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Abstract

In image classification it is advantageous to build classfiers based on feature ex-

tractors. It is demanded that the feature extractors unmask the identity of the image

and remain stable with regard to small-scale deformations. A scattering convolutional

network is such a feature extractor. In this project, we propose to use modern machine

learning techniques to train the scattering convolutional network and test them on a

standard database (MNIST) for the task of recognizing hand-written digits.
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1 Background

Recently convolutional neural networks (ConvNets) have enjoyed conspicuous success in

various pattern recognition tasks ([9], [10]). Although a clear understanding of why they

perform so well is still absent, it is believed that it is the multi-layer structure that makes

ConvNets outstanding ([3], [4]). As a feature extractor, a ConvNet is built to catch different

features of an image in different layers. In [8], the authors apply wavelet theory to formulate

a struture named Scattering Convolutional Network, which falls in the general categetory

of ConvNets. The authors showed that the feature extractors they built are approximately

invariant to translation and stable to small-scale deformation. The theory is extended

to general semi-discrete frames in [12]. We are going to apply these theories to perform

classification of hand-written digits.

1.1 Convolutional Networks

Convolutional networks (ConvNets) are artificial neural networks that “use convolution in

place of general matrix multiplication in at least one place” ([1], Ch. 9). In one dimension,

the convolution operation “∗” is defined by

(x ∗ h)(t) =

∫
x(s)h(t− s)ds .

In the above, despite the symmetric role of x and h, we usually call x the input, and h

the filter. A digital image is a discretized two-dimensional object, whence we consider the

convolution operator in two dimension with the discrete measure:

(X ∗H)(t1, t2) =
∑
s1

∑
s2

X(s1, s2)H(t1 − s1, t2 − s2) .

In ConvNets, generally X is the input to the current layer and H is the filter which is

commonly of much smaller size than X. The reason is both for computational efficiency

and for sparse interactions between pixels ([1], Ch. 9). Since the size of the filter is small,

it makes more sense to use the equivalent definition for the convolution, that is,

(X ∗H)(t1, t2) =
∑
s1

∑
s2

X(t1 − s1, t2 − s2)H(s1, s2) . (1)

Here t1, t2, s1, s2 are the pixel positions. Suppose X ∈ RD×D and H ∈ Rd×d (we can replace

R by C for some applications, but it does not affect our discussions here), in practice we
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Figure 1: A typical ConvNet

would consider D > d. It is useful to think of X as a function X : ZD × ZD → R. Then it

makes sense when t1 − s1 or t2 − s2 is a negative number in (1).

Figure 1 illustrates a typical convolutional network. We see that between the input and

the output it is natural to partition the neurons (operations) into several layers. In general,

each layer of a ConvNet has three stages. The first stage is a convolution stage, where the

input is convolved with filters; the second stage is a detector stage, where nonlinearity is

applied to the output from the convolution stage; the last stage is a pooling stage, where

local maximizing or averaging is applied to the output from the detector stage.

1.2 Scattering Convolutional Networks

Scattering Convolutional Networks are in the category of ConvNets with pre-defined filters

([8]). The filters are built by dilations of a wavelet. In the detector stage in each layer,

the nonlinearity is chosen to be the absolute value function. In the pooling stage, a local

averaging is done by convolution with a low-pass filter.

Let ψ be a wavelet in L2(Rd). The dilation of ψ by λ, ψλ, is defined by

ψλ(t) = λdψ(λt) .

Consider a path q = (λ1, λ2, · · · , λm). The scattering propagator, U [q], is defined by

U [q]x = |||x ∗ ψλ1 | ∗ ψλ2 | · · ·ψλm | ,
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and the scattering transform, S[q], is defined by

S[q]x = U [q]x ∗ φJ ,

where J > 0 is some pre-determined scale. For an input signal x, in the m-th layer, a path

q = (λ1, λ2, · · · , λm) generates an output given by S[q]x. Figure 2 showes the process.

Figure 2: A typical scattering convolutional network

The Scattering Convolutional Networks are shown to be approximately tranlation in-

variant and stable to small-scale deformation. However, the stabily are guaranteed only

if we choose a specifically designed wavelet to start with. In [12], the authors extend the

theory to general semi-discrete frames. They use the same network structure but give a

less strict condition on the filters. This stability property is important for feature learning

because we want the feature vector to be insentitive to different handwrinting styles.

The stability properties still hold even if we use other nonlinearities in place of |·|. For

instance, we can use |·|2 in place (in this case we have a polynomial network and there are

other ways for training). If we have a bounded input signal then the scattering transform

with |·|2 is also approximately invariant to translation and stable to deformation for certain

filters. In the following we mainly discuss the scattering network with |·|, but we also test

the results for the scattering network with |·|2. We use the same training techniques for

both.
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1.3 Machine Learning Techniques

Our project is motivated by the above scattering network and its extension. Instead of fixing

everything in the network beforehand, we want the computer to “tell” us what parameters

to use for this structure. For instance, if we want to relate the input x and the output y by

some function y = f(x), then the process for determining the precise form of f is called the

training phase ([2], Ch. 1). From the perspective of human, we “train” the system; while

from the perspective of the machine, it “learns” from the given data set. For our project,

we are given a set of training data, where each image has a “label” that tells us the de facto

output.

The machine learning techniques we will use are not limited to but include the gradient

descent optimization, the error backpropagation and the support vector machine.

1.3.1 Gradient Descent Optimization

In most machine learning tasks we would like to find the minimum of a loss function (also

called a cost function). Suppose l(λλλ) is the loss function with respect to the parameter λλλ.

The gradient descent is an iterative method for locating the minimum of l (see [1], Ch. 8;

[2], Ch. 5). The updating step is given by

λλλ(ν+1) = λλλ(ν) − η∇l(λλλ(ν)) . (2)

where (ν) is the step number. At each step, λλλ travels towards the direction of the steepest

descent. The scalar η is called the learning rate by the machine learning community. It is

the same as the stepsize in standard optimization literature.

There are some alternative optimization methods, for example, conjugate gradients

and quasi-Newton methods. They are in general more efficient than the gradient descent

method. However, for training convolutional networks, we usually have a large amount of

training data. Therefore, the loss function will be the sum of a large number of terms if

we use deterministic methods. Taking this into consideration, deterministic methods are

rarely used for network training. In practice, most training algorithms use stochastic ap-

proximation for the gradient. The conjugate gradients and quasi-Newton methods are not

amenable to stochastic gradients. Nevertheless, it has been empirically demonstrated that

the stochastic gradient descent method performs well for training ConvNets ([9], [10]). We

will use both deterministic and stochastic methods and compare the results.
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1.3.2 Error Backpropagation

The idea of error backpropagation is that the partial derivative of the loss function l(λλλ)

with respect to λ can be decomposed ([1], Ch. 6). It is based on the chain rule of taking

derivatives.

Figure 3: A simple illustration of backpropagation

Figure 3 epitomizes a simple neural network. The output y is connected to the input x

through two intermediate outputs z1 and z2. Hence we have

∂y

∂x
=

∂y

∂z1

∂z1
∂x

+
∂y

∂z2

∂z2
∂x

.

It is as if we had a network in the opposite direction for the partial derivatives. In general,

we compute the partial derivatives between each connected neurons, and then propagate

backward along the network to get the derivative of the loss function with respect to the

parameters that we want to train.

1.3.3 Support vector machine

The support vector machine (SVM) is a decision machine designed for two-class classification

problems ([2], Ch. 7). A typical trained SVM has two parameters: the weights w and bias

b. Suppose the two classes are given by {±1}, then given an input y, the sign of 〈w, y〉+ b

determines whether y falls into the class {−1} or {+1}.
We would like to train the SVM parameters {w, b}. The idea of the SVM is to maximize

the margin between the decision boundaries. It turns out that we need to maximize ‖w‖−1,
that is, to minimize ‖w‖. However, at the same time, we want to mildly penalize points

that go to the wrong side. A standard way to do this is the following: suppose the inputs

provided by the training data are {yn}Nn=1 with labels {an}Nn=1 where each label an ∈ {±1},
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we want to solve

min
w,b

1

2
‖w‖2 + C

N∑
n=1

l(yn, an;w, b) ,

where C is a pre-determined parameter and l is the hinge-loss function defined by

l(y, a;w, b) = max(0, 1− a(b+ 〈w, y〉)) ,

where a ∈ {±1} is the label corresponding to y. In the above, the parameter C seeks

a balance between the two factors: maximizing the distance of the two classes (min-

imizing ‖w‖2 /2) and minimizing the loss caused by points that are wrongly classified

(
∑

n l(yn, an;w, b)).

2 Approach

2.1 Network Structure

In this project, our task is the classification of hand-written digits. Our goal is to build a

classifier that identifies the digit contained in our input image. Our classifier is composed

of two parts. The first is a scattering convolutional network that extracts the features of

the images and outputs a feature vector. The second is an SVM that does the classification

job on the feature vector. In our project, the structure of the classifier is fixed, while some

parameters in the classifier are to be either trained using machine learning techniques, or

selected from a few possible choices.

Figure 4 shows the detailed structure. The scattering network is a four-layer neural

network that consists of one input layer, two convolutional layers and one output layer. In

each convolutional layer, hjk is the filter to be trained; “|·|” is the operation of taking absolute

value pointwise; g is a fixed low-pass filter that does local averaging. A downsampling is

done before we send the feature vector y to the SVM (this guarantees that the output of

the scattering network is appoximately of the same size as the input). We select g and L

from several possible candidates after cross-validation.

As we have discussed in Section 1.3, once we have determined all the parameters of the

network in Figure 4, we can use it for the classification task. Suppose we have an image x

and want to determine the digit it represents. We use x as an input and let it propagate

through the network. It first goes through the scattering network to generate the feature

vector y, and then the SVM determines which class x belongs to by evaluating 〈w, y〉+ b.
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Figure 4: The structure of our scattering convolutional network

In our project, the two-dimensional filters, hjk, are parametrized as dilations of the tensor

products of two one-dimensional wavelets. We use the same pre-defined wavelet ψ for both.

That is,

hjk(t1, t2) = ψ
λjk,1
⊗ ψ

λjk,2
(t1, t2) = λjk,1λ

j
k,2ψ(λjk,1t1)ψ(λjk,2t2) .

2.2 Optimization Problem

Let λλλ denote the vector composed of all the λ’s in the h’s. The training process deals with

the unknown parameters λλλ;w, b. The trained λλλ;w, b are optimizers of the minimization

problem of the SVM (see Section 1.3.3). Note that the feature vector y (which is the input

of the SVM) now contains the unknown parameters λλλ. Therefore, according the structure

in Figure 4, the optimization problem for our project is as follows.

min
λλλ;w,b

1

2
‖w‖2 + C

N∑
n=1

l(yn, an;w, b) , (3)
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where

l(y, a;w, b) = max(0, 1− a(b+ 〈w, y〉)) ,

and y is the grouping of the following

(recall that “∗” is in the sense of Equation (1))

y0 = x ∗ g ;

yj1 =
∣∣∣x ∗ hj1∣∣∣ ∗ g , 1 ≤ j ≤ 3 ;

yj2 =
∣∣∣∣∣∣x ∗ hdj/3e1

∣∣∣ ∗ hj2∣∣∣ ∗ g , 1 ≤ j ≤ 9 ,

where the two-dimensional filters hjk is parametrized as

hjk(t1, t2) = λjk,1λ
j
k,2ψ(λjk,1t1)ψ(λjk,2t2) .

The above training problem works for two-class classification, which is adapted to multi-

class classification as we describe in the next section. In the optimization objective function

(3), N can be either the total amount of training data (if we use a deterministic method),

or the number of samples (if we use a stochastic method). The input of the network is

N pairs of (xn, an) where xn’s are images of 28 × 28 pixels (according to the database)

and an’s are the corresponding labels indicating which class x is in (normalized so that

an ∈ {±1}). The unknown parameters are the λ’s in the filters and the w and b in the

SVM. The optimization problem with respect to {λλλ,w, b} is a non-convex problem and

difficult to solve. Nevertheless, if we fix λλλ, then training the SVM is a convex optimization

problem. Inspired by this fact, we will follow a two-step procedure. Specifically, we first fix

λλλ and train w and b (which is convex), and then fix w and b to train λλλ (which is easier than

the original problem and we use gradient descent for the minimization); and then iterate

it until our stop criterion is met. We use a software called libSVM to train w and b, as

described in Section 3.

Algorithm 1 summarizes our training process.

2.3 Multi-Class Classification

Now we discuss the multi-class variation of the above method. An SVM is inherently a

binary classifier. If we want to build a multi-class classifier based on SVM methods, we
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Algorithm 1: The algorithm for network training

Start with learning rate η, regularization parameter C ;

randomly generate λλλ;

while stop criterion not met do

sample N examples {x1, x2, · · · , xN} from the training set;

get the corresponding labels {a1, a2, · · · , aN};
propagate forward to get {y1, y2, · · · , yN};
call libSVM with input {y1, y2, · · · , yN}, {a1, a2, · · · , aN} and C;

update w, b← output of libSVM;

set rrr = 0;

for n = 1 to N do

compute ∇λλλl(λλλ;xn);

rrr ← rrr +∇λλλl(λλλ;xn);

update λλλ← λλλ− ηrrr ;

adapt η accordingly.

have to train multiple SVM’s. Broadly speaking, there are two approaches: “one-against-

all” and “one-against-one” ([7]).

1. One-against-all: We have 10 classes {0, 1, · · · , 9}. We build 10 classifiers F0, F1, · · · ,
F9. For p ∈ {0, 1, · · · , 9}, we use the label 1 if the input image is the number p and

−1 if the input image is not the number p. Note that each classifier has parameters

{λλλp, wp, bp}. Our decision rule is

output = arg max
p

〈wp, yp〉+ bp ,

where yp is the feature vector obtained from the convolutional network in Fp.

2. One-against-one: We build a classifier for each pair of classes (45 classifiers in total).

In this case, our decision rule is given by a voting strategy: for each pair of classes,

we use the associated classifier to choose one class, and then the vote of that class is

added by one. Our decision rule is that we take the class that has the largest number

of votes (if two classes have the same number of votes, then take an arbitrary one).

Note that in the above, we build multiple classifiers with different filters in the convolu-

tional network. If we want to apply the above principle but only use one feature extractor,
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then we need to formulate an optimization problem for the multi-class classification. The

way to do this is not unique ([7]). One formulation based on (not exactly) “one-against-all”

is:

min
λλλ;wp,bp
p=0,··· ,9

1

2

9∑
p=0

‖wp‖2 + C

N∑
n=1

∑
p 6=an

l(yn;wp, bp) ,

where an ∈ {0, 1, · · · , 9},

l(yn;wp, wp) = max (0, 2 + 〈wp, yn〉+ bp − 〈wan , yn〉 − ban) ,

and yn’s are the same as given in Equation (3). The decision rule is the same as described

in “one-against-all”.

Optimization problem for “one-against-one” is rarely seen in literature. Nevertheless,

if we want to use only one feature extractor for “one-against-one”, we can consider the

following problem:

min
λλλ;wq ,bq
q=1,··· ,45

1

2

45∑
q=1

‖wq‖2 + C
N∑
n=1

∑
q:an∈Aq

l(yn, an;wq, bq) ,

where an ∈ {0, 1, · · · , 9}, Aq is the set composed of the two classes of the q-th pair, and

l(yn, an;wq, bq) = max(0, 1− cn,q(bq + 〈wq, yn〉)) ,

where cn,q ∈ {±1} depends on the labeling of the q-th SVM. Since w and b’s are to be

retrieved from the libSVM (which uses the “one-against-one” principle by default), we

only need the partial derivatives of the objective function, which is simply the sum of the

derivatives of the loss functions we considered in Section 2.2.

3 Implementation

3.1 Hardware and Software

We implement the algorithm on the personal laptop with

• CPU: 2GHz Intel Core i7

• Memory: 8 GB 1600 MHz DDR3

• OS: OS X El Capitan Version 10.11

The software we use is MATLAB R2015b. All the experiments are run in the terminal

window without a GUI.
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3.2 Database

The database we use is the standard MNIST database. MNIST is a publicly available

database (http://yann.lecun.com/exdb/mnist/) of hand-written digits. The images are

already preprocessed and formatted: they are of 28 × 28 pixels; each pixel has an value

ranging from 0 to 255 (we normalize the pixel values to be in [0, 1] when processing). The

database provides 60,000 training images and 10,000 testing images. Examples of the images

are given in Figure 5.

Figure 5: Examples of training images in the MNIST Database

In the training examples, we do not have an equal number of images for each digit.

We take 5,400 images for each digit for training purpose. For cross-validation purposes, we

further divide the 5,400 images into 3,600 images for training, and 1,800 for testing.

3.3 Implementation Details

Our implementation is based on Algorithm 1 described in Section 2. We run both a stochas-

tic version and a deterministic version. In the stochastic method, the number of samples,

N , is taken to be a small number (We take N = 10 in this project); in the deterministic

version, N is just the total number of images available for training (i.e. for two-class clas-

sification problem, N = 2× 3600 = 7200). We repeat several steps until λλλ converges or the
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number of iterations exceeds some value. Those steps are described in details as follows.

3.3.1 Forward Propagation

We randomly generate the starting value of λλλ. We make sure that (1) the starting value is

positive; (2) the starting value for each branch is apart from each other. For each training

image xn, we need to get a corresponding feature vector yn. This is done by forward

propagation through the network. In our implementation, the operation of convolution is

done following a variant version of Formula (1). The detail is shown in Figure 6. In this

way, the output X ∗H is of the same size as X.

Figure 6: Convolution of X and H. Here the filter H is a small patch. We rotate it by 180◦

and align the upper left corner with the pixel in X that we want to compute the convolution

value. For instance, as shown in this figure, (X ∗ H)11 = X11H22 + X12H21 + X21H12 +

X22H11.

Note that there are 12 filters in our structure. Therefore, including the original signal xn

(which has size 28× 28), the feature vector yn has size 28× 28× 13 before we downsample.

Roughly speaking, the downsampled yn has size 28 × 28 × 13/L2. We can consider it as a

column vector as we send it to the SVM.
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3.3.2 LibSVM

Once we have the feature vector yn’s, we use libSVM to get w and b. LibSVM is a publicly

available (https://www.csie.ntu.edu.tw/˜cjlin/libsvm/) software for training SVM’s.

The main program of libSVM is written in C. Therefore, before using it we need to

generate “mex” files for MATLAB to run libSVM. For training purposes, we call the file

“svmtrain.mexmaci64”. The input are two matrices: first, a matrix whose columns are the

yn’s; second, a row vector whose entries are the label an’s. The output is a strcture from

which we retrieve the optimizers w and b. Here w is a vector whose size is the same as yn

(the same for each n), b is a scalar.

3.3.3 Back Propagation

After we update w and b from the SVM, we train the parameter λλλ from the filter hjk’s in

the convolution layer. We have 12 filters and thus 24 parameters to train. With fixed w

and b, the minimization problem (3) is turned into

min
λλλ

N∑
n=1

l(λλλ;xn) ,

where we use

l(λλλ;xn) := l(yn, an;w, b), ∀n

to emphasize the fact that l depends on the unknown parameters λλλ and the training data

xn’s. The updaing step follows Equation (2).

We now compute the gradient ∇λλλl(λλλ;x) for a fixed x. Note that the loss function

l(y, t;w, b) is not a smooth function with respect to y. We use a smooth function in place.

Our choice is a C1 function L defined by

L(y, a;w, b) =


0.5− a(b+ 〈w, y〉) , if a(b+ 〈w, y〉) ≤ 0;

0.5(1− a(b+ 〈w, y〉))2 , if 0 < a(b+ 〈w, y〉) ≤ 1;

0 , otherwise.

Its partial derivative with respect to y is given by

∇yL(y, a;w, b) =


−aw , if a(b+ 〈w, y〉) ≤ 1;

a(a(b+ 〈w, y〉)− 1)w , if 0 < a(b+ 〈w, y〉) ≤ 1;

0 , otherwise.
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Also, we need to use some smooth function F in place of |·|. Our choice is a C∞ function

F : R→ R defined by

F (t) = (|t|2 + ε2)1/2

for some small ε. We use F (resp. F ′) for the operation of applying F (resp. F ′) pointwise

as well (the same treatment as for |·|). We have

F ′(t) =
t

(|t|2 + ε2)1/2
.

Moreover, we use Ψ(λ) defined by

Ψ(λ)(t) := λψ(λt)

to emphasize the dependence on the variable λ. Note that

∂L

∂λjk,i
=

〈
∇
yjk
L,

∂yjk
∂λjk,i

〉
.

Now we give expressions for ∂yjk/∂λ
j
k,i. We use � to denote pointwise multiplication of two

vectors or matrices of the same size (which is an abuse of notation, but we do not plan to

use � elsewhere). Since i takes value in {1, 2}, we use i′ to denote the complement of i in

{1, 2}. We have

∂yj1
∂λj1,i

=
[
F ′
(
x ∗ (Ψ(λj1,i)⊗Ψ(λj1,i′))

)
�
(
x ∗ (Ψ′(λj1,i)⊗Ψ(λj1,i′))

)]
∗ g ;

∂y3j−ι2

∂λj1,i
=

{
F ′
(
F
(
x ∗ (Ψ(λj1,i)⊗Ψ(λj1,i′))

)
∗
(

Ψ(λ3j−ι2,i )⊗Ψ(λ3j−ι2,i′ )
))
�[[

F ′
(
x ∗ (Ψ(λj1,i)⊗Ψ(λj1,i′))

)
�
(
x ∗ (Ψ′(λj1,i)⊗Ψ(λj1,i′))

)]
∗
(

Ψ(λ3j−ι2,i )⊗Ψ(λ3j−ι2,i′ )
)]}

∗ g , for ι = 1, 2, 3;

∂yj2
∂λj2,i

=

[
F ′
(
F
(
x ∗ (Ψ(λ

dj/3e
1,i )⊗Ψ(λ

dj/3e
1,i′ ))

)
∗
(

Ψ(λj2,i)⊗Ψ(λj2,i′)
))
�

(
F
((
x ∗ (Ψ(λ

dj/3e
1,i )⊗Ψ(λ

dj/3e
1,i′ ))

))
∗
(

Ψ′(λj2,i)⊗Ψ(λj2,i′)
))]
∗ g .

The above expression is simply given by the chain rule. We can compute ∂L/∂λjk,i by

backpropagation as described in Section 1.3. A sketched illustration is given in Figure 7.
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Figure 7: Illustration of the backpropagation process (“·” denotes the input from the last

node). To compute the derivative, propagate backward, take the product of all marked

values. Take the sum when two branches merge.

The updating step is λλλ(ν+1) = λλλ(ν) − η
∑N

n=1∇λλλl(λλλ(ν);xn). Note that this formula does

not guarantee that we still get a positive λλλ. If any component of λλλ is non-positive, we

replace η by a smaller one so that λλλ stays positive.

3.4 Cross-Validation

For parameter selection, recall that for each digit we split the 5,400 examples further into

3,600 for training and 1,800 for testing. We use cross-validation to determine the downsam-

pling factor L and the low-pass filter g.

For the downsampling factor, since the size of the feature vector yn is 13 times that of

the input image xn, we consider to select the downsampling factor from 3×3 (3 for row, and

3 for column), 4×4 and 5×5. For simplicity, we represent them as L = 3, 4, 5, respectively.

For the low-pass filter, we consider to select it between a standard sinc function (we

denote this choice by LP) and a simple local averaging kernel (constant in each entry, which
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is equivalent to taking average value of neighboring pixels) (we denote this choice by AV).

In the implementation, g is taken to be of size 4-by-4.

We run both a stochastic method and a deterministic method. For the stochastic method

(N = 10), the result is demonstrated in Figure 8. We see that (LP) takes much longer time

than (AV) and the error rate grows dramatically with the downsampling factor. On the

other hand, the downsampling factor does not cause a big difference in the performance of

(AV). We believe that “L = 3 / AV” is a reasonable choice for the stochastic method.

Figure 8: Testing results for the stochastic method. For instance, the column starting

with “L = 3 / LP” means that the training process takes 14.5 hours; the frequency

of “reading 0 incorrectly” is 1.67 %; the frequency of “reading 1 incorrectly” is 0.39 %;∑
{n:an=0} l(yn, an;w, b) = 399.3;

∑
{n:an=1} l(yn, an;w, b) = 202.1.

On the other hand, for the deterministic method, we do not implement (LP) since it

is inefficient. Figure 9 shows the results for (AV). For each L, the running time is much

longer than the stochastic method. Nevertheless, the error rate is small and in this case we

have much smaller sum of loss function. There is no significant difference in performance

for each L, and “L = 3 / AV” still appears to be a reasonable choice.
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Figure 9: Testing results for the deterministic method

4 Validation

We use the MatConvNet Toolbox for validation. MatConvNet is a publicly available

(http://www.vlfeat.org/matconvnet/) MATLAB toolbox for convolutional neural networks.

It provides routines for implementing linear convolution, back propagation, gradient descent,

etc.

The main elements of MatConvNet are computational blocks and wrappers. Computa-

tional blocks are used for computing fundamental building blocks of a network (e.g. the

small blocks in Figure 4). They can do linear convolution, local averaging, etc. A wrapper

is used for specifying the structure of the network (in our case, a chain of blocks).

Since in almost all convolutional networks it is the pixel values of the filters rather

than the dilation factors that are trained, we cannot use the diffentiation functions in

MatConvNet. We still have to compute the derivatives according to the formulas in Section

3.3.3.

We use the computational blocks and the data structures from the software. In our main

program, we treat each filter (block) individually when we do the convolution. Conversely,

MatConvNet treat filters in one layer as a batch. In each convolution operation, the filters

are considered as 4-dimensional, where the first two dimensions are for height and width, the

third dimension is for the number of channels (one in our case), and the fourth dimension

is for the number of filters as a batch (three in our case).

In our validation, we track how the λ’s change over iteration steps. We start with
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the same randomly generated 24 λ’s and use 100 training data and iterate 100 steps in

Algorithm 1. The 100 groups of λ’s are saved in a 24-by-100 matrix for comparison and

they are the same for both programs.

Figure 10 illustrates how the λ’s are updated in 100 steps.

Figure 10: Change of λ values over 100 iteration steps

5 Testing

We have two parts for testing: the classification results and the stability results.

5.1 Classification Results

Figure 11 shows the binary classification results. It is surprising to see that running libSVM

alone gives a perfect result. Nevertheless, the classification from the scattering network is

satisfactory.

Figure 12 shows the multiclass classification results. We see that in this case a stochastic

gradient descent method does not provide good result. The deterministic gradient descent,
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Figure 11: Binary classification results

the libSVM and the deterministic gradient descent using the square function perform equally

reasonably well.

Figure 12: Multiclass classification results

5.2 Stability Results

5.2.1 Stability to Translation

In [8] the author proves that a scattering transform is translation invariant. However, the

“invariance” is due to a limit behavior when the averaging is taken over the entire space

domain. This is not a practical consideration. Nevertheless, it is still important to see how

our scattering network response to a translation in the original image.
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Figure 13: An illustration of the comparison process

Our experiment is illustrated as in Figure 13. For each image x0, we apply a translation

to get the translated image Tx0. Letting them go through our scatttering network we get

the feature vectors y(x0) and y(Tx0), respectively. We compare the norm of the difference

of the feature vectors with the norm of the input image by taking the ratio

‖y(Tx0)− y(x0)‖
‖x0‖

.

Since our images are not continuous signals, we can only translate by integer-valued

number of pixels. However, we would like to see the response to a small translation. There-

fore, we do the fraction-valued translation in the following way. Suppose we would like to

do translation of p/q pixels where p and q are coprime integers, we first upsample (linearly)

the original 28-by-28 image to the size 28q-by-28q. We mark the positions of the original

pixels, do the translation of p pixels, and then downsample to the original size by taking the

pixels in the positions that we marked. An example of this process is illustrated in Figure

14.

We test the stability to translation for both using |·| and using |·|2 as the nonlinearity.

We do the experiment for all the testing images and record the minimum, average and

maximum of the ratios. The results are shown in Figure 15. We have small ratios for

translation of a small number of pixels. We see that the ratio grows with the number of
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Figure 14: An illustration of translation of fractional pixels

pixels translated except that for |·|, the translation by fractional pixels gives larger ratios

than translation by one pixel. We believe that it is caused by the inaccuracy of our way to

treat the fractional translation.

Figure 15: Test results for translation stability: ‖y(Tx0)− y(x0)‖ / ‖x0‖

5.2.2 Stability to Deformation

For an image x0 = x0(t), in [8] the deformed image is defined to be D(x0) = D(x0)(t) =

x0(t−τ(t)) for some smooth τ . However this is not the most general definition fo deformation
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in pattern theory. In our experiment we compute the ratio

‖y(D(x0))− y(x0)‖
‖x0‖

for two types of deformation D. The process is identical to what is done in Figure 13, with

Tx0 be replaced with D(x0).

The first type of deformation is first upsample and then randomly downsample to the

original size. Suppose the upsample factor is L, then we first do an upsampling (linearly) to

get an image of size 28L-by-28L. Note that we still have 28-by-28 blocks of L-by-L pixels.

We then randomly pick one pixel from each block to compose a image of size 28-by-28.

Figure 16 is illustration of this process.

Figure 16: An illustration of deformation of Type 1

Figure 17 shows the results. We see that the ratio ‖y(D(x0))− y(x0)‖ / ‖x0‖ is small

for both |·| and |·|2. The ratio grows slightly with the increase of upsampling factor.

The second type of deformation is called imcomplete deformation ([6]) in pattern theory.

The deformed version of image D(x0) is formed by setting certain pixel values to be zero in

x0. We do the experiment for (1). randomly zero out several pixels; (2) zero out a complete

column; (3) zero out a complete row. The results are shown in Figure 18.
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Figure 17: Test results for deformation stability: ‖y(D(x0))− y(x0)‖ / ‖x0‖ (Type 1)

Figure 18: Test results for deformation stability: ‖y(D(x0))− y(x0)‖ / ‖x0‖ (Type 2)

6 Project Schedule and Milestones

• September - October 2015: Define the project. Investigate in existing literature.

Design the algorithm. (finished)

• November 2015: Write codes for training the convolutional filters. (finished)

• December 2015: Write codes for two-class classfication. (finished)
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• December 2015: Write codes for multi-class classfication. (finished)

• February 2016: Complete validation. (finished)

• March 2016: Complete testing. (finished)

• April 2016: Wrap up the project. (finished)

7 Deliverables

1. Datasets: MNIST retrieved from http://yann.lecun.com/exdb/mnist/. The four files

are the training data, the training labels, the testing data, the testing labels, respec-

tively.

2. Toolboxes:

(1) LibSVM Ver 3.20, retrieved from https://www.csie.ntu.edu.tw/ cjlin/libsvm/. For

the Mac system, MATLAB 2015b does not detect Xcode7, the solution is to install

the patch xcode7 mexopts.zip.

(2) MatConvNet Ver 1.0beta17, retrieved from http://www.vlfeat.org/matconvnet/.

The installation process is contained in the MATLAB code.

3. MATLAB codes: The folder “MATLAB” contains the training and testing codes. The

training and testing can be both done from main.m. The folder “Validation” contains

the validation codes.

4. Trained network: We have a lot of saved data from the training results and the sizes

are large. We provide the trained network for (1) the binary classification (2) the

multiclass classification and (3) the multiclass classification using the square function

as nonlinearity. The associated testing results are also included, respectively.

5. Documents including the proposal, the mid-year and final reports, the presentation

slides, etc.
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