

Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problems

W-PINNs

Software and Coding Languages Physics-Informed Deep Learning and its Application in Computational Solid and Fluid Mechanics

Presented by: Alexandros Papados (AMSC) **Advisor:** Professor Balakumar Balachandran (ENME)

University of Maryland, College Park: Applied Mathematics, Applied Statistics, & Scientific Computing

May 4, 2021

Table of Contents

Introduction (1)

2 Solid Mechanics

W-PINNs

5 Software and Coding Languages

3 Linear Elasticity Boundary Value Problems

Table of Contents

Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problems

W-PINNs

Software and Coding Languages

1 Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problem

4 W-PINNs

Project Proposal Recap

Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problems

W-PINNs

- Investigate PINNs and their ability to solve forward and inverse problems in solid and fluid mechanics
- Compare to classical numerical methods such FVM, FEM, and NLS
- Problems in question:
 - $\bullet\,$ Conservation Laws Burgers equation, Euler equations for compressible flow [1] Fluid Mechanics
 - Plane stress linear elasticity boundary value problem [2] Solid Mechanics

Why PINNs?

Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problems

W-PINNs

Software and Coding Languages

Advantages:

- Simplistic implementation to solve PDEs compared to FVM and FEM
- Parameter estimation requires less data and is faster than standard parameter estimation methods
- Meshless method
- Purpose is to "solve supervised learning tasks while respecting any given law of physics described by a general nonlinear partial differential equation" (Karniadakis et al.)

Drawbacks:

- Forward problem is slower than classical PDE solvers at times
- Weak theoretical grounding

PINNs Universal Approximation Theorem

Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problems

W-PINNs

Software and Coding Languages

Theorem (Pinkus, 1999):

Let $\boldsymbol{m}^i \in \mathbb{Z}^d_+$, i = 1, ..., s, and set $\boldsymbol{m} = \max_{i=1,...,s} | \boldsymbol{m}^i$. Assume $\sigma \in C^m(\mathbb{R})$ and is not a polynomial. Then the space of single hidden layer neural nets:

$$\mathcal{M}(\sigma) = \textit{span}\{\sigma(oldsymbol{w} \cdot oldsymbol{x} + b): oldsymbol{w} \in \mathbb{R}^d, b \in \mathbb{R}\}$$

is dense in $C^{m^1,...,m^s}(\mathbb{R}^d)$. In other words, for any $f \in C^{m^1,...,m^s}(\mathbb{R}^d)$, any compact $K \subset \mathbb{R}^d$, and any $\epsilon > 0$, there exists a $g \in \mathcal{M}(\sigma)$ satisfying

$$\max_{\boldsymbol{x}\in\mathcal{K}}\left|D^{\boldsymbol{k}}f(\boldsymbol{x})-D^{\boldsymbol{k}}g(\boldsymbol{x})\right|<\epsilon$$

for all $\boldsymbol{k} \in \mathbb{Z}_{+}^{d}$ for which $\boldsymbol{k} \leq \boldsymbol{m}^{i}$.

Project Accomplishments

Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problems

W-PINNs

- Created the first PIDL solver which solves a general hydrodynamic shock-tube problems, W-PINNs-DE
 - Bypasses theoretical and computational limitations faced by original PINNs
 - Solves shock-tube problems to higher accuracy in comparison to other PINNs and finite volume methods
- Demonstrated W-PINNs ability to solve inverse hydrodynamic shock-tube problems
- Used W-PINNs to solve plane stress linear elasticity boundary value problems (LEBVP)

Table of Contents

Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problems

W-PINNs

Software and Coding Languages

Introduction

2 Solid Mechanics

3 Linear Elasticity Boundary Value Problems

4 W-PINNs

Table of Contents

Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problems

W-PINNs

Software and Coding Languages

Introduction

Solid Mechanics

3 Linear Elasticity Boundary Value Problems

4 W-PINNs

LEBVP

Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problems

W-PINNs

Software and Coding Languages

- Motivation: Solid and Structural Mechanics
- The material matrix for an isotropic material in an elasticity boundary value problem consisting of two parameters, *E* - Young's Modulus, and ν - Poisson Ratio.

• Let $M_{E\nu} = \frac{E}{(1+\nu)(1-2\nu)}$. Then the material matrix is defined by:

$$C = M_{E\nu} \begin{pmatrix} 1-\nu & 0 & 0 & 0 & \nu & 0 & 0 & 0 & \nu \\ 0 & 1-2\nu & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1-2\nu & 0 & 0 & 0 & 0 & 0 & 0 \\ \nu & 0 & 0 & 1-2\nu & 0 & 0 & 0 & 0 & \nu \\ \nu & 0 & 0 & 0 & 1-\nu & 0 & 0 & 0 & \nu \\ 0 & 0 & 0 & 0 & 0 & 1-2\nu & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1-2\nu & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1-\nu \end{pmatrix}$$

 Solve for the amount of deformation a material undergoes under prescribed body force, *f*, and surface force, *g*

LEBVP

• The deformation tensor is defined as

$$\boldsymbol{u}=\left(u_1,u_2,u_3\right)^T$$

- u_i corresponds to the deformation in the x, y, and z direction, and $u_i : \mathbb{R}^3 \to \mathbb{R}$.
- We solve for the deformation of a material undergoing loading by solving the equilibrium equation:

$$\begin{cases} -\nabla \cdot \boldsymbol{\sigma} = \boldsymbol{f}, & x \in \Omega \subset \mathbb{R}^3 \\ \boldsymbol{u} = 0, & x \in \Gamma_D \\ \boldsymbol{\sigma} \cdot \boldsymbol{\nu} = \boldsymbol{g}, & x \in \Gamma_N \end{cases}$$
(1)

where,

$$\boldsymbol{\sigma} = \boldsymbol{C}\boldsymbol{\epsilon}, \quad \epsilon_{ij} = \frac{1}{2} \left[\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right] + \frac{1}{2} \sum_{k=1}^{3} \frac{\partial u_i}{\partial x_k} \frac{\partial u_j}{\partial x_k}, \quad i, j = 1, 2, 3$$

Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problems

W-PINNs

LEBVP

Since we are considering a LEBVP, the parabolic terms vanish, hence

/ *д*и1

Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problems

W-PINNs

$$\boldsymbol{\epsilon} = \frac{1}{2} \left[\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^T \right]$$
$$= A \nabla \boldsymbol{u}$$

										/ == 1
	/1	0	0	0	0	0	0	0	0\	∂x_1
	0	$\frac{1}{2}$	0	$\frac{1}{2}$	0	0	0	0	0	$\frac{\partial u_1}{\partial x_2}$
	0	Ō	$\frac{1}{2}$	Ō	0	0	$\frac{1}{2}$	0	0	$\frac{\partial u_1}{\partial x_3}$
	0	$\frac{1}{2}$	Ō	$\frac{1}{2}$	0	0	Ō	0	0	$\frac{\partial u_2}{\partial x_1}$
=	0	Ō	0	Ō	1	0	0	0	0	$\frac{\partial u_2}{\partial x_2}$
	0	0	0	0	0	$\frac{1}{2}$	0	$\frac{1}{2}$	0	$\frac{\partial u_2}{\partial v_2}$
	0	0	$\frac{1}{2}$	0	0	ō	$\frac{1}{2}$	ō	0	$\frac{\partial u_3}{\partial u_3}$
	0	0	Ō	0	0	$\frac{1}{2}$	Ō	$\frac{1}{2}$	0	$\frac{\partial x_1}{\partial u_3}$
	/0	0	0	0	0	Ō	0	Ō	1/	$\frac{\partial x_2}{\partial u_3}$
										\∂x₃

Plane Stress

Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problems

W-PINNs

Software and Coding Languages A material undergoes plane stress provided the stress vector is zero in a specific plane. Here we chose to have zero stresses in the z - direction, hence,

$$\sigma_{3j} = \sigma_{i3} = 0$$
, for $i, j = 1, 2, 3$

Then the stress tensor in the xy - direction is defined by:

 $\boldsymbol{\sigma} = \mathcal{C}_{E\nu} \boldsymbol{\epsilon}$

$$= \frac{E}{(1-\nu^2)} \begin{pmatrix} 1 & \nu & 0\\ \nu & 1 & 0\\ 0 & 0 & (1-\nu)/2 \end{pmatrix} \begin{pmatrix} \epsilon_{11}\\ \epsilon_{22}\\ \gamma_{12} \end{pmatrix}$$

where
$$\gamma_{12} = \left(\frac{\partial u_1}{\partial x_2} + \frac{\partial u_2}{\partial x_1} \right)$$

Forward Problem

Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problems

W-PINNs

Software and Coding Languages

LEBVP

$$G\left[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right] + G\left(\frac{1+\nu}{1-\nu}\right) \left[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 v}{\partial y \partial x}\right] = \sin(2\pi x)\sin(2\pi y)$$
$$G\left[\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}\right] + G\left(\frac{1+\nu}{1-\nu}\right) \left[\frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 u}{\partial x \partial y}\right] = \sin(\pi x) + \sin(2\pi y)$$

where $G = \frac{E}{2(1+\nu)}$, E = 1 GPa is the Young's modulus, and $\nu = 0.3$ is the Poisson ratio of the material. The problem has fixed boundary conditions.

Table of Contents

Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problems

W-PINNs

Software and Coding Languages

Introduction

Solid Mechanics

Iinear Elasticity Boundary Value Problems

4 W-PINNs

Issues Using PINNs

Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problems

W-PINNs

- PINNs have much difficulty approximating simple boundary conditions
- Immense error at the boundary
- Proposed rectification methods [19] do not generalize to solving LEBVP

W-PINNs

3 Generate $G(\theta)$:

Algorithm 1: W-PINNs Algorithm

- 1 Generate weights $\theta \in \mathbb{R}^k$ and a deep neural network (DNN), $\tilde{\boldsymbol{U}}(x, y, \theta)$,
- where (x, y) are inputs to the network, and $\tilde{\boldsymbol{U}} = [\tilde{u}, \tilde{v}]$ are the outputs. The number of layers, neurons per layer, and activation functions for each layer are prescribed by the user.
- 2 Sample points (x_n, y_n) from Ω and w_n from $\partial \Omega$. Let N_f, N_{BC} correspond to the number of points sampled from the interior and boundary, respectively.

W-PINNs

Software and Coding Languages

$$G(\theta) = \frac{1}{N_f} \left| \left| \nabla \cdot \tilde{\boldsymbol{\sigma}}(x, y, \theta) + \boldsymbol{f} \right| \right|_{\Omega}^2 + \frac{\omega_{BC}}{N_{BC}} \left| \left| \tilde{\boldsymbol{U}}(x, y, \theta) - \boldsymbol{U}(x, y) \right| \right|_{\partial \Omega}^2$$

where $\omega_{BC} = 10,000$

4 Update θ by performing stochastic gradient descent:

$$\theta = \theta - \eta \nabla_{\theta} G(\theta)$$

where η is the learning rate.

W-PINNs Architecture

Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problems

W-PINNs

Software and Coding Languages

Each neural network will have:

- 7 layers
- 30 neurons per layer
- $tanh(\cdot)$ activation function for nonlinear layers
- learning rate of 0.0005
- No random sampling of computational domain
- 199, 350 epochs

Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problems

W-PINNs

Figure 1 - Mesh I, II, III

Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problems

W-PINNs

Software and Coding Languages

Deformation in x direction, a - PINNs

Figure 2 - Top: W-PINNs , Bottom: FEM, Left to Right: Mesh I, II, III

Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problems

W-PINNs

Software and Coding Languages

Figure 3 – Strain in x direction, ϵ_{xx} - Mesh III

Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problems

W-PINNs

Figure 4 - Absolute Error for deformation in x direction, Left to Right: Mesh I, II, III

Solid Mechanics

Linear Elasticity Boundary Value Problems

W-PINNs

Figure 5 - Top: W-PINNs , Bottom: FEM, Left to Right: Mesh I, II, III

Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problems

W-PINNs

Figure 6 – Strain in y direction, ϵ_{yy} - Mesh III

Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problems

W-PINNs

Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problems

W-PINNs

Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problems

W-PINNs

Software and Coding Languages

Domain	Mesh I	Mesh II	Mesh III	
$\frac{ u_{approx} - u_{exact} _2}{ u_{exact} _2}$	2.4 <i>e</i> - 02	2.3 <i>e</i> - 02	9.4 <i>e</i> - 04	
$\frac{ v_{approx} - v_{exact} _2}{ v_{exact} _2}$	7.3 <i>e</i> - 03	9.0 <i>e</i> - 03	4.7 <i>e</i> - 04	

Table 1 – Relative L_2 errors

Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problems

W-PINNs

Figure 8 – Computational Mesh IV, V, and VI

Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problems

W-PINNs

Figure 9 - Top: W-PINNs , Bottom: FEM, Left to Right: Mesh IV, V, VI

Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problems

W-PINNs

Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problems

W-PINNs

Figure 11 – Top: W-PINNs , Bottom: FEM, Left to Right: Mesh IV, V, VI

Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problems

W-PINNs

Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problems

W-PINNs

Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problems

W-PINNs

Software and Coding Languages

Domain	Mesh IV	Mesh V	Mesh VI	
$\frac{ u_{approx} - u_{exact} _2}{ u_{exact} _2}$	1.7e - 01	9.0 <i>e</i> - 02	1.4e - 02	
$\frac{ v_{approx} - v_{exact} _2}{ v_{exact} _2}$	1.5e - 01	5.9 <i>e</i> - 02	9.0 <i>e</i> - 03	

Table 2 – Relative L_2 errors

Additional Mesh Refinement

Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problems

W-PINNs

Absolute Errors

Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problems

W-PINNs

Figure 14 – Top: Absolute error of deformation in x direction for each mesh. Bottom: Absolute error of deformation in y direction for each mesh. Left: Mesh VI, Middle: Refined Mesh, Right: Locally Refined Mesh

Refinement Errors

Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problems

W-PINNs

Software and Coding Languages

Domain	Mesh VI	Refined	Locally Refined
$\frac{ u_{approx} - u_{exact} _2}{ u_{exact} _2}$	1.4e - 02	4.9 <i>e</i> - 02	7.8 <i>e</i> - 02
$\frac{ v_{approx} - v_{exact} _2}{ v_{exact} _2}$	9.0 <i>e</i> - 03	2.0 <i>e</i> - 02	4.8 <i>e</i> - 02

Table 3 – Relative L_2 errors

Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problems

W-PINNs

Figure 15 – Mesh VII, N = 2, 320

Introductior

Solid Mechanics

Linear Elasticity Boundary Value Problems

W-PINNs

Figure 16 – Deformation in x and y direction

Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problems

W-PINNs

$ u_{approx} - u_{exact} _2$	V _{approx} -V _{exact} 2			
Uexact 2	Vexact 2			
9.9 <i>e</i> - 03	9.8 <i>e</i> - 03			

Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problems

W-PINNs

Software and Coding Languages

Computational Mesh

Figure 18 - Mesh VIII, N = 3,600

Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problems

W-PINNs

Figure 19 – Deformation in x and y direction

Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problems

W-PINNs

Figure 20 - Absolute Error

Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problems

W-PINNs

$ u_{approx} - u_{exact} _2$	V _{approx} -V _{exact} 2
Uexact 2	Vexact 2
3.6 <i>e</i> - 03	2.5 <i>e</i> – 03

Table 5 – Relative L_2 errors

Conclusion

Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problems

W-PINNs

- W-PINNs accurately compute solutions on moderately refined mesh N < 4,000
- Over refinement is computationally costly and accumulates higher error
- Local refinement increases error in refinement areas
- 2,000 4,000 training points is recommended

Table of Contents

Software and Coding Languages

Software and Coding Languages

Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problems

W-PINNs

Software and Coding Languages

Coding Languages • Python • MATLAB

Libraries

PyTorch

Reference

[1] Roesner, K. G, Leutloff, D, Srivastava, R. C. (1995). *Computational fluid dynamics: Selected topics*. Berlin: Springer.

Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problems

W-PINNs

Software and Coding Languages [2] Chen, Y, Press, H. H. (2013). *Computational Solid Mechanics Structural Analysis and Algorithms*. Berlin: De Gruyter.

[3] Thomas, J. W. (1999). *Numerical Partial Differential Equations: Conservation Laws and Elliptic Equations*. New York: Springer.

[4] Golsorkhi, N. A, Tehrani, H. A. (2014). Levenberg-marquardt Method For Solving The Inverse Heat Transfer Problems. Journal of Mathematics and Computer Science, 13(04), 300-310. doi:10.22436/jmcs.013.04.03

[5] Chen, Z. (2010). *Finite Element Methods and its Applications*. Berlin: Springer.

[6] Mao, Z, Jagtap, A. D, Karniadakis, G. E. (2020). *Physics-informed neural networks for high-speed flows*. Computer Methods in Applied Mechanics and Engineering, 360, 112789. doi:10.1016/j.cma.2019.112789

Reference

Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problems

W-PINNs

Software and Coding Languages [7] Raissi, M, Perdikaris, P, Karniadakis, G. (2019). *Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations.* Journal of Computational Physics, 378, 686-707. doi:10.1016/j.jcp.2018.10.045

[8] Sirignano, J, Spiliopoulos, K. (2018). *DGM: A deep learning algorithm for solving partial differential equations*. Journal of Computational Physics, 375, 1339-1364. doi:10.1016/j.jcp.2018.08.029

[9] Lu, L, Jagtap, A. D, Karniadakis, G. E. (2019). *DeepXDE: A Deep Learning Library for Solving Differential Equations*. ArXiv.org,arxiv.org/abs/1907.04502.

[10] Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals, and Systems, 2(4), 303-314. doi:10.1007/bf02551274

[11] Mishra, S, Molinaro, R. (2020). Estimates on the generalization error of Physics Informed Neural Networks (PINNs) for approximating PDEs II: A class of inverse problems. https://arxiv.org/abs/2007.01138

Reference

Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problems

W-PINNs

Software and Coding Languages [12] Pinkus, A. (1999). Approximation theory of the MLP model in neural networks. Acta Numerica, 8, 143-195. doi:10.1017/s0962492900002919

[13] Sod, G. A. (1978). A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. Journal of Computational Physics, 27(1), 1-31. doi:10.1016/0021-9991(78)90023-2

[14] LeVeque, R. J. (2011). *Finite volume methods for hyperbolic problems*. Cambridge: Cambridge Univ. Press.

[15] Michoski, C, Milosavljević, M, Oliver, T, Hatch, D. R. (2020). *Solving differential equations using deep neural networks*. Neurocomputing, 399, 193-212. doi:10.1016/j.neucom.2020.02.015

[16] Patel, R. G, Manickam, I, Trask, N, Wood, M. A. (2020). Thermodynamically consistent physics-informed neural networks for hyperbolic systems. doi:https://arxiv.org/abs/2012.05343

References

Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problems

W-PINNs

Software and Coding Languages [17] Kim, J, Kim, A, Lee, S. Artificial Neural Network-Based Automated Crack Detection and Analysis for the Inspection of Concrete Structures.
Applied Sciences, vol. 10, no. 22, 2020, p. 8105., doi:10.3390/app10228105.

[18] Cazzanti, L, Khan, M, Cerrina, F. *Parameter Extraction with Neural Networks*. Metrology, Inspection, and Process Control for Microlithography XII, 1998, doi:10.1117/12.308780.

[19] Wang, S, Tang, Y, Perdikaris, P. Understanding and mitigating gradient pathologies in physics-informed neural networks. 2020.

The End

Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problems

W-PINNs

Software and Coding Languages

Thank You! Questions?