
AMSC 664 Final Report:

Escaping from Saddle Points Using

Asynchronous Coordinate Descent

Marco Bornstein
Advisor: Dr. Furong Huang

May 13, 2021

1 Introduction

First-order gradient based methods are widely used in large-scale optimization problems due to their compu-
tational efficiency compared with higher-order methods, such as Hessian-based methods. In modern machine
learning, and beyond, the objective functions we aim to optimize are usually non-convex. First-order gradient
based methods are known to converge to first-order stationary points [20], i.e., points with a gradient value
of zero. This includes local optima, global optima and saddle points in non-convex functions. Therefore,
when applied in non-convex settings, gradient descent may converge to saddle points as well as local or global
optima.

Dissimilar from local or global optima, saddle points are to be avoided. For many non-convex problems,
all local minima are close in value to the global minimum (dictionary learning [26], matrix sensing and
completion [5, 12, 23], and tensor decomposition [11] problems are examples of this). Therefore, convergence
to local minima is sufficient for finding a solution to these problems [8]. In comparison, saddle points
may produce highly sub-optimal solutions to a given optimization problem, such as training a deep neural
network [10]. No research has quantified the frequency of saddle points in deep neural networks. However,
the presence of scaling and perturbation symmetries in the parameter space is directly correlated to the
proliferation of saddle points on the error surface in deep neural-networks [3, 10, 25].

Important optimization problems, such as training deep neural-networks, are increasing in dimension. To
solve such high-dimensional optimization problems, it is necessary to create and apply an efficient algorithm.
Coordinate-descent algorithms are built to handle large-scale optimization problems efficiently [21, 28, 30].
Within coordinate descent, the parameters of the model are split up into coordinate blocks between multiple
workers. To train the model, each worker must compute its corresponding block of gradients. The full
gradient of the model is attained only after each worker’s gradient block is computed and returned.

1.1 Problem Formulation

Converging to second-order stationary points (local or global minima) is a necessary condition to minimize
non-convex optimization problems. Previously, only algorithms utilizing Hessian information were thought
to converge to second-order stationary points (such as cubic regularization or trust region algorithms). These
algorithms require computing the inverse of the Hessian in each iteration, which is computationally expensive

1

[13, 22]. With high-dimensional problems, it is computationally infeasible to use second-order methods to
minimize them. To remain computationally feasible, minimization must be done via first-order methods.

The sheer size of large-scale optimization problems requires multiple workers to solve it. Even with the help
of parallel computing, where data is broken up between multiple workers to be worked on simultaneously, the
increase in computational speed comes with the corresponding brake of synchronization issues. Commonly
used optimization algorithms, such as stochastic gradient descent, operate under synchronization.

The requirement of synchronization, however, is impractical. Each worker is required to send its computed
gradient values back to a global server before the global solution is updated. Only when the global solution
is updated can each worker receive its next batch of data. Therefore, the speed of parallel computing is
limited by the weakest link in the computational chain: by the slowest worker and its consequent longest
communication delay. Worse, if a worker stops working or experiences a network connection failure, then
the parallel computing process pauses. In many applications, an asynchronous process can be implemented
to train large-scale problems efficiently.

The goal of this project is to implement a first-order asynchronous-coordinate-descent algorithm that I
have constructed in parallel, and analyze its convergence. This algorithm is entitled the Saddle Escaping
Asynchronous Coordinate Descent (SEACD) algorithm. I will be implementing SEACD in a parallel manner
using Python, and compare it to another common algorithm: serial gradient descent (GD). I aim to show that
parallel SEACD successfully minimizes non-convex functions, and does so in a quick and efficient manner.

1.2 Related Works

Convergence of First-order Algorithms. As mentioned in Section 1.1, it was previously believed that
only second-order optimization methods would converge to second-order stationary points. More recent work
has shown that there are lower-order, and more efficient, methods capable of converging to second-order sta-
tionary points [11, 17]. In these works, stochastic gradient descent is shown to converge to second-order
stationary points, but with a large dependence on the dimension (high degree polynomial dependence). This
result was greatly improved upon in the work of Jin et al. [14, 15, 16]. In both [14, 15], perturbed stochas-
tic and regular gradient descent converge to second-order stationary points in poly-logarithmic steps with
respect to dimension. Impressively, this result mirrors the convergence rate to first-order stationary points
(disregarding logarithmic factors). My work matches their result, as SEACD also relies poly-logarithmically
on dimension.

Another key aspect from [14, 16, 15], is that their results relied upon a new characterization of the geometry
around saddle points. It is shown that the region where points get stuck around a saddle point during the
course of gradient descent is quite thin. My work takes inspiration from this geometric technique to bound
the volume of this region and show that a random perturbation from a saddle point is unlikely to fall in this
stuck region.

Other simple first-order procedures that efficiently find escaping direction from saddle points include NEON
within [1] and [32]. The work of [32] is inspired by the perturbed gradient method proposed in [14] and its
connection with the power method for computing the largest eigenvector of a matrix starting from a random
noise vector. In [1], negative-curvature-search subroutines are converted into first-order processes. My
algorithm is complementary of this line of work, as one could combine these careful estimations of negative
curvature into my algorithm. One focus of my work, rather than designing sophisticated procedures to
improve the rate of escaping from saddle point, is to provide a simple algorithm that is resilient to delayed
gradients.

2

Convergence of Coordinate-Descent Algorithms. First mentioned by [24], coordinate descent (CD)
has convergence difficulties in non-convex settings. Powell’s finding that cyclic CD fails to converge to a
stationary point illustrates that a general convergence result for non-convex functions cannot be expected.
However, Powell also mentions that the cyclic behavior of CD is unstable with respect to small perturbations.
To solve this issue, I follow the work of [27] in using inexact line searches to lead to convergence of CD.

The main theorem of [27] states that a convex or non-convex L-gradient Lipschitz function (defined below),
with a finite minimum value, converges to a stationary point at a rate inversely proportional to the square
root of the total number of asynchronous coordinate descent iterations (asynchronous coordinate descent is
detailed in Section 2.1). It is assumed in this theorem that there is a deterministic block rule. This means
that each block of coordinates (detailed in Section 2.1) is guaranteed to be updated at least once within
a given number of iterations. My work follows this theorem closely, as I also assume that the function is
L-gradient Lipschitz and has a finite minimum value. Further, I assume a deterministic block rule with a
window size equal to the maximum bounded delay τ (this is also detailed further below in Section 2.1).

Other methods and assumptions for attaining convergence results are discussed in [30]. These include
assuming unique minimizers along any coordinate direction [4] and using functions that satisfy the Kurdyka-
 Lojasiewicz (KL) property [2, 31].

Convergence of Asynchronous Algorithms. This paper follows the theory behind asynchronous coor-
dinate descent. A major portion of the theory, on asynchronous algorithms, has been built from [9, 18, 19].
In [19], the convergence properties of an asynchronous-stochastic-coordinate-descent algorithm is nailed
down for a convex function. Similar work is applied in [18], with convergence results for an asynchronous-
stochastic-proximal-coordinate-descent algorithm. This algorithm has an improved complexity compared to
similar asynchronous algorithms. Convergence analysis of asynchronous block coordinate descent in [18, 19]
relied upon the independence assumption as well as bounded delays. This work also incorporates the use of
bounded delays. The work in [9] uses a similar asynchronous, but accelerated, stochastic-coordinate-descent
algorithm. This work provides an even further speed up in convergence for convex functions than in [18, 19].

The work of [9, 18, 19] led to expanding research about asynchronous-coordinate-descent convergence within
non-convex settings. In more closely related research to mine, the convergence properties of asynchronous
coordinate descent in non-convex settings has been studied in [7, 27]. Within the important work of [27],
asynchronous-coordinate-descent convergence results are determined for bounded, stochastic unbounded,
and deterministic unbounded delays. These results are provided for both convex and non-convex functions.
Furthermore, within [27] it is shown that there is sufficient descent for bounded delays by using a Lyapunov
function for a non-convex function. As stated above, [27] proved that asynchronous coordinate descent
converges to stationary points for L-gradient Lipschitz non-convex functions (defined below). This work
utilizes the sufficient descent and Lyapunov function improvements found in [27].

Definition 1. A differentiable function f is L-smooth (or L-gradient Lipschitz) if:

∀x1, x2, ||∇f(x1)−∇f(x2)|| ≤ L||x1 − x2||

Definition 2. A twice-differentiable function f is ρ-Hessian Lipschitz if:

∀x1, x2, ||∇2f(x1)−∇2f(x2)|| ≤ ρ||x1 − x2||

Definition 3. For a ρ-Hessian Lipschitz function f , we call x a second-order stationary point if:

||∇f(x)|| = 0, and λmin(∇2f(x)) ≥ 0

We call x an ε-second-order stationary point if:

||∇f(x)|| ≤ ε, and λmin(∇2f(x)) ≥ −√ρε

3

1.3 Project Goals

• Implement SEACD (as well as its subroutines SWACD, GACD, and PACD) in Python from scratch

– Optimize the selection of hyperparameters

– Compare the convergence results of SEACD to gradient descent (GD) and perturbed gradient
descent (PGD) algorithms defined in [14] and [16]

• Implement an asynchronous-like serial version of SEACD

• Test and analyze the convergence of serial-asynchronous SEACD

– Show that serial-asynchronous SEACD converges to second-order stationary points

– Compare the convergence results of serial-asynchronous SEACD to gradient descent

• Create a Python Module for parallel SEACD from scratch

• Test and analyze the convergence of parallel SEACD

– Show that parallel SEACD converges to second-order stationary points

– Compare the convergence results of parallel SEACD to serial gradient descent (GD) and display
a speed-up in runtime of the SEACD algorithm compared to GD

2 Approach

As mentioned in the Introduction, my approach to this project is split into two pieces: asynchronous coor-
dinate descent and escaping saddle points. Below I will briefly describe each piece.

2.1 Asynchronous Coordinate Descent

In asynchronous coordinate descent, the solution vector is split up into a block of coordinates and worked
on by a set of workers. Each worker continually updates the solution vector, one block at a time, leaving all
other blocks unchanged. In this project we assume that each worker works on the same block of coordinates
of the solution vector. Each block update is a read-compute-update cycle. This process begins with a worker
reading the current global solution vector from a global server and saving it in a local cache as x̃. Then, all
workers begin the asynchronous coordinate descent process. The asynchronous coordinate descent process
revolves around the following update rule for updating block i:

xj+1
i = xji − η∇if(x̂j) (1)

For all other non-updating blocks e : e 6= i, the update rule becomes xj+1
e = xje. The solution vector in this

update formula is represented as x ∈ RN . The variable j represents the jth global iterate. Thus, xj is the
jth global point during the ACD algorithm. The step-size, or learning rate, is denoted as η. The difference
(or delay) between x̂ and the global iterate xj is defined as:

x̂j =

(
x
j−d(j,1)
1 , x

j−d(j,2)
2 , . . . , x

j−d(j,N)
N

)
(2)

The term d(j, n) is defined as the number of iterations elapsed since the nth coordinate was first updated
during the course of Algorithm 2 (detailed in Appendix A). Thus, d(j, n) denotes the delay at the nth

coordinate during the jth iteration. The maximum delay is denoted as:

d(j) = max
1≤n≤N

{d(j, n)} ≤ τ (3)

4

As shown above, the maximum delay is bounded above by the constant τ . The delay bound is always greater
than or equal to 1, τ ≥ 1. Delays arise from blocks that are more expensive to update than others (larger
blocks, poor data locality, more non-zero entries, etc.) as well as slower workers. Bounded delays apply
when a user is familiar with a hardware platform and can provide the delay bound from experience (either
prior usage or by running a pilot test before).

With the presence of delays, the update rule presented in Equation 1 above cannot preserve its monotonically
decreasing property. A Hamiltonian (sum of potential energy and kinetic energy) is developed to fight this
issue. Following a similar process in [27], I modeled an energy function (Hamiltonian) to have a non-positive
first derivative value in continuous time. This equation is defined as follows:

E(t) = f(x(t)) + γ

∫ t

t−c
(s− (t− c))||ẋ(s)||22 ds (4)

The term γ is the weighting for the kinetic energy term. I proved that for a step-size η < 1
2L
√
τ

and γ = L
2
√
τ

,

that Equation 4 is in fact monotonically decreasing. Using these findings, I was able to model a discrete
energy function based on the following Lyapunov function:

Ej := f(xj) +
L

2
√
τ

j−1∑
i=j−τ

(i− (j − τ) + 1)||xi+1 − xi||22 (5)

2.2 Escaping Saddle Points

Converging to second-order stationary points is a necessary condition to reach local or global optima within
non-convex settings. While asynchronous coordinate descent descends towards first-order stationary points,
it does not guarantee convergence to second-order stationary points. My research last summer revolved
around theoretically proving that an iterate of asynchronous coordinate descent stuck at a saddle point can
be perturbed in a manner which dislodges it from the saddle point (thus escaping it). The proof builds on
a key characterization of the geometry around saddle points exploited in the Jin et al. papers [14, 16].

One of the main results from [14, 16] is that adding a carefully selected perturbation to a global iterate
xj stuck at a saddle point will have a high probability of escaping. The probability of failing to escape all
saddle points during the course of the algorithm δ is a parameter specified by the user, so the probability of
escaping all potential saddle points is defined as 1− δ. The step-size η is proportional to δ, thus selecting an
extremely small value of δ, to ensure a high probability of success, will greatly slow, or stop, convergence. In
practice I set δ = 0.01. The basis of the results in [14, 16] starts from selecting a perturbation ξ uniformly
sampled from a d-dimensional ball and adding it to the global iterate xj ∈ RN . The resulting perturbed

point y0 = xj + ξ can be viewed as coming from a uniform distribution over B(N)
xj (ηr), which we call the

perturbation ball. This perturbation ball is centered at the saddle point xj with a carefully specified radius
ηr (r is a hyperparameter). It is shown that the region of this perturbation ball, where iterates of gradient
descent get and remain stuck after a specified number of iterations T (another hyperparameter), is extremely
small. Furthermore, this region is only a very small proportion of the total volume of the perturbation ball.
Below are diagrams from [14, 16] that display this phenomena.

Within my work, as well as [14, 16], the fraction of the total perturbation ball volume that the stuck region
consumes is proven to be no larger than δ. Therefore, there is only a δ probability that the perturbed point
y0 = xj + ξ ends up in the stuck region. To determine whether the perturbed point escapes, it undergoes T
iterations of asynchronous coordinate descent {yt}Tt=0. The final iterate, yT , is tested to see if it escapes the
saddle point (does it makes sufficient progress decreasing the objective function). If it does, then it becomes
the next global iteration xj+1 = yT . If not, then xj is outputted as a second-order stationary point.

Figure 1a depicts a perturbation ball centered at a saddle point in two dimensions. The green region within
Figure 1a portrays the stuck region: the region where iterates of gradient descent remain stuck even after T

5

(a) Narrow Stuck Region Within 2-Dimensional
Perturbation Ball

(b) 3-Dimensional Perturbation Ball and Thin
Stuck Region

Figure 1: Perturbation Ball Diagrams (Reproduced From [14])

iterations. As one can see, this region is quite small compared to the rest of the perturbation ball. Therefore,
a perturbed point coming uniformly from this perturbation ball would very likely escape the saddle point
after T iterations. The small size of the stuck region is also depicted in Figure 1b. Once again, the stuck
region is extremely small relative to the total volume of the perturbation ball.

It is stated within [14] that “although we do not know the explicit form of the stuck region, we know it
must be very ’thin’, therefore it cannot have a large volume”. Taking a cue from the work of Jin et al. I
am able to bound the thickness ηr0 of this stuck region. I prove that if a point is stuck anywhere within

the stuck region, then another point at least ηr0 = ηrδ
√
π

2
√
N

away in the direction of the minimum eigenvalue

(escaping direction) will not fall in the stuck region. This is depicted in Figure 1a with the point u stuck in
the stuck region while w is outside the stuck region (w−u = ηr0e1, where e1 is the direction of the minimum
eigenvalue). Using this proof, I am able to determine an upper bound on the volume of the stuck region
(with the help of the thickness ηr0). Using this upper bounded volume, I can now show that the ratio of
the stuck region volume to the total perturbation ball volume is extremely small, less than or equal to δ.
Therefore, with a high probability of at least 1-δ, a uniformly sampled perturbed point from the perturbation
ball will not fall within the stuck region. This is stated in the following Theorem (I moved the proof into
the appendix to save space).

Theorem 1 (Saddle Point Scenario). Let f be a L-smooth and ρ-Hessian Lipschitz function with a

bounded minimum value f∗, δ ∈ (0, 1) be the failure of escape probability, and ε ≤ L2

ρ . By Definition 3,

if ‖∇f(xj)‖2 ≤ ε and λmin(∇2f(xj)) ≤ −√ρε, then xj ∈ RN is located at a saddle point. Let {yt}Tt=0 be
the iterates of asynchronous coordinate descent starting from the perturbed point y0 = xj + ξ (where ξ is

uniformly sampled from a ball with radius ηr) with T =
log2(16

√
Nε

rδ
√
π

)

η
√
ρε . Then, with at least probability 1− δ, the

subsequent global iterate xj+1 = yT escapes the saddle point.

2.3 Main Algorithm (SEACD)

Below I reveal the Saddle Escaping Asynchronous Coordinate Descent (SEACD) algorithm. To save space,
the three inner algorithms, Single Worker Asynchronous Coordinate Descent (SWACD), Global Asyn-
chronous Coordinate Descent (GACD), and Perturbed Asynchronous Coordinate Descent (PACD), have

6

been moved to the appendix of this report. The SEACD algorithm is shown below.

Algorithm 1: (x∗ε) = SEACD(x0, f, η, r, τ, T,F ,M,L)

Input: An initial point x0 ∈ RN , objective function f , learning rate (step-size) η, perturbation radius

r, delay bound τ , escaping time bound T , function change threshold F , momentum threshold

M , gradient-Lipschitz L

Output: Returns an ε-second-order stationary point x∗ε

1 E0 ← f(x0);

2 j ← 0;

3 for s = 1, 2, 3, . . . do

4 n, xj+n, Ej+n ← GACD(xj , f , η, τ , M , L);

5 j ← j + n;

6 if (Ej − Ej−n) > −F then

7 xj+1, Ej+1 ← PACD(xj , f , η, τ , r, T , L);

8 j ← j + 1;

9 if (Ej − Ej−1) > −F then

10 break;

11 end

12 end

13 end

14 return xj

The SEACD algorithm shown above is broken down into the following steps. In line 4, the global asyn-
chronous coordinate descent (GACD) sub-algorithm is called to asynchronous coordinate descent on point
xj . During this sub-algorithm, the point undergoing coordinate descent will either decrease the objective
function by a specified function threshold F (a hyperparameter), and thus make improved progress, or will
not and be flagged as a potential second-order stationary point. This flagging of the function threshold
occurs in line 6. If the point is flagged as a potential second-order stationary point, then the perturbed
asynchronous coordinate descent (PACD) sub-algorithm is performed. This sub-algorithm perturbs that
point and then performs asynchronous coordinate descent on the perturbed point. After this sub-algorithm
finishes, there is a check to determine whether the perturbed point is dislodged from the saddle. Dislodging
the point would mean that the perturbed point decreases the objective function by the specified function
threshold F . If the point is dislodged, then the function is decreased by F and the algorithm will return
to line 4. If not, then a second-order stationary point is found and the algorithm breaks at line 10 before
returning the current point. All the sub-algorithms within SEACD are displayed in Appendix A.

3 AMSC 664 Final Results

All of my results are found in my GitHub repository. My repository includes all Python files and figures
included in this report. The link to my repository is: https://github.com/Marcob1996/AMSC663_664.

At the end of last semester and the beginning of this semester, I had implemented a serial version of SEACD
that lacked full asynchronicity. I compared SEACD to gradient descent and perturbed gradient descent on a
high-dimensional t-SNE test case. I aimed to visualize the MNIST database of handwritten digits via t-SNE
to successfully cluster MNIST numbers into separate groups in two dimensions. My expectation was that
after reducing the data dimensions from 784 to 2, one can still differentiate between the hand-written numbers

7

https://github.com/Marcob1996/AMSC663_664

in the embedded two-dimensional space. I used SEACD, GD, and PGD to power the t-SNE algorithm and
the results are shown in the figure below.

Figure 2: t-SNE Convergence Comparison

In both sub-figures of Figure 2, one can see that all three algorithms successfully minimized the KL divergence
in the t-SNE algorithm. In the final run, SEACD and PGD did trigger perturbations near the end of the
two million iteration limit. The perturbations were triggered as the local minimum was discovered. Even
so, SEACD was able to end on a slightly better minimum KL divergence value than PGD and GD.

What is important to notice is that in the left sub-figure of Figure 2, GD, PGD, and SEACD all followed
the same paths except for the final run. There are two reasons for this result. The first is that the objective
function did not encounter any first-order stationary points during the course of all my runs. In fact, every
run was heading towards a similar local minimum value of 0.309 (this too is the minimum value determined
by the open source t-SNE package created by [29]). This is due to many flat regions of small gradient values,
yet not too small to trigger any perturbations for SEACD or PGD. Because no perturbations were triggered,
except for the last run, the non-asynchronous serial SEACD is not able to differentiate from PGD or GD.

The t-SNE example was a success, in that it showed SEACD does converge to local optima in a manner similar
to other methods like PGD, which converge to second-order stationary points. Furthermore, the t-SNE
example showcases the necessity to implement a serial-asynchronous, and parallel-asynchronous, SEACD
algorithm to differentiate from PGD and GD (in the case that saddle points are unlikely to be experienced).
This is where I began my progress for AMSC 664, implementing and validating a serial-asynchronous version
of SEACD.

3.1 Implementation and Validation of Serial-Asynchronous SEACD

As mentioned above, my first goal within AMSC 664 was to implement SEACD in a serial-asynchronous
manner, and validate that it converges to second-order stationary points. Below, I first detail how I imple-
mented this serial-asynchronous process. Then, I dive into the test case I used to validate my implementation
of serial-asynchronous SEACD.

8

3.1.1 Serial-Asynchronous SEACD Implementation

Previously, my implementation of SEACD consisted of alternating between coordinate blocks of the solu-
tion vector and updating them with no delay. This implementation can be described as one main worker
consecutively updating all the coordinate blocks. Therefore, this process was not asynchronous at all. Even
further, the use of a hyperparameter τ is useless if blocks are updated consecutively (there is no real delay,
only waiting for ones turn to update). To fix this, and create a serial-asynchronous SEACD algorithm, I al-
tered both the Global Asynchronous Coordinate Descent (GACD) and Perturbed Asynchronous Coordinate
Descent (PACD) algorithms (defined in the Appendix A as Algorithms 4 and 5) with the same following
steps.

First, I split the solution vector xj into equal chunks amongst the set number of asynchronous workers.
Afterwards, I designate one of these workers as the “slow” worker, which means that this worker takes τ
iterations to update its coordinate block. During both GACD and PACD, for the first τ − 1 iterations I
continually update all other workers in a random order (I ensure each worker is updated once and then
uniformly at random select workers after). Then, on the τth iteration, I update the designated “slow”
worker. I repeat this process until both GACD and PACD terminate.

I implemented this serial-asynchronous SEACD algorithm within Python using NumPy. After implemen-
tation I pivoted towards validating my new SEACD algorithm. To validate, I used the serial-asynchronous
SEACD algorithm to minimize the Matrix Factorization problem.

3.1.2 Serial-Asynchronous SEACD Validation

As mentioned above, I validated the serial-asynchronous SEACD algorithm by applying it to the Matrix
Factorization problem. In the Matrix Factorization problem, a matrix S ∈ Rmxn is factored into two other
matrices U ∈ Rmxk and F ∈ Rkxn. The parameters m, k, and n can all be equal to one another, but in many
cases k is much smaller than m and n (in the case of low-rank matrix factorization). This is a non-convex
optimization problem, with many local minima, and the objective function I am minimizing is the mean
squared error (MSE) between S and UF . This is defined below as:

argmin
U,F

1

mn

m∑
i=1

n∑
j=1

(Sij − (UF)ij)
2 (6)

Computing the gradient for each value of U and F is more complex. The reason for this, is that each element
of U and F plays a role in the formation of multiple elements in the solution matrix S. For example, if
S,U, F ∈ R2x2, then U1,1 directly affects what the values S1,1 and S1,2 are due to matrix multiplication.
This is shown in the following MSE calculations:

MSE(S1,1) = (S1,1 − [(U1,1 ∗ F1,1) + (U1,2 ∗ F2,1)])2

MSE(S1,2) = (S1,2 − [(U1,1 ∗ F1,2) + (U1,2 ∗ F2,2)])2

To compute the gradient of a single element of U or F , like U1,1, the gradient of each solution matrix element
it affects must be averaged together. For elements within the matrix U , this is defined as:

∂MSE

∂Ui,j
=

1

n

n∑
h=1

∂MSE(Si,h)

∂Ui,j
(7)

Similarly, for elements within the matrix F , the gradient is defined as:

∂MSE

∂Fi,j
=

1

m

m∑
h=1

∂MSE(Sh,j)

∂Fi,j
(8)

9

To begin this optimization problem, I initialize random matrices for U and F . I then reshape these two
matrices into an initial solution vector x0. This vector is fed into the serial-asynchronous SEACD algorithm
along with the objective function (MSE) and a function that will compute the gradient for each element of the
solution vector (as this vector contains each element of U and F). From there, I let my new implementation
of SEACD go to work. When testing, I used a solution matrix S ∈ R10x10 and two random matrices
U ∈ R10x2 and F ∈ R2x10. This low-rank matrix factorization ensured that my algorithm would experience
many local-minima and potential saddle points. I compared my new implementation of SEACD to gradient
descent, and below are the convergence results of an example run (to save space I have left the figures from
the other runs on my GitHub repository). I selected three asynchronous workers and a maximum bounded
delay of τ = 3 for SEACD. Figure 3 depicts how serial-asynchronous SEACD and gradient descent minimize
the MSE objective function.

Figure 3: Objective Value Convergence τ = 3 (One Run)

As one can see in Figure 3, both SEACD and gradient descent look to converge to a local minimum with an
objective value ≈ 1.5. Compared to Figure 2, where SEACD and GD followed a similar path of convergence
towards a local minima, SEACD and GD follow different paths. Due to the asynchronous nature of SEACD,
some iterations will produce a decrease of the objective function that is greater or less than that for gradient
descent (as some workers will experience a significant decrease of the objective function while others may
not). As one can see, SEACD jaggedly decreases the objective function faster than GD at the beginning
iterations before it slows and then catches back up to GD at the final iteration.

Along with Figure 3, Figure 4 displays the difference in convergence between SEACD and GD. Once again,
SEACD produces a more jagged convergence result due to its asynchronous nature (each coordinate block
can have a stark difference in its gradient values). What we see within Figure 4 is that SEACD reaches
a potential local minima, which triggers a perturbation. This is why there is a large spike in the graph
for SEACD. Once the norm of the gradient decreases after the perturbation, SEACD terminates as a local
minimum has been reached (the perturbation did not escape the potential saddle point, thus it must be a
second-order stationary point).

10

Overall, one can also see in Figures 3 and 4 that both algorithms converge to a similar local minima in a
similar amount of iterations. Over the course of multiple test runs, I have found that the convergence rates of
both algorithms are quite similar. This is important, as gradient descent is an extremely efficient algorithm.
Aligning with gradient descent shows the convergence strength of serial-asynchronous SEACD.

Figure 4: Norm of Gradient Convergence τ = 3 (One Rune)

3.2 Classifying MNIST Images Using Convolutional Neural Networks

One of the goals during the middle of the semester that I sought to accomplish was to implement my serial-
asynchronous SEACD algorithm to train a convolutional neural network. Dr. Cameron provided a MATLAB
live script that built a simple convolutional neural network to classify MNIST images with high accuracy
(94.2%). This live script can be accessed at this link: https://www.mathworks.com/help/deeplearning/

ref/trainnetwork.html. The Modified National Institute of Standards and Technology (MNIST) database
is a large database filled with thousands of 28x28 pixel images of handwritten numbers (0 through 9). MNIST
is commonly used for training and testing algorithms within machine learning. Example MNIST images are
shown in Figure 5.

The convolutional neural network created within the live script consists of the following layers: a two-
dimensional convolutional layer with 20 filters of size 5x5 (no stride), a ReLu layer, a max pooling layer for
size 2x2 with a stride of length 2 in both directions, a densely connected layer, and a softmax layer at the
very end before classification.

During this semester, I constructed a similar convolutional neural network from scratch using Python and
TensorFlow. Only at this point did I run into issues. I was unable to implement my SEACD algorithm
as an optimizer within TensorFlow. The reasons for this are that my algorithm is complex compared to
some of the simpler built-in optimizers, and there is not a lot of freedom and customization offered within
TensorFlow when creating a novel optimizer. SEACD requires the function to be minimized f as an input,
and using the classification layer as f is not possible to implement within the TensorFlow custom optimizer

11

https://www.mathworks.com/help/deeplearning/ref/trainnetwork.html
https://www.mathworks.com/help/deeplearning/ref/trainnetwork.html

Figure 5: Example MNIST Images

framework (let alone that this choice of f causes many issues with computing the gradient as well as figuring
out how to create one’s own back-propagation process within TensorFlow). Due to all of these issues keeping
me from implementing SEACD in TensorFlow, I was unable to train my convolutional neural network using
it.

While I was unable to train my convolutional neural network using SEACD to classify MNIST images, I
was able to train it using the ADAM. ADAM is an extremely powerful and commonly used optimization
algorithm often used to train neural networks. Because I spent so much time constructing my convolutional
neural network, I wanted to show that it does achieve similar accuracies to those found in the MATLAB live
script. The results of my MNIST image classification are shown in Figure 6.

Figure 6: MNIST Classification Accuracy From My Constructed CNN

As one can see in Figure 6, my convolutional neural network trained using ADAM was able to achieve a
slightly higher classification accuracy (>95%) after 5 epochs of training. On most test runs, I reached 98-99%

12

classification accuracy. A reason for the higher accuracy likely arises from the use of ADAM and a slightly
larger step-size (no dropout is used in either case). While this entire process did not result in exactly what I
planned, the achievements I made were invaluable. I learned how to implement neural networks in Python,
and was able to successfully solve a large-scale classification problem.

3.3 Implementation and Validation of Parallel SEACD

The final, and biggest, milestone I accomplished in AMSC 664 was to implement a parallel-asynchronous
version of SEACD within Python. Specifically, I created a Python Module from which a user can call my
parallel-asynchronous SEACD algorithm. Below, I will discuss the issues I faced while implementing SEACD
in parallel as well as provide an overview of the Module I created.

3.3.1 Parallel Implementation Issues

The parallel processing capabilities of Python have improved over the previous years. However, they still
fall short of the capabilities found in other languages such as C or C++. While MPI and OpenMP (if
using threads) are efficient and flexible libraries within C an C++, there lacks a perfect substitute in
Python. Parallelization can be implemented within Python using the Multiprocessing package. Unlike
MPI, Multiprocessing is limited and still developing. As mentioned in Section 2.1, asynchronous coordinate
descent requires parallel workers, in this case processors, to communicate their updates to a global server.
This communication is difficult and inefficient to implement within the Multiprocessing package (and thus
Python in general). If I were more practiced with to C or C++, I would have tried to implement this
parallel process using MPI where communication is quick and efficient between processors. Within the
Multiprocessing package, these are the limited avenues I traversed to get SEACD up and running efficiently:
Multiprocessing managers, queues, and shared memory.

I initially utilized Multiprocessing managers to allow communication between processes (workers). Multi-
processing managers control a server process and allows other processes to manipulate them using proxies.
While this enabled communication between processes, it was extremely slow and actually caused a slow-down
compared to my serial implementation of gradient descent and SEACD.

After using Multiprocessing managers proved infeasible due to their speed, I incorporated queues. Queues
are a first in first out (FIFO) data structure that are revamped in the Multiprocessing package to allow
processes to communicate safely with one another. Queues are the recommended method for communication
between processes if needed. When using a queue, I instructed each process to place its updates into the
queue and then immediately get the next value from the queue to work on. The issue with implementing
a queue for asynchronous coordinate descent, is that the queue was rarely filled. The queue would usually
have 0 or 1 global iterates available at a time (as the workers are quick with their work). Thus, blocking
between workers was very common with this implementation. Many workers were waiting until there was
an iterate placed in the queue. This caused unnecessary waiting and wasted computational power. While
implementing a queue did cause a speed-up in runtime, it was minimal due to blocking.

Finally, I found the best solution to my communication problem: shared memory. The shared memory
Python module is new to the Multiprocessing package (introduced in Python 3.8). Through this module,
I am able to allocate and manage shared memory that can be accessed by processes. Utilizing this, I was
able to create the current global iterate of global asynchronous descent as shared memory. Then, I allowed
each process to read in and save their updates to the shared memory as soon as they were ready. This
eliminated any waiting time, and the runtime greatly increased. As one can see in Table 1, the shared
memory implementation led to speed-up of 2-2.5x in some examples.

13

3.3.2 Parallel-Asynchronous SEACD Python Module Overview

The parallel-asynchronous SEACD module that I implemented within Python contains the following func-
tions:

Initialization: This function initializes all of the hyperparameters, shared memory for the initial solution,
and lists which keep track of the norm of the gradient values.

Update: This function updates the Hamiltonian given the computed work of a single asynchronous worker.
The computed work is the step that the global iterate will take next, which is the gradient multiplied by
the step-size. Within this function, other hyperparameters necessary to compute the Hamiltonian are also
updated.

Block Allocation: This simple function splits the blocks evenly amongst the inputted number of asyn-
chronous workers. If there is an uneven split, one worker is given a smaller coordinate block than the
others.

Perturb: The perturbation function simply adds a perturbation from a N -dimensional ball to a point
stuck at a potential saddle point. This function is only called during the PACD algorithm.

Single Worker Asynchronous Coordinate Descent (SWACD): Within the SEACD algorithm, this
function is the powerhouse. The SWACD function is run in parallel by GACD and PACD. A full overview of
the algorithm is detailed in Algorithm 3 within Appendix A. Within this function, an asynchronous worker
reads in the shared memory solution, computes its gradient computations for its coordinate block, records
the norm of the gradient for the block update, and then updates the shared memory solution.

Global Asynchronous Coordinate Descent (GACD): This function runs asynchronous coordinate
descent on the global iterate until a first-order stationary point is reached (a point with a small gradient).
The detailed overview of GACD is described in Algorithm 4. It is within this function that I initialize parallel
processes using the Multiprocessing package to run SWACD until a first-order stationary point is reached.

Perturbed Asynchronous Coordinate Descent (PACD): As detailed in Algorithm 5, this function
perturbs an iterate that is potentially stuck at a saddle point. When called, an iterate is perturbed using
the Perturb function and then parallel processes are initialized to run SWACD for a specified number of
iterations T (a hyperparameter). If the iterate after T asynchronous coordinate descent update does not
sufficiently decrease the Hamiltonian, then PACD breaks and the pre-perturbation iterate is returned as it is
a second-order stationary point. If the Hamiltonian does decrease sufficiently, then a saddle point has been
escaped and the SEACD algorithm continues.

Saddle Escaping Asynchronous Coordinate Descent (SEACD): Using all of the functions I define
above, this function runs the parallel-asynchronous SEACD algorithm. All a user needs to do is call this
function after initializing the hyperparameters to run the SEACD algorithm.

3.3.3 Parallel-Asynchronous SEACD Validation

To validate my parallel-asynchronous SEACD algorithm, I again applied it to a Matrix Factorization problem.
However, this time I solved the Non-Negative Matrix Factorization (NMF) problem. In the Non-Negative
Matrix Factorization problem, a non-negative matrix A ∈ Rmxn+ is sought to be factored into two non-
negative, and often lower-ranked, matrices W ∈ Rmxk+ and H ∈ Rkxn+ [6]. The NMF problem is non-convex,

14

with potentially many local minima. To reach a local minima, I utilized a Projected GD algorithm. For
the case of a simple non-negativity constraint, one can set the projection as P (x) = [x]+. This projection is
simply the maximum value between x and 0. The Projected GD update rule becomes:

xj+1 = P
(
xj − η∇f(xj)

)
(9)

Thus, when applying gradient descent, if a coordinate becomes negative it is set to zero instead. For this
example, I adjust my SEACD algorithm to become a projected version. This only took a couple tweaks,
namely ensuring that no coordinate can be negative during each global iterate update and setting all negative
values to zero. The gradient of the matrices W and H for Projected GD, derived in [6], are equal to the
following:

∇W = (WH −A)HT (10)

∇H = WT (WH −A)

Once again, similar to my Matrix Factorization test problem in Section 3.1.2, I use MSE as the objective
function to minimize.

argmin
W,H∈R+

1

mn

m∑
i=1

n∑
j=1

(Aij − (WH)ij)
2 (11)

Like in the Matrix Factorization problem, I initialize random matrices for W and H. I reshape these two
matrices into an initial solution vector x0. This vector is fed into the parallel-asynchronous SEACD algorithm
along with the objective function (MSE) and a function which computes the gradient of W and H. From
there, the projected parallel-asynchronous SEACD algorithm does the rest.

The matrix A I chose to factorize is the following black and white image of Pike Place Market in my hometown
of Seattle, Washington. I am hoping to factor this image into matrices W and H that contain the important
features of the original Pike Place Market image. Further, I hope that multiplying W and H will result in
an image that is nearly identical to the original image.

Figure 7: Original Pike Place Market Image To Be Factorized

The Pike Place Market image is large, with dimensions of 667x1024 pixels. Using Projected GD and Projected
SEACD to solve the Non-Negative Matrix Factorization problem, I will factorize the Pike Place Market image

15

into matrices W and H which are lower rank (m,n >> k). I solved NMF for the following lower ranks: k
= 6, 11, 21, 42, 84, 112, 167, and 334. Solving for all of these lower ranks is important to show that my
parallel-asynchronous SEACD algorithm not only consistently converges to second-order stationary points,
but does so with a speed-up in runtime compared to serial GD. In the animation below, the convergence
comparison between Projected SEACD and Projected GD is shown for each low rank k I tested.

As one can see in each figure of the animation above, Projected SEACD decreases the norm of the gradient
at a quicker rate than Projected GD. It is important to note that computing the norm of the gradient is a
little tricky in NMF, as the coordinates set equal to zero due to the projection may have a large gradient
values. This arises as the coordinates set to zero may have a strong pull to become negative (gradient
is pulling them in this direction), but nothing comes of this as the projection keeps them at a value of
zero. This large underlying gradient is the likely culprit that the norm of the gradient is not smaller for
both Projected SEACD and Projected GD after 100,000 iterations. The spike at the end of some of the
lower rank tests for Projected SEACD is an interesting occurrence. While it is likely caused by an added
perturbation (as Projected SEACD has reach a first-order stationary point), another possible reason arises
from the final process (asynchronous worker) finishing up the last few iterations by itself. This final process
may be computing the norm of the gradient for a coordinate block containing a large number of zero-valued
coordinates that may have a large gradient when in reality they will stay fixed at a zero value due to the
projection. As one can see from all these images, however, is that Projected SEACD converges at a similar
or slightly faster rate than Projected GD to a local minima.

This is backed up by the following two animations below. These two animations display the low-rank
approximation to the Pike Place Market image, produced by multiplying the two factorized matrices WH.
Both Projected SEACD and Projected GD are able to recapture most of the important aspect of the Pike
Place Market image at extremely low ranks (k = 6, 11, 21) and produce an accurate low-rank approximation
of the Pike Place Market image at higher values of k (k = 112, 167, 334).

16

These low-rank image animations confirm what is shown in the convergence comparison animation, that
Projected SEACD and Projected GD have reached (or are close to reaching) a local minima. This too is
seen in the difference in objective function (MSE) values for Projected SEACD and Projected GD in the
animations above. The MSE for Projected SEACD is slightly that of Projected GD. Projected SEACD
makes slightly more progress than Projected GD. The reason for this is two fold: the added perturbation

17

and coordinate descent effectiveness. The Non-Negative Matrix Factorization may generally contain many
local minima [6] and so perturbations can help lead to better local minima. Finally, as shown in Section
3.1.2, asynchronous coordinate descent follows a different path towards convergence than a standard gradient
descent method. Thus, Projected SEACD was able to either make more progress towards the same local
minima compared to Projected GD, reach a separate and better local optima than Projected GD, or a
combination of the two over the course of all the low-rank tests. What the NMF validation test problem
showed, is that my parallel-asynchronous SEACD implementation converged to second-order stationary
points and did so in a similar manner as gradient descent, an extremely efficient algorithm.

3.3.4 Parallel Speed-Up

What I did not mention in Section 3.3.3, is that one can see in the convergence comparison animation that
my parallel-asynchronous SEACD algorithm achieves a sizeable speed-up in runtime over serial gradient
descent. The runtimes displayed in the convergence comparison animation are reproduced in Table 1 below.

Table 1: Projected GD vs. Projected Parallel SEACD (4 Workers), Max Iterations: 100,000

Rank k Projected GD Runtime (s) Projected Parallel SEACD Runtime (s)
6 1,646.22 651.79
11 1,783.31 784.62
21 1,973.61 1,014.41
42 2,177.85 1,259.92
84 2,834.21 1,958.39
112 3,379.59 2,179.02
167 4,107.27 2,916.62
334 5,580.76 4,948.33

As one can see, my parallel implementation did indeed provide a speed-up in the runtime compared to serial
gradient descent. For each rank, I achieve a reduction is about 1,000 seconds. I ran all of these low-rank
tests consecutively (this took over 7 hours), starting with the lowest ranks first. Because of this, the last
couple of low-rank tests likely produced runtimes that were affected by my computer’s performance. My
computer was using so much processing power for so long that the final results are likely off by a little bit.
Regardless, my parallel implementation cuts down the total time by a sizable chunk. After so many issues
with implementing SEACD in parallel, it was amazing to see the effects of parallelization when solving the
NMF problem.

3.4 Optimization of Hyperparameters

I began this semester strengthening the theoretical results of my SEACD algorithm by better selecting its
hyperparameters. Even into the middle of the semester, I was adjusting the hyperparameters to increase
convergence results and ease of use for the user. These improvements are behind the scenes and difficult to
illustrate, but include advancements in the step-size η, dimension-dependence, and convergence-dependence
on the maximum delay τ .

The first major improvement I made this semester was explicitly selecting the step-size η as a hyperparameter.
Previously, a user had to search for a feasible value of η and input it into SEACD. This would be a confusing
process for a user not accustomed to SEACD, let alone optimization algorithms in general. Now, η is a
hyperparameter that depends upon the gradient-Lipschitz constant L and maximum delay bound τ . This
improvement increases ease of use for users of SEACD.

18

The second improvement is that I was able to prove that the convergence of SEACD depends only poly-
logartihmically with respect to the dimension. This is important because the algorithm matches up with the
dependence on dimension found within [14, 16]. Having only a poly-logarithmic dependence on dimension
allows SEACD to remain efficient and useful in large-scale non-convex optimization problems. This result
is an improvement over other first-order methods which reach second-order stationary points with a higher
dependence on dimension [17].

Finally, the last major improvement was to reduce the dependence of the maximum delay τ on convergence.
Previously, the convergence was quadratically dependent on the maximum delay. This is an issue if workers
are extremely slow, and decreases the practicality in using an asynchronous algorithm. The incentive for
using asynchronous algorithms are for cases where workers are slow to submit their work (allowing other
workers to keep working instead of waiting), so why would one want to use an asynchronous algorithm with
a convergence that has a poor dependence upon the maximum delay? This semester I was able to improve
the convergence rate by now only depending sub-linearly on the maximum delay bound. This helped speed
up the convergence of SEACD.

4 Deliverables

Below is an itemized list of all my deliverables for this semester. My code and documentation are found
in my GitHub repository: https://github.com/Marcob1996/AMSC663_664 Included within my repository
are:

• Serial-Asynchronous SEACD module

• Matrix Factorization test code

• Convolutional Neural Network and MNIST test code

• Parallel-Asynchronous SEACD module

• Projected GD and Projected Parallel-Asynchronous SEACD modules

• Non-Negative Matrix Factorization test code

• Figures for Matrix Factorization convergence, CNN accuracy, and NMF convergence

5 Conclusion and Future Work

Over the course of both AMSC 663 and 664, I dove deeply into the depths of asynchronous coordinate
descent. Building an algorithm founded on asynchronous coordinate descent provides satisfactory results
when minimizing a convex or non-convex function, as depicted in my results above. I have shown that
algorithms built on asynchronous coordinate descent, like SEACD, achieve convergence similar to other
efficient gradient descent methods. Even further, asynchronous coordinate descent scales up to large problems
well (my NMF validation problem shows this) and can be a quick algorithm when implemented in a parallel-
asynchronous fashion.

While asynchronous coordinate descent and algorithms like SEACD that build off it are effective, gradient
descent methods with momentum reign supreme. These momentum methods jump through flat region
areas without wasting iterations, and are blazing fast at finding local minima. When comparing SEACD
to accelerated gradient descent, ADAM, or stochastic gradient descent with momentum, they converge in

19

https://github.com/Marcob1996/AMSC663_664

a much quicker manner. This is evident in the usage of accelerated gradient descent in the t-SNE python
and MATLAB packages. The creator of t-SNE, Laurens van der Maaten, used accelerated gradient descent
due to its rapid convergence and efficiency in visualizing extremely high-dimensional data like MNIST. One
of my main goals while continuing to develop SEACD, is to include acceleration in the algorithm. This is
necessary to compete against the other super-powerful first-order methods available.

Although I was able to implement a parallel version of SEACD successfully, doing so in Python is sub-optimal
compared to other languages such as C/C++. Python’s “multiprocessing” package lacks functionality com-
pared to packages like Open MPI on C/C++. The increased functionality and efficiency would greatly boost
the parallel speed-up in runtime that is observed within my results. This would be one of the next major
pieces of future work: implementing parallel-asynchronous SEACD in C/C++ to further increase the speed
of the algorithm.

In summary, future areas that could be expanded upon and explored for SEACD include:

1. Implementing an accelerated version of SEACD

2. Implementing SEACD in parallel within C or C++ to boost parallel computing power and efficiency

3. Comparing the t-SNE results with parallel-asynchronous SEACD (or an accelerated version of SEACD)
against GD, PGD, and accelerated gradient descent

• To examine if the parallel-asynchronous SEACD algorithm (or accelerated version) is able to
match the rapid and accurate results of the accelerated gradient descent algorithm that is usually
used to solve the t-SNE problem

4. Testing the theoretical convergence result of SEACD numerically (to confirm that it matches)

Acknowledgements

Also, I wanted to thank both Dr. Balan and Dr. Cameron for their guidance, critiques, and advice on my
project. You pushed me to build my computational and mathematical skills and accomplish so much this
semester!

References

[1] Zeyuan Allen-Zhu and Yuanzhi Li. Neon2: Finding local minima via first-order oracles. arXiv preprint
arXiv:1711.06673, 2017.

[2] Hédy Attouch, Jérôme Bolte, Patrick Redont, and Antoine Soubeyran. Proximal alternating minimiza-
tion and projection methods for nonconvex problems: An approach based on the kurdyka- lojasiewicz
inequality. Mathematics of operations research, 35(2):438–457, 2010.

[3] Vijay Badrinarayanan, Bamdev Mishra, and Roberto Cipolla. Understanding symmetries in deep net-
works, 2015.

[4] Dimitri P Bertsekas. Nonlinear programming. Journal of the Operational Research Society, 48(3):334–
334, 1997.

[5] Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro. Global optimality of local search for low
rank matrix recovery. In Advances in Neural Information Processing Systems, pages 3873–3881, 2016.

20

[6] David Bindel. Non-negative matrix factorization (nmf), 2018.

[7] Loris Cannelli, Francisco Facchinei, Vyacheslav Kungurtsev, and Gesualdo Scutari. Asynchronous par-
allel algorithms for nonconvex big-data optimization. part i: Model and convergence. arXiv preprint
arXiv:1607.04818, 2016.

[8] Anna Choromanska, Mikael Henaff, Michael Mathieu, Gerard Ben Arous, and Yann LeCun. The loss
surfaces of multilayer networks. In Proceedings of Machine Learning Research, pages 192–204, 2015.

[9] Richard Cole and Yixin Tao. An analysis of asynchronous stochastic accelerated coordinate descent.
arXiv preprint arXiv:1808.05156, 2018.

[10] Yann N. Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua Ben-
gio. Identifying and attacking the saddle point problem in high-dimensional non-convex optimization.
In NIPS’14, page 2933–2941. MIT Press, 2014.

[11] Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points online stochastic
gradient for tensor decomposition. In Conference on Learning Theory, pages 797–842, 2015.

[12] Rong Ge, Jason D Lee, and Tengyu Ma. Matrix completion has no spurious local minimum. In Advances
in Neural Information Processing Systems 29, pages 2973–2981. Curran Associates, Inc., 2016.

[13] Serge Gratton. Second-order convergence properties of trust-region methods using incomplete curvature
information, with an application to multigrid optimization. Journal of Computational Mathematics,
24(6):676–692, 2006.

[14] Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M Kakade, and Michael I Jordan. How to escape saddle
points efficiently. arXiv preprint arXiv:1703.00887, 2017.

[15] Chi Jin, Praneeth Netrapalli, Rong Ge, Sham M Kakade, and Michael I Jordan. On nonconvex optimiza-
tion for machine learning: Gradients, stochasticity, and saddle points. arXiv preprint arXiv:1902.04811,
2019.

[16] Chi Jin, Praneeth Netrapalli, and Michael I Jordan. Accelerated gradient descent escapes saddle points
faster than gradient descent. arXiv preprint arXiv:1711.10456, 2017.

[17] Kfir Y. Levy. The power of normalization: Faster evasion of saddle points. CoRR, 2016.

[18] Ji Liu and Stephen J. Wright. Asynchronous stochastic coordinate descent: Parallelism and convergence
properties, 2015.

[19] Ji Liu, Steve Wright, Christopher Ré, Victor Bittorf, and Srikrishna Sridhar. An asynchronous parallel
stochastic coordinate descent algorithm. In International Conference on Machine Learning, pages 469–
477, 2014.

[20] Yurii Nesterov. Introductory lectures on convex programming volume i: Basic course, 1998.

[21] Yurii Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM
Journal on Optimization, 22(2):341–362, 2012.

[22] Yurii Nesterov and Borris Polyak. Cubic regularization of newton method and its global performance.
In Mathematical Programming, volume 108, pages 177–205, June 2006.

[23] Dohyung Park, Anastasios Kyrillidis, Constantine Carmanis, and Sujay Sanghavi. Non-square matrix
sensing without spurious local minima via the burer-monteiro approach. In Proceedings of Machine
Learning Research, volume 54, pages 65–74. PMLR, 20–22 Apr 2017.

[24] Michael JD Powell. On search directions for minimization algorithms. Mathematical programming,
4(1):193–201, 1973.

[25] Adepu Ravi Sankar and Vineeth N Balasubramanian. Are saddles good enough for deep learning?, 2017.

21

[26] J. Sun, Q. Qu, and J. Wright. Complete dictionary recovery over the sphere i: Overview and the
geometric picture. IEEE Transactions on Information Theory, 63(2):853–884, 2017.

[27] Tao Sun, Robert Hannah, and Wotao Yin. Asynchronous coordinate descent under more realistic
assumptions. In Advances in Neural Information Processing Systems, pages 6182–6190, 2017.

[28] Eran Treister and Javier S Turek. A block-coordinate descent approach for large-scale sparse inverse
covariance estimation. In Advances in Neural Information Processing Systems 27, pages 927–935, 2014.

[29] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of Machine
Learning Research, 9:2579–2605, 2008.

[30] Stephen Wright. Coordinate descent algorithms. In Mathematical Programming, volume 151, pages
3–34, March 2015.

[31] Yangyang Xu and Wotao Yin. A globally convergent algorithm for nonconvex optimization based on
block coordinate update. Journal of Scientific Computing, 72(2):700–734, 2017.

[32] Yi Xu, Rong Jin, and Tianbao Yang. First-order stochastic algorithms for escaping from saddle points
in almost linear time. arXiv preprint arXiv:1711.01944, 2017.

6 Appendix A: Algorithms

Algorithm 3: s = SWACD(x̂, f, η, i)

Input: Shared point x̂ ∈ RN (the read coordinate information that may be outdated by the end of the

algorithm), objective function f , learning rate (step-size) η, updating block i (containing

coordinates c)

Output: The update s to the shared solution (product of the gradient and step size)

1 x̄← x̂;

2 for c ∈ i do

3 x̄← x̄− η∇cf(x̄)ec;

4 end

5 s← x̄− x̂;

6 return s

22

Algorithm 4: (n, xj+n, Ej+n) = GACD(xj , f, η, τ,M,L)

Input: A starting point xj ∈ RN , objective function f , learning rate (step-size) η, delay bound τ ,

momentum threshold M , gradient-Lipschitz L

Output: Total iterations performed n, the point xj+n, energy function Ej+n at that point

1 γ ← j + τ ;

2 while j < γ do

3 Choose Block i;

4 xj+1 − xj ← SWACD(xj , f , η, i);

5 if ||xj − xj+1||2 ≥M then

6 j ← j + 1;

7 break;

8 end

9 j ← j + 1;

10 end

11 n← (j + τ − γ);

12 Ej = f(xj) + L
2

∑j−1
k=j−τ (k − (j − τ) + 1)||xk+1 − xk||22;

13 return n, xj , Ej

In Parallel

Algorithm 5: (xj+1, Ej+1) = PACD(xj , f, η, τ, r, T, L)

Input: A starting point xj ∈ RN , objective function f , learning rate (step-size) η, delay bound τ ,

perturbation radius r, escaping time bound T , gradient-Lipschitz L

Output: The following point xj+1 (after T steps of perturbation), energy function Ej+1 at that point

1 ξ ← uniformly ∼ B(0, r);

2 y0 ← xj + ξ;

3 t← 0;

4 while t < T do

5 Choose Block i;

6 yt+1 − yt ← SWACD(yt, f , η, i);

7 t← t+ 1;

8 end

9 Ej+1 = f(yT) + L
2

∑T−1
k=T−τ (k − (T − τ) + 1)||yk+1 − yk||22;

10 xj+1 = yT ;

11 return xj+1, Ej+1

In Parallel

7 Appendix B: Proof of Saddle Point Escape

Theorem 1 Proof: As mentioned in Theorem 1, f is a L-smooth and ρ-Hessian Lipschitz function with a
bounded minimum value f∗, δ ∈ (0, 1) is the failure of escape probability, and the error threshold is defined

as ε ≤ L2

ρ . Let the N -dimensional perturbation ball centered at x with radius ηr be denoted as B
(N)
x (ηr),

23

where η is the step-size and r is a radius hyperparameter.

From previous work (which is not included in this report due to lack of space but follows Lemma 11 and
Lemma 15 in [14]), it has been determined that the thickness of the stuck region Rstuck is ηr0. This result

states that for an escaping time bound T =
log2(16

√
Nε

rδ
√
π

)

η
√
ρε (the number of iterations of asynchronous coordinate

descent after perturbation necessary to escape the saddle), the term ηr0 is bounded below by ηrδ
√
π

2
√
N

. Thus,

for any two points along the direction of the minimum eigenvalue e1 that are at least ηrδ
√
π√

N
away from each

other, one point must not be in the stuck region. This is the thickness of Rstuck along the e1 direction. Using
calculus, the thickness ηr0 can be turned into an upper bound on the volume of the stuck region.

Following similar steps as in [14, 16] (Jin et. al), let Istuck(·) be the indicator function of being inside the set
Rstuck. Let x = (x(1), x̄), where x(1) is in the e1 direction and x̄ is the remaining N − 1 dimensional vector.
Finally, let x̃ represent the potential saddle point. We can determine the volume of Rstuck as:

V ol(Rstuck) =

∫
B

(N)
x̃ (ηr)

dx · Istuck(x) =

∫
B

(N−1)
x̃ (ηr)

dx̄

∫ x(1)−
√

(ηr)2−||¯̃x−x̄||2

x(1)−
√

(ηr)2−||¯̃x−x̄||2
dx(1) · Istuck(x) (12)

Using the previous result that ηr0 ≥ ηrδ
√
π

2
√
N

, we can compute an upper bound:

V ol(Rstuck) ≤
∫
B

(N−1)
x̃ (ηr)

dx̄ ·
(

2ηrδ
√
π

2
√
N

)
= V ol(B

(N−1)
x̃ (ηr))

(
ηrδ
√
π√

N

)
(13)

The volume ratio of the stuck region is now computed as:

V ol(Rstuck)

V ol(B
(N)
x̃ (ηr))

≤
V ol(B

(N−1)
x̃ (ηr))

(
ηrδ
√
π√

N

)
V ol(B

(N)
x̃ (ηr))

(14)

The volume of a N -dimensional ball of radius r is defined as:

Vd(r) =
π
N
2

Γ(N2 + 1)
rN (15)

From this definition in Equation 8, the ratio of volumes is simplified to:

V ol(Rstuck)

V ol(B
(N)
x̃ (ηr))

≤

(
ηrδ
√
π√

N

)
π
N−1

2

Γ(N−1
2 +1)

(ηr)N−1

π
N
2

Γ(N2 +1)
(ηr)N

=

(
ηrδ
√
π√

N

)
Γ(N2 + 1)

ηr
√
π Γ(N−1

2 + 1)
=

(
δ√
N

)
Γ(N2 + 1)

Γ(N2 + 1/2)
(16)

By property of the gamma function, the following inequality holds: Γ(x+1)
Γ(x+1/2) ≤

√
x+ 1

2 . This inequality

simplifies the expression above to become:

V ol(Rstuck)

V ol(B
(N)
x̃ (ηr))

≤
(

δ√
N

)√
N

2
+

1

2
≤
(

δ√
N

)√
N = δ (17)

Therefore we see that the volume ratio of the stuck region is extremely small:

V ol(Rstuck)

V ol(B
(N)
x̃ (ηr))

≤ δ (18)

With probability of at least 1− δ, a uniformly perturbed point will not fall within the stuck region.

24

	Introduction
	Problem Formulation
	Related Works
	Project Goals

	Approach
	Asynchronous Coordinate Descent
	Escaping Saddle Points
	Main Algorithm (SEACD)

	AMSC 664 Final Results
	Implementation and Validation of Serial-Asynchronous SEACD
	Serial-Asynchronous SEACD Implementation
	Serial-Asynchronous SEACD Validation

	Classifying MNIST Images Using Convolutional Neural Networks
	Implementation and Validation of Parallel SEACD
	Parallel Implementation Issues
	Parallel-Asynchronous SEACD Python Module Overview
	Parallel-Asynchronous SEACD Validation
	Parallel Speed-Up

	Optimization of Hyperparameters

	Deliverables
	Conclusion and Future Work
	Appendix A: Algorithms
	Appendix B: Proof of Saddle Point Escape

	2.Plus:
	2.Reset:
	2.Minus:
	2.EndRight:
	2.StepRight:
	2.PlayPauseRight:
	2.PlayRight:
	2.PauseRight:
	2.PlayPauseLeft:
	2.PlayLeft:
	2.PauseLeft:
	2.StepLeft:
	2.EndLeft:
	anm2:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	1.Plus:
	1.Reset:
	1.Minus:
	1.EndRight:
	1.StepRight:
	1.PlayPauseRight:
	1.PlayRight:
	1.PauseRight:
	1.PlayPauseLeft:
	1.PlayLeft:
	1.PauseLeft:
	1.StepLeft:
	1.EndLeft:
	anm1:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	0.Plus:
	0.Reset:
	0.Minus:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

