
AMSC 664 Final Presentation:
Escaping From Saddle Points Using Asynchronous

Coordinate Descent

Marco Bornstein
Advisor: Dr. Furong Huang

May 11th, 2021

Marco Bornstein AMSC 664 Final Presentation May 11th, 2021 1 / 34



Introduction

Table of Contents

1 Introduction
Problem Goal
Problem Overview

2 Goals and Milestones

3 Final Progress
Serial-Asynchronous SEACD
Convolutional Neural Network Construction
Parallel-Asynchronous SEACD

4 Deliverables

5 References

Marco Bornstein AMSC 664 Final Presentation May 11th, 2021 2 / 34



Introduction Problem Goal

Project Goal

The goal of my project is to implement and analyze my saddle escaping
asynchronous coordinate descent (SEACD) algorithm. I aim to show that
it efficiently minimizes a non-convex function with numerous parameters!

Marco Bornstein AMSC 664 Final Presentation May 11th, 2021 3 / 34



Introduction Problem Overview

Parallel Computing Issues: Synchronization

Parallel computing breaks data up and processes it simultaneously by
multiple workers

Some algorithms require all computed gradients be returned to the
global server before the global solution is updated

The speed of parallel computing is limited by the weakest link in the
computational chain: the slowest worker and its consequent longest
communication delay [3]

Marco Bornstein AMSC 664 Final Presentation May 11th, 2021 4 / 34



Introduction Problem Overview

Solution: Asynchronous Coordinate Descent

Asynchronous coordinate descent replaces the weakest link in the
computational chain

To accomplish this, each worker’s computed gradient is no longer
necessary to update the global solution
I Instead, the global solution is updated, in real time, every time a

worker finishes its computed gradient
I Workers send back their computed gradient values and immediately use

the updated global solution to continue its gradient update process

Allowing each worker to update the global solution after its gradient is
computed can potentially speed up parallel coordinate descent [2, 5]

Marco Bornstein AMSC 664 Final Presentation May 11th, 2021 5 / 34



Introduction Problem Overview

Solution: Asynchronous Coordinate Descent

Asynchronous coordinate descent is defined by the following update rule:

x j+1
i = x ji − η∇i f (x̂ j)

x j is the current iterate

η is the step-size

i is the selected block of coordinates for a specific worker

x̂ j is the delayed iterate

For all other non-updating blocks e 6= i , x j+1
e = x je .

x̂ j =

(
x
j−D(j ,1)
1 , x

j−D(j ,2)
2 , . . . , x

j−D(j ,d)
d

)
D(j) = max

1≤n≤d
{D(j , n)} ≤ τ

Marco Bornstein AMSC 664 Final Presentation May 11th, 2021 6 / 34



Goals and Milestones

Table of Contents

1 Introduction
Problem Goal
Problem Overview

2 Goals and Milestones

3 Final Progress
Serial-Asynchronous SEACD
Convolutional Neural Network Construction
Parallel-Asynchronous SEACD

4 Deliverables

5 References

Marco Bornstein AMSC 664 Final Presentation May 11th, 2021 7 / 34



Goals and Milestones

AMSC 664: Asynchronicity and Parallelization

The overarching themes of AMSC 664 for my project were:

Asynchronicity: Creating a truly asynchronous algorithm

Parallelization: Creating a fully parallel algorithm

My main goal for AMSC 664 was to incorporate both into the SEACD
algorithm I implemented in AMSC 663.

Marco Bornstein AMSC 664 Final Presentation May 11th, 2021 8 / 34



Goals and Milestones

AMSC 664: Accomplishments

I have been able to accomplish the following milestones during the course
of AMSC 664:

1 Optimize hyperparameters for the SEACD algorithm

2 Implement and validate an asynchronous-like serial version of SEACD

3 Construct my first Convolutional Neural Network from scratch!

4 Create an efficient Parallel SEACD Module in Python and test it on a
high-dimensional problem

Marco Bornstein AMSC 664 Final Presentation May 11th, 2021 9 / 34



Final Progress

Table of Contents

1 Introduction
Problem Goal
Problem Overview

2 Goals and Milestones

3 Final Progress
Serial-Asynchronous SEACD
Convolutional Neural Network Construction
Parallel-Asynchronous SEACD

4 Deliverables

5 References

Marco Bornstein AMSC 664 Final Presentation May 11th, 2021 10 / 34



Final Progress

Optimizing Hyperparameters

I began this semester strengthening the theoretical results of my SEACD
algorithm by better selecting its hyperparameters. This improvement is
behind the scenes and difficult to illustrate, but includes:

Explicitly selecting the step-size η, whereas before the user had to
search for a feasible value

Clearly prove that convergence only depends poly-logarithmically with
dimension d

Concretely determine that the convergence depends sub-linearly on
the maximum delay τ

Marco Bornstein AMSC 664 Final Presentation May 11th, 2021 11 / 34



Final Progress Serial-Asynchronous SEACD

Implementing Serial-Asynchronous SEACD

I took the following steps to alter Algorithms 1 and 2 into a
serial-asynchronous process:

1 Split up x j into even chunks amongst the provided workers
2 Designate the worker with the final piece of x j as the “slow” one

Marco Bornstein AMSC 664 Final Presentation May 11th, 2021 12 / 34



Final Progress Serial-Asynchronous SEACD

Implementing Serial-Asynchronous SEACD

3 For τ − 1 iterations, update all workers except the “slow” one

4 On the τ th iteration, update the “slow” worker

5 Repeat this process until convergence

Marco Bornstein AMSC 664 Final Presentation May 11th, 2021 13 / 34



Final Progress Serial-Asynchronous SEACD

Validating Serial-Asynchronous SEACD Implementation

To test my implementation of the serial-asynchronous SEACD algorithm, I
used it within a gradient-descent-based matrix factorization model. Given
a solution matrix S ∈ Rmxn and two random matrices U ∈ Rmxk and
F ∈ Rkxn (where k ,m, n can be equal to one another), I use gradient
descent to minimize the Mean Squared Error (MSE) between UF and S .

argmin
U,F

1

mn

m∑
i=1

n∑
j=1

(Sij − (UF )ij)
2

Marco Bornstein AMSC 664 Final Presentation May 11th, 2021 14 / 34



Final Progress Serial-Asynchronous SEACD

Matrix Factorization

An example of computing the MSE and gradient for an element of S for
S ∈ R3x3, U ∈ R3x2, F ∈ R2x3 [4] is given as:

MSE (S1,1) = (S1,1 − [(U1,1 ∗ F1,1) + (U1,2 ∗ F2,1)])2

The gradient of S1,1 with respect to one of the elements U1,1 we are
searching for the optimal value of is:

∂MSE (S1,1)

∂U1,1
= −2F1,1 ∗ (S1,1 − [(U1,1 ∗ F1,1) + (U1,2 ∗ F2,1)])

In this example, the elements S1,2 and S1,3 are also affected by the value
of U1,1. Thus, to update U1,1, I average its gradient values with respect to
the elements it affects within the solution matrix S .

Marco Bornstein AMSC 664 Final Presentation May 11th, 2021 15 / 34



Final Progress Serial-Asynchronous SEACD

Matrix Factorization Results

Here are results from the matrix factorization problem comparing the
convergence of GD and SEACD. The dimensions of the matrices are
U ∈ R10x2, F ∈ R2x10, and S ∈ R10x10 with 3 asynchronous workers and
τ = 3 for SEACD.

Marco Bornstein AMSC 664 Final Presentation May 11th, 2021 16 / 34



Final Progress Convolutional Neural Network Construction

Convolutional Neural Network: MNIST Classification

One of the goals I aimed to accomplish this semester was to train a neural
network with my SEACD algorithm. I built a simple CNN in Python (using
TensorFlow), based on a live-script MATLAB example, with 1 convolution
layer, 1 max pooling layer, and 2 densely connected layers. Using this
CNN, I attempted to classify handwritten digits in the MNIST dataset.

Figure: Example Images from MNIST

The MNIST dataset is quite large, containing 60,000 28 x 28 pixel images.

Marco Bornstein AMSC 664 Final Presentation May 11th, 2021 17 / 34



Final Progress Convolutional Neural Network Construction

Convolutional Neural Network: MNIST Classification

Due to the nature of my algorithm (requiring the function f ) I was not
able to implement it within TensorFlow as an optimizer to train the CNN.
Instead, I used ADAM and achieved the following results:

Marco Bornstein AMSC 664 Final Presentation May 11th, 2021 18 / 34



Final Progress Parallel-Asynchronous SEACD

Implementing Parallel-Asynchronous SEACD

My final goal for AMSC 664 was to successfully implement my SEACD
algorithm in parallel. Specifically, I aimed to attain the following:

1 Achieve convergence to local optima

2 Obtain a run-time speed-up compared to serial gradient descent
methods

3 Create a Python Module for the Parallel-Asynchronous SEACD
algorithm

Marco Bornstein AMSC 664 Final Presentation May 11th, 2021 19 / 34



Final Progress Parallel-Asynchronous SEACD

Issues Implementing Parallel-Asynchronous SEACD

Parallelization is usually accomplished in a straightforward manner using
the Multiprocessing package. The issue that made this process difficult for
SEACD was that the processes, or workers, need to communicate with
each other throughout the course of my algorithm. This is easier to
accomplish in a language like C/C++ (using MPI).

Marco Bornstein AMSC 664 Final Presentation May 11th, 2021 20 / 34



Final Progress Parallel-Asynchronous SEACD

Solutions to Implementing Parallel-Asynchronous SEACD

Within the Multiprocessing package, these are the avenues I traversed to
get SEACD up and running efficiently:

Multiprocessing Managers: control a server process and allows other
processes to manipulate them using proxies (too slow)

Queues: first in first out (FIFO) data structure that allows processes
to communicate safely (blocking occurs)

? Shared Memory: allocate and manage shared memory that can be
accessed by processes (new to Multiprocessing and complicated)

Marco Bornstein AMSC 664 Final Presentation May 11th, 2021 21 / 34



Final Progress Parallel-Asynchronous SEACD

Validating Parallel-Asynchronous SEACD Implementation

To test my implementation of the parallel-asynchronous SEACD algorithm,
I used it to solve a large-scale non-negative matrix factorization (NMF)
problem. In the NMF problem, a non-negative matrix A ∈ Rmxn

+ is sought
to be factorized into two non-negative, and often lower-ranked, matrices
W ∈ Rmxk

+ and H ∈ Rkxn
+ [1].

Marco Bornstein AMSC 664 Final Presentation May 11th, 2021 22 / 34



Final Progress Parallel-Asynchronous SEACD

Non-Negative Matrix Factorization

The NMF problem is non-convex, with potentially many local minima. To
reach a local minima, I utilized a Projected GD algorithm. For the case of
a simple non-negativity constraint, one can set the projection as
P(x) = [x ]+. The Projected GD update rule becomes:

x j+1 = P
(
x j − η∇f (x j)

)
As provided in [1], the Projected GD gradient values for W and H are:

∇W = (WH − A)HT

∇H = W T (WH − A)

Marco Bornstein AMSC 664 Final Presentation May 11th, 2021 23 / 34



Final Progress Parallel-Asynchronous SEACD

NMF Factorization With (Projected) GD and SEACD

To begin, a randomized initial vector x0 is inputted into Projected GD and
Projected SEACD. An iterate x j within Projected GD and Projected
SEACD is a vector containing all elements of both W and H:

x j =
(
x j1W , x

j
2W , . . . x

j
(mk)W , x

j
1H , x

j
2H , . . . x

j
(kn)H

)

The element x j1W is the top left element of W at iterate j and

x j(mk)W is the bottom right element of W at iterate j

To reconstruct W and H within the algorithm, I simply reshape the
left and right halves of x j

Besides hyperparameters, the only inputs into Projected GD and
Projected SEACD are x0, the gradient function, and the objective
function (MSE)

Marco Bornstein AMSC 664 Final Presentation May 11th, 2021 24 / 34



Final Progress Parallel-Asynchronous SEACD

Non-Negative Matrix Factorization

Marco Bornstein AMSC 664 Final Presentation May 11th, 2021 25 / 34



Final Progress Parallel-Asynchronous SEACD

Convergence Comparison

Marco Bornstein AMSC 664 Final Presentation May 11th, 2021 26 / 34



Final Progress Parallel-Asynchronous SEACD

Pike Place Animation SEACD

Marco Bornstein AMSC 664 Final Presentation May 11th, 2021 27 / 34



Final Progress Parallel-Asynchronous SEACD

Pike Place Animation Projected GD

Marco Bornstein AMSC 664 Final Presentation May 11th, 2021 28 / 34



Final Progress Parallel-Asynchronous SEACD

Parallel Success: Speed-Up Achieved

Table: Projected GD vs. Projected Parallel SEACD (4 Workers), Max Iterations: 100,000

Rank k Proj. GD Runtime (s) Proj. Parallel SEACD Runtime (s)

6 1,646.22 651.79

11 1,783.31 784.62

21 1,973.61 1,014.41

42 2,177.85 1,259.92

84 2,834.21 1,958.39

112 3,379.59 2,179.02

167 4,107.27 2,916.62

334 5,580.76 4,948.33

Marco Bornstein AMSC 664 Final Presentation May 11th, 2021 29 / 34



Deliverables

Table of Contents

1 Introduction
Problem Goal
Problem Overview

2 Goals and Milestones

3 Final Progress
Serial-Asynchronous SEACD
Convolutional Neural Network Construction
Parallel-Asynchronous SEACD

4 Deliverables

5 References

Marco Bornstein AMSC 664 Final Presentation May 11th, 2021 30 / 34



Deliverables

Deliverables

All of my code and documentation can be found in my GitHub repository:
github.com/Marcob1996/AMSC663_664. Included within my repository
are:

Serial-Asynchronous SEACD module

Matrix Factorization test code

Convolutional Neural Network and MNIST test code

Parallel-Asynchronous SEACD module

Projected GD and Projected Parallel-Asynchronous SEACD

Non-Negative Matrix Factorization test code

Figures for Matrix Factorization convergence, CNN accuracy, and
NMF convergence

Marco Bornstein AMSC 664 Final Presentation May 11th, 2021 31 / 34

github.com/Marcob1996/AMSC663_664


Deliverables

Acknowledgements

Thank you so much to Dr. Balan and Dr. Cameron for their guidance,
critiques, and advice on my project. Also, thanks to my advisor Dr. Huang
for her support throughout both semesters. Finally, thank you to my close
friend Michael Blankenship for his help navigating the Multiprocessing
package in Python.

Marco Bornstein AMSC 664 Final Presentation May 11th, 2021 32 / 34



References

Table of Contents

1 Introduction
Problem Goal
Problem Overview

2 Goals and Milestones

3 Final Progress
Serial-Asynchronous SEACD
Convolutional Neural Network Construction
Parallel-Asynchronous SEACD

4 Deliverables

5 References

Marco Bornstein AMSC 664 Final Presentation May 11th, 2021 33 / 34



References

References I

[1] David Bindel.

Non-negative matrix factorization (nmf), 2018.

[2] Loris Cannelli, Francisco Facchinei, Vyacheslav Kungurtsev, and Gesualdo Scutari.

Asynchronous parallel algorithms for nonconvex big-data optimization. part i: Model
and convergence.

arXiv preprint arXiv:1607.04818, 2016.

[3] Ji Liu and Stephen J. Wright.

Asynchronous stochastic coordinate descent: Parallelism and convergence
properties, 2015.

[4] Jacob Moore.

Python: Implementing matrix factorization from scratch!, 2020.

[5] Tao Sun, Robert Hannah, and Wotao Yin.

Asynchronous coordinate descent under more realistic assumptions.

In Advances in Neural Information Processing Systems, pages 6182–6190, 2017.

Marco Bornstein AMSC 664 Final Presentation May 11th, 2021 34 / 34


	Introduction
	Problem Goal
	Problem Overview

	Goals and Milestones
	Final Progress
	Serial-Asynchronous SEACD
	Convolutional Neural Network Construction
	Parallel-Asynchronous SEACD

	Deliverables
	References

	2.Plus: 
	2.Reset: 
	2.Minus: 
	2.EndRight: 
	2.StepRight: 
	2.PlayPauseRight: 
	2.PlayRight: 
	2.PauseRight: 
	2.PlayPauseLeft: 
	2.PlayLeft: 
	2.PauseLeft: 
	2.StepLeft: 
	2.EndLeft: 
	anm2: 
	2.8: 
	2.7: 
	2.6: 
	2.5: 
	2.4: 
	2.3: 
	2.2: 
	2.1: 
	2.0: 
	1.Plus: 
	1.Reset: 
	1.Minus: 
	1.EndRight: 
	1.StepRight: 
	1.PlayPauseRight: 
	1.PlayRight: 
	1.PauseRight: 
	1.PlayPauseLeft: 
	1.PlayLeft: 
	1.PauseLeft: 
	1.StepLeft: 
	1.EndLeft: 
	anm1: 
	1.8: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	0.Plus: 
	0.Reset: 
	0.Minus: 
	0.EndRight: 
	0.StepRight: 
	0.PlayPauseRight: 
	0.PlayRight: 
	0.PauseRight: 
	0.PlayPauseLeft: 
	0.PlayLeft: 
	0.PauseLeft: 
	0.StepLeft: 
	0.EndLeft: 
	anm0: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


