
Introduction

Solid
Mechanics

Linear
Elasticity
Boundary
Value
Problems

W-PINNs

Software and
Coding
Languages

Physics-Informed Deep Learning and its Application in
Computational Solid and Fluid Mechanics

Presented by: Alexandros Papados (AMSC)
Advisor: Professor Balakumar Balachandran (ENME)

University of Maryland, College Park:
Applied Mathematics, Applied Statistics, & Scientific Computing

May 4, 2021



Introduction

Solid
Mechanics

Linear
Elasticity
Boundary
Value
Problems

W-PINNs

Software and
Coding
Languages

Table of Contents

1 Introduction

2 Solid Mechanics

3 Linear Elasticity Boundary Value Problems

4 W-PINNs

5 Software and Coding Languages



Introduction

Solid
Mechanics

Linear
Elasticity
Boundary
Value
Problems

W-PINNs

Software and
Coding
Languages

Table of Contents

1 Introduction

2 Solid Mechanics

3 Linear Elasticity Boundary Value Problems

4 W-PINNs

5 Software and Coding Languages



Introduction

Solid
Mechanics

Linear
Elasticity
Boundary
Value
Problems

W-PINNs

Software and
Coding
Languages

Project Proposal Recap

Investigate PINNs and their ability to solve forward and
inverse problems in solid and fluid mechanics

Compare to classical numerical methods such FVM, FEM,
and NLS

Problems in question:
Conservation Laws - Burgers equation, Euler equations for
compressible flow [1] – Fluid Mechanics
Plane stress linear elasticity boundary value problem [2] –
Solid Mechanics
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Why PINNs?

Advantages:

Simplistic implementation to solve PDEs compared to
FVM and FEM

Parameter estimation requires less data and is faster than
standard parameter estimation methods

Meshless method

Purpose is to ”solve supervised learning tasks while
respecting any given law of physics described by a general
nonlinear partial differential equation” (Karniadakis et al.)

Drawbacks:

Forward problem is slower than classical PDE solvers at
times

Weak theoretical grounding



Introduction

Solid
Mechanics

Linear
Elasticity
Boundary
Value
Problems

W-PINNs

Software and
Coding
Languages

PINNs Universal Approximation Theorem

Theorem (Pinkus, 1999):

Let mi ∈ Zd
+, i = 1, ..., s,and set m = maxi=1,...,s |mi . Assume σ ∈ Cm(R)

and is not a polynomial. Then the space of single hidden layer neural nets:

M(σ) = span{σ(w · x + b) : w ∈ Rd , b ∈ R}

is dense in Cm1,...,ms

(Rd). In other words, for any f ∈ Cm1,...,ms

(Rd), any
compact K ⊂ Rd , and any ε > 0, there exists a g ∈M(σ) satisfying

max
x∈K

∣∣∣Dk f (x)− Dkg(x)
∣∣∣ < ε

for all k ∈ Zd
+ for which k ≤ mi .
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Project Accomplishments

Created the first PIDL solver which solves a general
hydrodynamic shock-tube problems, W-PINNs-DE

Bypasses theoretical and computational limitations faced
by original PINNs
Solves shock-tube problems to higher accuracy in
comparison to other PINNs and finite volume methods

Demonstrated W-PINNs ability to solve inverse
hydrodynamic shock-tube problems

Used W-PINNs to solve plane stress linear elasticity
boundary value problems (LEBVP)
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LEBVP

Motivation: Solid and Structural Mechanics

The material matrix for an isotropic material in an elasticity
boundary value problem consisting of two parameters, E - Young’s
Modulus, and ν - Poisson Ratio.

Let MEν = E
(1+ν)(1−2ν)

. Then the material matrix is defined by:

C = MEν


1− ν 0 0 0 ν 0 0 0 ν

0 1− 2ν 0 0 0 0 0 0 0
0 0 1− 2ν 0 0 0 0 0 0
0 0 0 1− 2ν 0 0 0 0 0
ν 0 0 0 1− ν 0 0 0 ν
0 0 0 0 0 1− 2ν 0 0 0
0 0 0 0 0 0 1− 2ν 0 0
0 0 0 0 0 0 0 1− 2ν 0
ν 0 0 0 ν 0 0 0 1− ν


Solve for the amount of deformation a material undergoes under
prescribed body force, f , and surface force, g
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LEBVP

The deformation tensor is defined as

u =
(
u1, u2, u3

)T
ui corresponds to the deformation in the x , y , and z direction, and
ui : R3 → R.

We solve for the deformation of a material undergoing loading by
solving the equilibrium equation:

−∇ · σ = f , x ∈ Ω ⊂ R3

u = 0, x ∈ ΓD

σ · ν = g , x ∈ ΓN

(1)

where,

σ = Cε, εij =
1

2

[
∂ui
∂xj

+
∂uj
∂xi

]
+

1

2

3∑
k=1

∂ui
∂xk

∂uj
∂xk

, i , j = 1, 2, 3
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LEBVP

Since we are considering a LEBVP, the parabolic terms vanish,
hence

ε =
1

2

[
∇u +∇uT

]
= A∇u

=



1 0 0 0 0 0 0 0 0
0 1

2 0 1
2 0 0 0 0 0

0 0 1
2 0 0 0 1

2 0 0
0 1

2 0 1
2 0 0 0 0 0

0 0 0 0 1 0 0 0 0
0 0 0 0 0 1

2 0 1
2 0

0 0 1
2 0 0 0 1

2 0 0
0 0 0 0 0 1

2 0 1
2 0

0 0 0 0 0 0 0 0 1





∂u1
∂x1
∂u1
∂x2
∂u1
∂x3
∂u2
∂x1
∂u2
∂x2
∂u2
∂x3
∂u3
∂x1
∂u3
∂x2
∂u3
∂x3


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Plane Stress

A material undergoes plane stress provided the stress vector is
zero in a specific plane. Here we chose to have zero stresses in
the z − direction, hence,

σ3j = σi3 = 0, for i , j = 1, 2, 3

Then the stress tensor in the xy − direction is defined by:

σ = CEνε

=
E

(1− ν2)

1 ν 0
ν 1 0
0 0 (1− ν)/2



ε11

ε22

γ12


where γ12 =

(
∂u1
∂x2

+ ∂u2
∂x1

)
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Forward Problem

LEBVP

G

[
∂2u

∂x2
+
∂2u

∂y 2

]
+ G

(
1 + ν

1− ν

)[
∂2u

∂x2
+

∂2v

∂y∂x

]
= sin(2πx) sin(2πy)

G

[
∂2v

∂x2
+
∂2v

∂y 2

]
+ G

(
1 + ν

1− ν

)[
∂2v

∂y 2
+

∂2u

∂x∂y

]
= sin(πx) + sin(2πy)

where G = E
2(1+ν)

, E = 1 GPa is the Young’s modulus, and ν = 0.3 is the
Poisson ratio of the material. The problem has fixed boundary conditions.
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Issues Using PINNs

PINNs have much difficulty approximating simple
boundary conditions

Immense error at the boundary

Proposed rectification methods [19] do not generalize to
solving LEBVP
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W-PINNs

Algorithm 1: W-PINNs Algorithm

1 Generate weights θ ∈ Rk and a deep neural network (DNN), Ũ(x , y , θ),

where (x , y) are inputs to the network, and Ũ = [ũ, ṽ ] are the
outputs. The number of layers, neurons per layer, and activation
functions for each layer are prescribed by the user.

2 Sample points (xn, yn) from Ω and wn from ∂Ω. Let Nf ,NBC

correspond to the number of points sampled from the interior and
boundary, respectively.

3 Generate G(θ):

G(θ) =
1

Nf

∣∣∣∣∣∣∣∣∇ · σ̃(x , y , θ) + f
∣∣∣∣∣∣∣∣2

Ω

+
ωBC

NBC

∣∣∣∣∣∣∣∣Ũ(x , y , θ)− U(x , y)

∣∣∣∣∣∣∣∣2
∂Ω

where ωBC = 10, 000
4 Update θ by performing stochastic gradient descent:

θ = θ − η∇θG(θ)

where η is the learning rate.
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W-PINNs Architecture

Each neural network will have:

7 layers

30 neurons per layer

tanh(·) activation function for nonlinear layers

learning rate of 0.0005

No random sampling of computational domain

199, 350 epochs
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Domain I

Figure 1 – Mesh I, II, III
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Domain I

Figure 2 – Top: W-PINNs , Bottom: FEM, Left to Right: Mesh I, II, III
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Domain I

Figure 3 – Strain in x direction, εxx - Mesh III
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Domain I

Figure 4 – Absolute Error for deformation in x direction, Left to Right: Mesh I, II, III
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Domain I

Figure 5 – Top: W-PINNs , Bottom: FEM, Left to Right: Mesh I, II, III
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Domain I

Figure 6 – Strain in y direction, εyy - Mesh III
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Domain I

Figure 7 – Absolute Error for deformation in x direction, Left to Right: Mesh I, II, III
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Domain I
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Domain I

Domain Mesh I Mesh II Mesh III
||uapprox−uexact ||2
||uexact ||2 2.4e − 02 2.3e − 02 9.4e − 04

||vapprox−vexact ||2
||vexact ||2 7.3e − 03 9.0e − 03 4.7e − 04

Table 1 – Relative L2 errors
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Domain II

Figure 8 – Computational Mesh IV, V, and VI
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Domain II

Figure 9 – Top: W-PINNs , Bottom: FEM, Left to Right: Mesh IV, V, VI
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Domain II

Figure 10 – Absolute Error for deformation in x direction, Left to Right: Mesh IV, V, VI
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Domain II

Figure 11 – Top: W-PINNs , Bottom: FEM, Left to Right: Mesh IV, V, VI
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Domain II

Figure 12 – Absolute Error for deformation in y direction, Left to Right: Mesh IV, V, VI
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Domain II
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Domain II

Domain Mesh IV Mesh V Mesh VI
||uapprox−uexact ||2
||uexact ||2 1.7e − 01 9.0e − 02 1.4e − 02

||vapprox−vexact ||2
||vexact ||2 1.5e − 01 5.9e − 02 9.0e − 03

Table 2 – Relative L2 errors
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Additional Mesh Refinement

Figure 13 – Left: Mesh VI, Middle: Refined Mesh, Right: Locally Refined Mesh
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Absolute Errors

Figure 14 – Top: Absolute error of deformation in x direction for each mesh. Bottom: Absolute error of
deformation in y direction for each mesh. Left: Mesh VI, Middle: Refined Mesh, Right: Locally Refined Mesh
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Refinement Errors

Domain Mesh VI Refined Locally Refined
||uapprox−uexact ||2
||uexact ||2 1.4e − 02 4.9e − 02 7.8e − 02

||vapprox−vexact ||2
||vexact ||2 9.0e − 03 2.0e − 02 4.8e − 02

Table 3 – Relative L2 errors
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Domain III

Figure 15 – Mesh VII, N = 2, 320
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Domain III

Figure 16 – Deformation in x and y direction
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Domain III

Figure 17 – Absolute Error

||uapprox−uexact ||2
||uexact ||2

||vapprox−vexact ||2
||vexact ||2

9.9e − 03 9.8e − 03

Table 4 – Relative L2 errors
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Domain IV

Figure 18 – Mesh VIII, N = 3, 600
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Domain IV

Figure 19 – Deformation in x and y direction
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Domain IV

Figure 20 – Absolute Error
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Domain IV

||uapprox−uexact ||2
||uexact ||2

||vapprox−vexact ||2
||vexact ||2

3.6e − 03 2.5e − 03

Table 5 – Relative L2 errors
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Conclusion

W-PINNs accurately compute solutions on moderately
refined mesh N < 4, 000

Over refinement is computationally costly and accumulates
higher error

Local refinement increases error in refinement areas

2,000 - 4,000 training points is recommended
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Coding Languages

Python

MATLAB

Libraries

PyTorch
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The End

Thank You! Questions?
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