Recap 000	Progress on ADMM Library 0000	Parallel ADMM 000 0000	Unwrapped ADMM 000 0000	Next Steps 0 000	The End 00

The Alternating Direction Method of Multipliers Customizable software solver package

Peter Sutor, Jr.

Project Advisor: Professor Tom Goldstein

April 27, 2016

イロン イロン イヨン イヨン 三日

1/28

Recap ●00	Progress on ADMM Library	Parallel ADMM 000 0000	Unwrapped ADMM 000 0000	Next Steps 0 000	The End 00
Background					

The Dual Problem

- Consider the following problem (*primal problem*): $\min_x(f(x))$ subject to Ax = b.
- Important components of this problem:
 - **1** The Lagrangian: $L(x, y) = f(x) + y^T(Ax b)$
 - We refer to the original x variable as the *primal variable* and the y variable as the *dual variable*.
 - **2** Dual function: $g(y) = \inf_x(L(x, y))$
 - New function made purely out of the dual variable.
 - Gives a lower bound on the objective value.
 - 3 Dual problem: $\max_{y \ge 0}(g(y))$
 - The problem of finding the best lower bound.
- End goal: recover x* = arg min_x(L(x, y*)), where x* and y* are corresponding optimizers.

Recap 0●0	Progress on ADMM Library 0000	Parallel ADMM 000 0000	Unwrapped ADMM 000 0000	Next Steps 0 000	The End 00
Background					

The Alternating Direction Method of Multipliers (ADMM)

- Robustness of the Method of Multipliers.
- Supports Dual Decomposition \rightarrow parallel *x*-updates possible.
- Problem form: (where f and g are both convex) $\min(f(x) + g(z))$ subject to Ax + Bz = c,
- Objective is separable into two sets of variables.
- ADMM defines a special Augmented Lagrangian to enable decomposition: $(r = Ax + Bz c, u = y/\rho)$

$$L_{\rho}(x, z, y) = f(x) + g(z) + y^{T}(r) + \frac{\rho}{2} ||r||_{2}^{2}$$

= f(x) + g(z) + (\rho/2)||r + u||_{2}^{2} - const
= L_{\rho}(x, z, u)

Recap 00●	Progress on ADMM Library	Parallel ADMM 000 0000	Unwrapped ADMM 000 0000	Next Steps 0 000	The End 00
Background					

ADMM Algorithm

Repeat for k = 0 to specified n, or until convergence:

 1
 $x^{(k+1)} := \arg \min_x (L_\rho(x, z^{(k)}, u^{(k)}))$

 2
 $z^{(k+1)} := \arg \min_z (L_\rho(x^{(k+1)}, z, u^{(k)}))$

 3
 $u^{(k+1)} := u^{(k)} + (Ax^{(k+1)} + Bz^{(k+1)} - c)$

• Recall the proximal operator: (with $v = Bz^{(k)} - c + u^{(k)}$)

$$prox_{f,\rho}(v) := argmin_{x}(f(x) + (\rho/2)||Ax + v||_{2}^{2})$$

If g(z) = λ||z||₁, then prox_{g,ρ}(v) is computed by soft-thresholding: (with v = Ax^(k+1) − c + u^(k))

$$z_i^{(k+1)} := sign(v_i)(|v_i| - \lambda)_+$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Recap 000	Progress on ADMM Library ●000	Parallel ADMM 000 0000	Unwrapped ADMM 000 0000	Next Steps 0 000	The End 00			
Progress on ADMM Library								

In this project ...

- Our goal is to make ADMM easier to use in practice.
- Maximizing ADMM's potential means tweaking parameters such as step size ρ, starting values for x and z, efficient proximal operators, etc., for specific problem.
- Want a comprehensive library for general ADMM use.
 - Generalized ADMM functionality (with customizable options).
 - Adaptive step-size selection.
 - Ready to go optimized functions for problems ADMM is most used for (with customizable options).
 - High performance computing capabilities (MPI).
 - Implementations in Python and Matlab.

Recap 000	Progress on ADMM Library ○●○○	Parallel ADMM 000 0000	Unwrapped ADMM 000 0000	Next Steps 0 000	The End 00
Progress on a	ADMM Library				

Prior Progress

1 Created a fully customizable general ADMM function:

- Convergence checking of proximal operators.
- Multiple types of stopping conditions.
- Over/under relaxation.
- Complete run-time information.
- Accelerated and Fast ADMM
- 2 Created library of solvers for problems ADMM is used for:
 - Constrained Convex Optimization: Linear and Quadratic Programming.
 - *l*₁ Norm Problems: Least Absolute Deviations, Huber Fitting, and Basis Pursuit.
 - *ℓ*₁ Regularization: Linear SVMs, LASSO, TVM, Sparse Inverse Covariance Selection, Logistic Regression.

Recap 000	Progress on ADMM Library ००●०	Parallel ADMM	Unwrapped ADMM	Next Steps	The End 00
Progress on	ADMM Library	0000	0000	000	

Prior Progress (continued)

- 3 Testing and validation software for ADMM and solvers:
 - For ADMM: general solver (simple quadratic model) to test on.
 - For solvers: tester functions. Set up random problems and solve them, knowing the "correct" solution.
 - Batch tester to run solvers over a problem size scaling function.
- 4 Adaptive Step Sizes:
 - Tried several interpolation + 1D least squares methods:
 - **1** On Ye and Huan's $w = [x^T, z^T, u^T]^T$ values.
 - 2 On Esser's ϕ and ψ based residual.
 - Step sizes tended to explode.

Recap 000	Progress on ADMM Library 000●	Parallel ADMM 000 0000	Unwrapped ADMM 000 0000	Next Steps 0 000	The End 00
Progress on	ADMM Library				

Further Progress

- File organization and setup routines:
 - With solvers, testers, and other files, about 30 programs.
 - Organized into subfolders containing solvers, testers, examples.
 - Nifty routine to automatically setup paths no matter what file is run.
- Code Restructuring:
 - Streamlined solver code.
 - Added different algorithms do some solvers.
 - Prepped all code for parallel implementation.
- Implemented local, parallel capabilities into ADMM to use all cores efficiently.

Recap 000	Progress on ADMM Library	Parallel ADMM ●00 ○○○○	Unwrapped ADMM 000 0000	Next Steps 0 000	The End 00
Parallel Lir	dator				

Decomposition In ADMM

Suppose function f is separable in $x = (x_1, \dots, x_n)^T$; then:

$$f(x) = f_{n_1}(x_{n_1}) + \dots + f_{n_m}(x_{n_m}), x = (x_{n_1}, \dots, x_{n_m}), \sum_{i=1}^m n_i = n$$

- Can decompose the proximal operator for f.
- Thus, our x-minimization step in ADMM is split into m separate minimizations that can be carried out in parallel:

$$x_i^{(k+1)} := \mathbf{prox}_{f_{n_i},\rho}(x_{n_i}, z, u)$$

Recap 000	Progress on ADMM Library	Parallel ADMM 0●0 0000	Unwrapped ADMM 000 0000	Next Steps 0 000	The End 00
Parallel Upd	lates				

Parallelizing Updates

- Can use this observation to parallelize *x*-updates in ADMM.
- No reason this can't be done for g as well!
 - We often use simple *z*-updates (soft-thresholding, projections)
 - Can be updated component-wise, or block component-wise.
- For the *u*-update: $u^{(k+1)} := u^{(k)} + (Ax^{(k+1)} + Bz^{(k+1)} c)$
 - Can compute $\hat{x} = Ax^{(k+1)}$ and $\hat{z} = Bz^{(k+1)}$ by similar parallel computation.
 - Clearly can update $u^{(k+1)}$ component-wise:

$$u_i^{(k+1)} := u_i^{(k+1)} + (\hat{x}_i + \hat{u}_i - c_i)$$

Note that update chunks n_i can differ between x, z, and u.

Recap 000	Progress on ADMM Library	Parallel ADMM 00● 0000	Unwrapped ADMM 000 0000	Next Steps 0 000	The End 00
. н.					

Implementing Parallel Updates

- Interpret user provided proximal operators for f or g as component proximal operators:
 - Normally given function proxf(x,z,u,rho).
 - Change to proxf(x,z,u,i) (Vector variables passed by reference)
- Instead of looping over *i*, distribute workload to workers (processors) in each update.
- User provides *slices* (n_1, \dots, n_m) for every update they wish to parallelize as acknowledgement to perform Parallel ADMM.
- In MATLAB, all this is easy to do for local parallel processes:
 - Use parfor loop over i on each parallel update (x or z).
 - Most matrix/vector operations already distributed among workers.

Recap 000	Progress on ADMM Library	Parallel ADMM ○○○ ●○○○	Unwrapped ADMM 000 0000	Next Steps 0 000	The End 00
LASSO Usin	g Parallel ADMM				

Example: LASSO Problem

- Standard LASSO formulation: $\min_x(1/2||Dx s||_2^2 + \lambda||x||_1)$
- ADMM form: $\min(f(x) + g(z))$ subject to x z = 0, where $f(x) = 1/2||Dx s||_2^2$ and $g(z) = \lambda ||z||_1$.
- $L_{\rho}(x, z, u) = f(x) + g(z) + (\rho/2)||x z + u||_2^2 const(u)$

Proximal operator for f is x such that:

$$\nabla_x(L_\rho(x,z,u)) = D^T(Dx-s) + \rho(x-z+u) := 0$$

• Update step: $x := (D^T D + \rho I)^{-1} (D^T s + \rho (z - u))$

Update for z can be parallel (soft-thresholding). What about the x update?

Recap 000	Progress on ADMM Library	Parallel ADMM ○○○ ○●○○	Unwrapped ADMM 000 0000	Next Steps 0 000	The End 00
LASSO Us	ing Parallel ADMM				
Dara					

Slice up rows of D and s into i chunks $\{D_{n_i}\}$ and $\{s_{n_i}\}$:

$$x_{n_i} := (D_{n_i}^T D_{n_i} + \rho I)^{-1} (D_{n_i}^T s_{n_i} + \rho (z_{n_i} - u_{n_i}))$$

- Consensus update $z = \mathbb{S}_{\lambda/(\rho N)}(\bar{x} + \bar{u}).$
- In both serial and parallel LASSO, cache Cholesky factorizations (X = Y^TY) of matrix to invert and solve the system for updating.
- Parallel preprocessing:
 - You need to factor and store each chunk's decomposition.
 - Solution: Add parameter to options struct, options.preprocess, a function handle to local preprocessing function in user's program.

Recap	Progress on ADMM Library	Parallel ADMM	Unwrapped ADMM	Next Steps	The End
		000 00●0	000 0000	0 000	

LASSO Using Parallel ADMM

LASSO Serial vs. Parallel: 2¹¹ Rows, 2³ Columns

14 / 28

Recap	Progress on ADMM Library	Parallel ADMM	Unwrapped ADMM	Next Steps	The End
		000 000●	000 0000	0 000	

LASSO Using Parallel ADMM

LASSO Serial vs. Parallel Thorough Test

Recap 000	Progress on ADMM Library	Parallel ADMM 000 0000	Unwrapped ADMM ●00 ○○○○	Next Steps 0 000	The End 00
Unwrapped A	ADMM				

Transpose Reduction

- Want more efficient parallel x-update for skinny matrix D, which is typical.
- Note: $1/2||Dx s||_2^2 = 1/2x^T (D^T D)x x^T D^T s + 1/2||s||_2^2$
- Now, a central server needs only $D^T D$ and $D^T b$. For tall, large D, $D^T D$ has much fewer entries.
- Note that: $D^T D = \sum_i D_i^T D_i$ and $D^T b = \sum_i D_i^T b_i$.
- Now each server need only compute local components and aggregate on a central server.
- Once $D^T D$ and $D^T b$ are computed, solve with ADMM.

Recap 000	Progress on ADMM Library 0000	Parallel ADMM 000 0000	Unwrapped ADMM ○●○ ○○○○	Next Steps 0 000	The End 00
Unwrapped	ADMM				

Unwrapped ADMM

- Problem statement: $min_z(g(z))$ subject to z = Dx.
- ADMM form: $\min(f(x) + g(z))$ subject to Dx z = 0, where f(x) = 0, and g(z) is the same.
- Define the pseudoinverse of D as $D^+ = (D^T D)^{-1} D^T$
- As f(x) = 0, proximal operator for f is simply x such that:

$$abla_x(
ho/2||Dx-z+u||_2^2) = D^T(Dx-z+u) := 0$$

which is simply $x = (D^T D)^{-1} D^T (z - u) = D^+ (z - u)$.

Cache D⁺. For separable function g, can parallelize z update.
Can we parallelize x update?

Recap 000	Progress on ADMM Library	Parallel ADMM 000 0000	Unwrapped ADMM oo● oooo	Next Steps 0 000	The End 00
11					

Unwrapped ADMM With Transpose Reduction

- Abuse Transpose Reduction: slice D into $D = [D_1^T \cdots D_N^T]^T$.
- Then update $x = D^+(z u) = W \sum_i D_i^T(z_i u_i)$, where $W = (\sum_i D_i^T D_i)^{-1}$.
- Note that for skinny D, W is very small and linear system solve much cheaper!
- In distributed setting, can:
 - **1** Store $D_i^T D_i$, D_i^T , z_i and u_i on each machine.
 - 2 Have central server compute and cache W.
 - 3 Central server adds up $d_i = D_i^T(z_i u_i)$ into sum d and computes Wd.
- In local, parallel settings, can:
 - **1** Do everything distributed does, but locally.
 - 2 Compute summations in parallel.

Recap 000	Progress on ADMM Library 0000	Parallel ADMM 000 0000	Unwrapped ADMM ○○○ ●○○○	Next Steps 0 000	The End 00
Linear SVM	Using Unwrapped ADMM and Tran	spose Reduction			

Example: Linear SVMs

- General Form: $\min(1/2||x||^2 + Ch(Dx))$, C a regularization parameter. D is training data, with ℓ the training labels.
- "Hinge loss" function: $h(z) = \sum_{k=1}^{M} \max(1 \ell_k z_k, 0)$.
- Unwrapped ADMM can solve this problem, even for 0-1 loss.
- For hinge loss: $z^{k+1} = Dx + u + \ell \max(\min(1 \nu, C/\rho), 0)$

For 0-1 loss:
$$z^{k+1} = \ell \mathbb{I}(v \ge 1 \text{ or } v < (1 - \sqrt{2C/\rho}))$$

• Here,
$$v = \ell(Dx + u)$$

- Can use both parallel and serial Unwrapped ADMM, as z update is a component-wise computation.
- Perform parallel sums and preprocessing using options.preprocess.

Recap	Progress on ADMM Library	Parallel ADMM	Unwrapped ADMM	Next Steps	The End			
		000 0000	000 0 00 0	0 000				
Linner CV/	L'ANNE CARALLES A DISTANCE A ADMAN AND TRANSPORTE DESCRIPTION							

Solution: Serial vs. Parallel SVM for 2⁹ Rows

20 / 28

	Progress on ADMM Library	Parallel ADMM	Unwrapped ADMM		The End
		000 0000	000 00 0 0	0 000	
Linear SVN	M Using Unwrapped ADMM and Tr	anspose Reduction			

Serial vs. Parallel: Thorough Test

21/28

Recap 000	Progress on ADMM Library 0000	Parallel ADMM 000 0000	Unwrapped ADMM ○○○ ○○○●	Next Steps 0 000	The End 00
Linear SVM	Using Unwrapped ADMM and Tra	inspose Reduction			

Serial vs. Parallel: Thorough Test

22 / 28

э

Recap 000	Progress on ADMM Library 0000	Parallel ADMM 000 0000	Unwrapped ADMM 000 0000	Next Steps • •	The End 00
Final stretch					

• Need to finish code restructuring on about 4 solvers.

- Need to add parallel versions a few more solvers.
- Test and validate everything using testers.
- Documentation.
- Write final report.

Recap 000	Progress on ADMM Library	Parallel ADMM 000 0000	Unwrapped ADMM 000 0000	Next Steps ○ ●○○	The End 00
Euturo W/o	راء				

High Performance Computing

- We have an efficient parallel implementation of ADMM. Can take full advantage of all cores on a machine.
- Would like a distributed version:
 - Parallel ADMM allows for distributed computing.
 - Distribute to many machines, then use all cores with clever parfor usage.
 - Optimize my solvers for big data.
- Looking into MatlabMPI to do this.
 - Distributed computing via MPI-like behavior.
 - Potential to completely automate ADMM usage for big data.

Recap 000	Progress on ADMM Library 0000	Parallel ADMM 000 0000	Unwrapped ADMM 000 0000	Next Steps ○ ○●○	The End 00
Future Work					

Adaptive Step-Sizes

- Previous attempts at adaptive step-sizes had issue of blowup of stepsizes.
- Restarting at detection of blowups negates this. Tends to improve convergence regardless of starting stepsize.
- Drawback: no theoretical support for this.
- Future work: adaptive stepsizes with strong theoretical support and better results.

Recap 000	Progress on ADMM Library	Parallel ADMM 000 0000	Unwrapped ADMM 000 0000	Next Steps ○ ○○●	The End 00
Future Wo	ork				

A Better Software Library

- Create general solvers and group more specific ones under them:
 - Streamlines code.
 - General solvers more useful for users.
- More solvers:
 - Need solvers for consensus and sharing problems.
 - Need more distributed solvers for big data.
- More user friendliness, examples, and documentation. Want this to be a base for future ADMM research.

Recap 000	Progress on ADMM Library	Parallel ADMM 000 0000	Unwrapped ADMM 000 0000	Next Steps 0 000	The End ●0
The End					
Refer	rences				

- S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, "Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers", *Foundations and Trends in Machine Learning*, vol. 3, no.1, pp. 1-122, 2010.
- T. Goldstein, G. Taylor, K. Barabin, and K. Sayre, "Unwrapping ADMM: Efficient Distributed Computing via Transpose Reduction", CoRR, vol. abs/1504.02147, 2015.
- E. Esser, Applications of Lagrangian-Based Alternating Direction Methods and Connections to Split Bregman, April 2009.
- B. He, X. Yuan, "On non-ergodic rate of Douglas-Rachford alternating direction method of multipliers," Numerishe Mathematik, vol. 130, iss. 3, pp. 567-577, 2014.
- H. Everett, "Generalized Lagrange multiplier method for solving problems of optimum allocation of resources," *Operations Research*, vol. 11, no. 3, pp. 399-417, 1963.

Recap 000	Progress on ADMM Library 0000	Parallel ADMM 000 0000	Unwrapped ADMM 000 0000	Next Steps 0 000	The End ○●
The End					

Thank you! Any questions?