel ADMM Unwrapped ADMM Next Steps The End

Unwrapped ADMM

Unwrapped ADMM With Transpose Reduction

Abuse Transpose Reduction: slice D into D = [DT
1 · · ·DT

N]T .

Then update x = D+(z − u) = W
∑

i D
T
i (zi − ui), where

W = (
∑

i D
T
i Di)

−1.

Note that for skinny D, W is very small and linear system
solve much cheaper!

In distributed setting, can:

1 Store DT
i Di , D

T
i , zi and ui on each machine.

2 Have central server compute and cache W .
3 Central server adds up di = DT

i (zi − ui) into sum d and
computes Wd .

In local, parallel settings, can:

1 Do everything distributed does, but locally.
2 Compute summations in parallel.

18 / 28

Recap Progress on ADMM Library Parallel ADMM Unwrapped ADMM Next Steps The End

Linear SVM Using Unwrapped ADMM and Transpose Reduction

Example: Linear SVMs

General Form: min(1/2||x ||2 + Ch(Dx)), C a regularization
parameter. D is training data, with ` the training labels.

“Hinge loss” function: h(z) =
∑M

k=1 max(1− `kzk , 0).

Unwrapped ADMM can solve this problem, even for 0-1 loss.

For hinge loss: zk+1 = Dx + u + `max(min(1− v ,C/ρ), 0)

For 0-1 loss: zk+1 = `I(v ≥ 1 or v < (1−
√

2C/ρ))

Here, v = `(Dx + u)

Can use both parallel and serial Unwrapped ADMM, as z
update is a component-wise computation.

Perform parallel sums and preprocessing using
options.preprocess.

19 / 28

Recap Progress on ADMM Library Parallel ADMM Unwrapped ADMM Next Steps The End

Linear SVM Using Unwrapped ADMM and Transpose Reduction

Solution: Serial vs. Parallel SVM for 29 Rows

20 / 28

Recap Progress on ADMM Library Parallel ADMM Unwrapped ADMM Next Steps The End

Linear SVM Using Unwrapped ADMM and Transpose Reduction

Serial vs. Parallel: Thorough Test

21 / 28

Recap Progress on ADMM Library Parallel ADMM Unwrapped ADMM Next Steps The End

Linear SVM Using Unwrapped ADMM and Transpose Reduction

Serial vs. Parallel: Thorough Test

22 / 28

Recap Progress on ADMM Library Parallel ADMM Unwrapped ADMM Next Steps The End

Final stretch

Final Stretch

Need to finish code restructuring on about 4 solvers.

Need to add parallel versions a few more solvers.

Test and validate everything using testers.

Documentation.

Write final report.

23 / 28

Recap Progress on ADMM Library Parallel ADMM Unwrapped ADMM Next Steps The End

Future Work

High Performance Computing

We have an efficient parallel implementation of ADMM. Can
take full advantage of all cores on a machine.

Would like a distributed version:

Parallel ADMM allows for distributed computing.
Distribute to many machines, then use all cores with clever
parfor usage.
Optimize my solvers for big data.

Looking into MatlabMPI to do this.

Distributed computing via MPI-like behavior.
Potential to completely automate ADMM usage for big data.

24 / 28

Recap Progress on ADMM Library Parallel ADMM Unwrapped ADMM Next Steps The End

Future Work

Adaptive Step-Sizes

Previous attempts at adaptive step-sizes had issue of blowup
of stepsizes.

Restarting at detection of blowups negates this. Tends to
improve convergence regardless of starting stepsize.

Drawback: no theoretical support for this.

Future work: adaptive stepsizes with strong theoretical
support and better results.

25 / 28

Recap Progress on ADMM Library Parallel ADMM Unwrapped ADMM Next Steps The End

Future Work

A Better Software Library

Create general solvers and group more specific ones under
them:

Streamlines code.
General solvers more useful for users.

More solvers:

Need solvers for consensus and sharing problems.
Need more distributed solvers for big data.

More user friendliness, examples, and documentation. Want
this to be a base for future ADMM research.

26 / 28

Recap Progress on ADMM Library Parallel ADMM Unwrapped ADMM Next Steps The End

The End

References

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed Optimization and Statistical
Learning via the Alternating Direction Method of Multipliers”, Foundations and Trends in Machine
Learning, vol. 3, no.1, pp. 1-122, 2010.

T. Goldstein, G. Taylor, K. Barabin, and K. Sayre, “Unwrapping ADMM: Efficient Distributed Computing
via Transpose Reduction”, CoRR, vol. abs/1504.02147, 2015.

E. Esser, Applications of Lagrangian-Based Alternating Direction Methods and Connections to Split
Bregman, April 2009.

B. He, X. Yuan, “On non-ergodic rate of Douglas-Rachford alternating direction method of multipliers,”
Numerishe Mathematik, vol. 130, iss. 3, pp. 567-577, 2014.

H. Everett, “Generalized Lagrange multiplier method for solving problems of optimum allocation of
resources,” Operations Research, vol. 11, no. 3, pp. 399-417, 1963.

27 / 28

Recap Progress on ADMM Library Parallel ADMM Unwrapped ADMM Next Steps The End

The End

Thank you! Any questions?

28 / 28

	Recap
	Background

	Progress on ADMM Library
	Progress on ADMM Library

