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Abstract

In image classification it is advantageous to build classfiers based on
feature extractors. It is demanded that the feature extractors unmask
the identity of the image and remain stable with regard to small-scale
deformations. A scattering convolutional network is such a feature
extractor. In this project, we propose to use modern machine learning
techniques to train the scattering convolutional network and test them
on a standard database (MNIST) for the task of recognizing hand-
written digits.
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1 Background

Recently convolutional neural networks (ConvNets) have enjoyed conspicu-
ous success in various pattern recognition tasks ([6], [7]). Although a clear
understanding of why they perform so well is still absent, it is believed that
it is the multi-layer structure that makes ConvNets outstanding ([3], [4]).
As a feature extractor, a ConvNet is built to catch different features of an
image in different layers. In [5], the authors apply wavelet theory to for-
mulate a struture named Scattering Convolutional Network, which falls in
the general categetory of ConvNets. The authors showed that the feature
extractors they built are approximately invariant to translation and stable
to small-scale deformation. The theory is extended to general semi-discrete
frames in [9]. We are going to apply these theories to perform classification
of hand-written digits.

1.1 Convolutional Networks

Convolutional networks (ConvNets) are artificial neural networks that “use
convolution in place of general matrix multiplication in at least one place”
([1], Ch. 9). In one dimension, the convolution operation “∗” is defined by

(x ∗ h)(t) =

∫
x(s)h(t− s)ds .

In the above, despite the symmetric role of x and h, we usually call x
the input, and h the filter. A digital image is a discretized two-dimensional
object, whence we consider the convolution operator in two dimension with
the discrete measure:

(X ∗H)(t1, t2) =
∑
s1

∑
s2

X(s1, s2)H(t1 − s1, t2 − s2) .

In ConvNets, generally X is the input to the current layer and H is the
filter which is commonly of much smaller size than X. The reason is both
for computational efficiency and for sparse interactions between pixels ([1],
Ch. 9). Since the size of the filter is small, it makes more sense to use the
equivalent definition for the convolution, that is,

(X ∗H)(t1, t2) =
∑
s1

∑
s2

X(t1 − s1, t2 − s2)H(s1, s2) . (1)

Here t1, t2, s1, s2 are the pixel positions. Suppose X ∈ RD×D and H ∈ Rd×d
(we can replace R by C for some applications, but it does not affect our
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discussions here), in practice we would consider D > d. It is useful to think
of X as a function X : ZD ×ZD → R. Then it makes sense when t1− s1 or
t2 − s2 is a negative number in (1).

Figure 1: A typical ConvNet

Figure 1 illustrates a typical conlutional network. We see that between
the input and the output it is natural to partition the neurons (operations)
into several layers. In general, each layer of a ConvNet has three stages. The
first stage is a convolution stage, where the input is convolved with filters;
the second stage is a detector stage, where nonlinearity is applied to the
output from the convolution stage; the last stage is a pooling stage, where
local maximizing or averaging is applied to the output from the detector
stage.

1.2 Scattering Convolutional Networks

Scattering Convolutional Networks are in the category of ConvNets with
pre-defined filters ([5]). The filters are built by dilations of a wavelet. In the
detector stage in each layer, the nonlinearity is chosen to be the absolute
value function. In the pooling stage, a local averaging is done by convolution
with a low-pass filter.

Let ψ be a wavelet in L2(Rd). The dilation of ψ by λ, ψλ, is defined by

ψλ(t) = λdψ(λt) .

Consider a path q = (λ1, λ2, · · · , λm). The scattering propagator, U [q], is
defined by

U [q]x = |||x ∗ ψλ1 | ∗ ψλ2 | · · ·ψλm | ,
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and the scattering transform, S[q], is defined by

S[q]x = U [q]x ∗ φJ ,

where J > 0 is some pre-determined scale. For an input signal x, in the
m-th layer, a path q = (λ1, λ2, · · · , λm) generates an output given by S[q]x.
Figure 2 showes the process.

Figure 2: A typical scattering convolutional network

The Scattering Convolutional Networks are shown to be approximately
tranlation invariant and stable to small-scale deformation. However, the
stabily are guaranteed only if we choose a specifically designed wavelet to
start with. In [9], the authors extend the theory to general semi-discrete
frames. They use the same network structure but give a less strict condition
on the filters.

1.3 Machine Learning Techniques

Our project is motivated by the above scattering network and its extension.
Instead of fixing everything in the network beforehand, we want the com-
puter to “tell” us what parameters to use for this structure. For instance, if
we want to relate the input x and the output y by some function y = f(x),
then the process for determining the precise form of f is called the training
phase ([2], Ch. 1). From the perspective of human, we “train” the system;
while from the perspective of the machine, it “learns” from the given data
set. For our project, we are given a set of training data, where each image
has a “label” that tells us the de facto output.

The machine learning techniques we will use are not limited to but in-
cluding the gradient descent optimization, the error backpropagation and
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the support vector machine.

1.3.1 Gradient Descent Optimization

In most machine learning tasks we would like to find the minimum of a loss
function (also called a cost function). Suppose l(λλλ) is the loss function with
respect to the parameter λλλ. The gradient descent is a iterative method for
locating the minimum of l (see [1], Ch. 8; [2], Ch. 5). The updating step is
given by

λλλ(ν+1) = λλλ(ν) − η∇l(λλλ(ν)) . (2)

where (ν) is the step number. At each step, λλλ travels towards the direction of
the steepest descent. The scalar η is called the learning rate by the machine
learning community. It is the same as the stepsize in standard optimization
literature.

There are some alternative optimization methods, for example, conju-
gate gradients and quasi-Newton methods. They are in general more effi-
cient than the gradient descent method. However, for training convolutional
networks, we usually have a large amount of training data. Therefore, the
loss function will be the sum of a large number of terms if we use deter-
ministic methods. Taking this into consideration, deterministic methods
are rarely used for network training. In practice, most training algorithms
use stochastic approximation for the gradient. The conjugate gradients and
quasi-Newton methods are not amenable to stochastic gradients. Never-
theless, it has been empirically demonstrated that the stochastic gradient
descent method performs well for training ConvNets ([6], [7]). We will use
this method for our project and we give the details in Section 2.

1.3.2 Error Backpropagation

The idea of error backpropagation is that the partial derivative of the loss
function l(λλλ) with respect to λ can be decomposed ([1], Ch. 6). It is based
on the chain rule of taking derivatives.

Figure 3 epitomizes a simple neural network. The output y is connected
to the input x through two intermediate outputs z1 and z2. Hence we have

∂y

∂x
=

∂y

∂z1

∂z1
∂x

+
∂y

∂z2

∂z2
∂x

.

It is as if we had a network in the opposite direction for the partial deriva-
tives. In general, we compute the partial derivatives between each connected
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Figure 3: A simple illustration of backpropagation

neurons, and then propagate backward along the network to get the deriva-
tive of the loss function with respect to the parameters that we want to
train.

1.3.3 Support vector machine

The support vector machine (SVM) is a decision machine designed for two-
class classification problems ([2], Ch. 7). A typical trained SVM has two
parameters: the weights w and bias b. Suppose the two classes are given by
{±1}, the given an input y, the sign of 〈w, y〉+ b determines whether y falls
into the class {−1} or {+1}.

We would like to train the SVM parameters {w, b}. The idea of the SVM
is to maximize the margin between the decision boundaries. It turns out
that we need to maximize ‖w‖−1, that is, to minimize ‖w‖. However, at the
same time, we want to softly penalize points that go to the wrong side. A
standard way to do this is the following: suppose the inputs provided by the
training data are {yn}Nn=1 with labels {an}Nn=1 where each label an ∈ {±1},
we want to solve

min
w,b

1

2
‖w‖2 + C

N∑
n=1

l(yn, an;w, b) ,

where C is a pre-determined parameter and l is the hinge-loss function
defined by

l(y, a;w, b) = max(0, 1− a(b+ 〈w, y〉)) ,

where t ∈ {±1} is the label corresponding to y.

2 Approach

Our task is the classification of hand-written digits. In this project, we
will build a scattering convolutional network to extract the features of the
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images and an SVM to do the classification job. The input of the SVM is
the output of the scattering network.

Figure 4: The structure of our scattering convolutional network

Figure 4 shows the detailed structure. The scattering network is a four-
layer neuron network that consists of one input layer, two convolutional
layers and one output layer. In each convolutional layer, hjk is the filter to
be trained; “|·|” is the operation of taking absolute value pointwise; g is
a fixed low-pass filter that does local averaging. A downsampling is done
before we send the output to the SVM (this guarantees that the output of the
scattering network is appoximately of the same size as the input). We plan
to choose g and L from several possible candidates after cross-validation.

As we have discussed in Section 1.3, once we have trained the network in
Figure 2, we can use it for the classification task. We input the image x and
let it propagate through the network. It first goes through the scattering
network to generate y, and then the SVM determines which class x belongs
to (by evaluating 〈w, y〉+ b).

In our project, the two-dimensional filters hjk is parametrized as dilations
of the tensor products of two one-dimensional wavelets. We use the same
pre-defined wavelet ψ for both. That is,

hjk(t1, t2) = ψ
λjk,1
⊗ ψ

λjk,2
(t1, t2) = λjk,1λ

j
k,2ψ(λjk,1t1)ψ(λjk,2t2) .

Let λλλ denote the vector composed of all the λ’s in the h’s. The training
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process deals with the unknown parameters λλλ;w, b.
The optimization problem to solve for training our network comes from

the training of the SVM, which we have discussed in Section 1.3. Note that
the input y to the SVM now contains unknown parameters λλλ. Therefore,
the optimization problem for our project is as follows.

min
λλλ;w,b

1

2
‖w‖2 + C

N∑
n=1

l(yn, an;w, b) , (3)

where
l(y, a;w, b) = max(0, 1− a(b+ 〈w, y〉)) ,

and y is the grouping of the following
(recall that “∗” is in the sense of Equation (1))

y0 = x ∗ g ;

yj1 =
∣∣∣x ∗ hj1∣∣∣ ∗ g , 1 ≤ j ≤ 3 ;

yj2 =
∣∣∣∣∣∣x ∗ hdj/3e1

∣∣∣ ∗ hj2∣∣∣ ∗ g , 1 ≤ j ≤ 9 ,

where the two-dimensional filters hjk is parametrized as

hjk(t1, t2) = λjk,1λ
j
k,2ψ(λjk,1t1)ψ(λjk,2t2) .

In the above, N is the total number of training data for deterministic
methods, or the number of samples for stochastic methods. The input of
the network is N pairs of (xn, an) where xn’s are images of 28 × 28 pixels
(according to the database) and an’s are the corresponding labels indicating
which class x is in. The unknown parameters are the λ’s in the filters and
the w and b in the SVM. The optimization problem with respect to {λλλ,w, b}
is a non-convex problem and difficult to solve. Nevertheless, if we fix λλλ, then
training the SVM is a convex optimization problem. Inspired by this fact,
we will follow a two-step procedure. Specifically, we first fix λλλ and train w
and b (which is convex), and then fix w and b to train λλλ (which is easier than
the original problem); and then iterate it until our stop criterion is met.

For the first step, we will use libSVM to train the SVM. LibSVM is
a publicly available (https://www.csie.ntu.edu.tw/˜cjlin/libsvm/) software
for training SVM’s. The released package includes the MATLAB interface.

8



The starting values for w and b will be randomly generated. We fix the
regularization parameter C in (3) before calling libSVM. Each time we call
the libSVM, we input the yn’s which are the output of the scattering network
from the input training data xn’s.

Our crucial task is the second step, that is, training the filters. We
have 12 filters and thus 24 parameters to train in the convolution layer.
The starting value of λλλ is randomly gererated subject to the constraint that
parameters in the same layer should be sufficiently apart. Note that w and
b are now fixed, so the minimization problem (3) is turned into

min
λλλ

N∑
n=1

l(λλλ;xn) ,

where we use
l(λλλ;xn) := l(yn, an;w, b), ∀n

to emphasize the fact that l depends on the unknown parameters λλλ and the
training data xn’s.

The updaing step follows Equation (2) while the learning rate η in (2)
might be adjusted with steps. We have discussed the necessity of a stochastic
gradient descent method. Therefore, at each step we sample N data from
the training set and compute

∑N
n=1∇λλλl(λλλ;xn) as the gradient.

We now compute the gradient ∇λλλl(λλλ;x) for a fixed x. Note that the loss
function l(y, t;w, b) is not a smooth function with respect to y. We use a
smooth function in place. One possible choice is a C1 function L defined by

L(y, a;w, b) =


0.5− a(b+ 〈w, y〉) , if a(b+ 〈w, y〉) ≤ 0;
0.5(1− a(b+ 〈w, y〉))2 , if 0 < a(b+ 〈w, y〉) ≤ 1;
0 , otherwise.

Also, we need to use some function F in place of |·| when we relate y to
λλλ. One possible choice is a C∞ function F : R → R defined by F (t) =
(|t|2 + ε2)1/2 for some small ε. We use F (resp. F ′) for the operation of
applying F (resp. F ′) pointwise as well (the same treatment as for |·|).
Moreover, we use Ψ(λ) defined by Ψ(λ)(t) := λψ(λt) to emphasize the
variable λ. Note that

∂L

∂λjk,i
=

〈
∇
yjk
L,

∂yjk
∂λjk,i

〉
.

Now we give expressions for ∂yjk/∂λ
j
k,i. We use � to denote pointwise mul-

tiplication of two vectors or matrices of the same size (which is an abuse of
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notation, but we do not plan to use � elsewhere). Since i takes value in
{1, 2}, we use i′ to denote the complement of i in {1, 2}. We have

∂yj1
∂λj1,i

=
[
F ′
(
x ∗ (Ψ(λj1,i)⊗Ψ(λj1,i′))

)
�
(
x ∗ (Ψ′(λj1,i)⊗Ψ(λj1,i′))

)]
∗ g ;

∂y3j−ι2

∂λj1,i
=

{
F ′
(
F
(
x ∗ (Ψ(λj1,i)⊗Ψ(λj1,i′))

)
∗
(

Ψ(λ3j−ι2,i )⊗Ψ(λ3j−ι2,i′ )
))
�[[

F ′
(
x ∗ (Ψ(λj1,i)⊗Ψ(λj1,i′))

)
�
(
x ∗ (Ψ′(λj1,i)⊗Ψ(λj1,i′))

)]
∗
(

Ψ(λ3j−ι2,i )⊗Ψ(λ3j−ι2,i′ )
)]}

∗ g , for ι = 1, 2, 3;

∂yj2
∂λj2,i

=

[
F ′
(
F
(
x ∗ (Ψ(λ

dj/3e
1,i )⊗Ψ(λ

dj/3e
1,i′ ))

)
∗
(

Ψ(λj2,i)⊗Ψ(λj2,i′)
))
�

(
F
((
x ∗ (Ψ(λ

dj/3e
1,i )⊗Ψ(λ

dj/3e
1,i′ ))

))
∗
(

Ψ′(λj2,i)⊗Ψ(λj2,i′)
))]
∗ g .

The above expression is simply given by the chain rule. We can com-
pute ∂L/∂λjk,i by backpropagation as described in Section 1.3. A sketched
illustration is given in Figure 5. Together with the above expression, the
process should be clear.

The following diagram summarizes our algorithm.

Algorithm 1: The algorithm for network training

Start with learning rate η, regularization parameter C ;
randomly generate λλλ,w, b;
while stop criterion not met do

sample N examples {x1, x2, · · · , xN} from the training set;
propagate forward to get {y1, y2, · · · , yN};
call libSVM with input {y1, y2, · · · , yN} and C;
update w, b← output of libSVM;
set rrr = 0;
for n = 1 to N do

compute ∇λλλl(λλλ;xn);
rrr ← rrr +∇λλλl(λλλ;xn);

update λλλ← λλλ− ηrrr ;
adapt η accordingly.
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Figure 5: Sketched illustration of the backpropagation process (“·” denotes
the input from the last node)

3 Implementation

We will implement our algorithm on the personal laptop with

• CPU: 2GHz Intel Core i7

• Memory: 8 GB 1600 MHz DDR3

• OS: OS X El Capitan Version 10.11

• Software: MATLAB R2015b

4 Database

The database we use for both training and testing is the standard MNIST
database. MNIST is a publicly available database (http://yann.lecun.com/
exdb/mnist/) of hand-written digits. The images are already preprocessed
and formatted: they are of 28 × 28 pixels; each pixel has an value ranging
from 0 to 255. There are 60,000 images for training and 10,000 for testing.
Examples of images are given in Figure 6.
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Figure 6: Examples of training images of 0’s and 1’s in the MNIST Database,
retrieved from http://www.cs.nyu.edu/˜roweis/data.html

5 Validation

We will the MatConvNet Toolbox to validate our training model. MatCon-
vNet is publicly available (http://www.vlfeat.org/matconvnet/). We will
use its built-in functions to train the network in Figure 2 and compare with
our model trained with the approach discussed in Section 2.

6 Testing

We will use the testing images in the MNIST database for testing our trained
network. A reasonable measure is the percentage of errors. We will run
libSVM independently (i.e. using SVM for classification without a feature
extractor) and compare the results. We are first going to do it for the 2-class
task. Time permitting, we are going to compare the multi-class results.

7 Project Schedule and Milestones

• September - October 2015: Define the project. Investigate in existing
literature. Design the algorithm.

• November 2015: Write codes for training the convolutional filters.

• December 2015: Write codes for classfication for 2 classes (multi-class
if time permits).

• February 2016: Complete validation.
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• March 2016: Complete testing.

• April 2016: Wrap up the project.

8 Delivarables

At the end of the project, we should be able to deliver:

• the datasets

• the toolboxes

• the MATLAB codes

• the trained network

• the results

• the proposal, reports, presentation slides, etc.
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