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Project Proposal Recap

Introduction

@ Investigate PINNs and their ability to solve forward and
inverse problems in solid and fluid mechanics

@ Compare to classical numerical methods such FVM, FEM,
and NLS
@ Problems in question:
o Conservation Laws - Burgers equation, Euler equations for
compressible flow [1] — Fluid Mechanics

o Plane stress linear elasticity boundary value problem [2] —
Solid Mechanics



Why PINNs?

Advantages:

et @ Simplistic implementation to solve PDEs compared to
FVM and FEM

@ Parameter estimation requires less data and is faster than
standard parameter estimation methods

@ Meshless method

@ Purpose is to "solve supervised learning tasks while
respecting any given law of physics described by a general
nonlinear partial differential equation” (Karniadakis et al.)

Drawbacks:

@ Forward problem is slower than classical PDE solvers at
times

@ Weak theoretical grounding




PINNs Universal Approximation Theorem

Introduction

Theorem (Pinkus, 1999):

Let m' € Z4, i=1,...,s,and set m = maxi—1, s |m'. Assume o € C"(R)
and is not a polynomial. Then the space of single hidden layer neural nets:

M(o) = span{o(w-x + b) : w e R? b € R}

is dense in C’"l"“”"s(Rd). In other words, for any f € C'"l’“"'"s(Rd), any
compact K C R?, and any € > 0, there exists a g € M(o) satisfying

max D*f(x) — D*g(x)| < e

for all k € Z4 for which k < m'.




Project Accomplishments

Introduction

@ Created the first PIDL solver which solves a general
hydrodynamic shock-tube problems, W-PINNs-DE

o Bypasses theoretical and computational limitations faced
by original PINNs
o Solves shock-tube problems to higher accuracy in
comparison to other PINNs and finite volume methods
@ Demonstrated W-PINNSs ability to solve inverse
hydrodynamic shock-tube problems

@ Used W-PINNSs to solve plane stress linear elasticity
boundary value problems (LEBVP)
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Linear
Elasticity
Boundary
Value
Problems

@ Motivation: Solid and Structural Mechanics

@ The material matrix for an isotropic material in an elasticity

boundary value problem consisting of two parameters, E - Young's

Modulus, and v - Poisson Ratio.

@ Let Mg, = 7(1+V)'(51_2V). Then the material matrix is defined by:
1—v 0 0 0 v 0 0 0
0 1-2v 0 0 0 0 0 0
0 0 1-2v 0 0 0 0 0
0 0 0 1-2v 0 0 0 0
C = Mg, v 0 0 0 1—v 0 0 0
0 0 0 0 0 1-2v 0 0
0 0 0 0 0 0 1-2v 0
0 0 0 0 0 0 0 1-2v
v 0 0 0 v 0 0 0

@ Solve for the amount of deformation a material undergoes under
prescribed body force, f, and surface force, g
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Linear
Elasticity
Boundary
Value
Problems

@ The deformation tensor is defined as

-
u—= (U1, uz, U3)
@ u; corresponds to the deformation in the x, y, and z direction, and
ui : R* = R

@ We solve for the deformation of a material undergoing loading by
solving the equilibrium equation:

—-V-o=Ff, xeQcR®
u=0, x€Tlp (1)

oc-v=g, x€eln

where,

_ 1 [0u | Oy >\ ou ou ..
o = Ceg, EU_E[BXJ ax,] Zanan i,j=1,2,3




Linear
Elasticity
Boundary
Value
Problems

Since we are considering a LEBVP, the parabolic terms vanish,

hence

€ =

> N
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Plane Stress

A material undergoes plane stress provided the stress vector is
zero in a specific plane. Here we chose to have zero stresses in
the z — direction, hence,

03j = 03 = O, for I,J] = 1,2,3
Linear
Elasticity
Boundary
Value
Problems

Then the stress tensor in the xy — direction is defined by:

o= Cgle
€11
E 1 v 0
= m v 1 0 €22
0 0 (1-v)2
712

o) 0
where 715 = (8—2 + Tﬁ)



Forward Problem

LEBVP

Linear

Elasticity aZu aZu 1 +v 6211 62‘/

Boundary — g

Vi G {axz + ay2] +G (1 — V) [8x2 + ayax] sin(27x) sin(2my)

v &*v 140\ [8v %u . .
€ [a* + W} = <1 - ) [@ o axay} = sin(mx) sin(2my)

where G = 2(17’;/)' E =1 GPa is the Young's modulus, and v = 0.3 is the
Poisson ratio of the material. The problem has fixed boundary conditions.
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Issues Using PINNs

@ PINNs have much difficulty approximating simple
boundary conditions

@ Immense error at the boundary

o Proposed rectification methods [19] do not generalize to
solving LEBVP



W-PINNSs

Algorithm 1: 'W-PINNS ALGORITHM

1 Generate weights § € R* and a deep neural network (DNN), U(x,y7 6),
where (x, y) are inputs to the network, and U = [i, ¥] are the
outputs. The number of layers, neurons per layer, and activation
functions for each layer are prescribed by the user.

2 Sample points (xn, y) from Q and w, from 9. Let N¢, Ngc
correspond to the number of points sampled from the interior and

boundary, respectively.
3 Generate G(0):

2 2

1 .
G(9) = MHV-&(x,y,H)—Ff U(x,y,0) — U(x,y)

wBC
_l’_ -
Ngc

Q o0

where wgec = 10,000
4 Update 6 by performing stochastic gradient descent:

0=0—nVyG(0)

where 7 is the learning rate.




W-PINNs Architecture

Each neural network will have:
@ 7 layers
@ 30 neurons per layer
e tanh(-) activation function for nonlinear layers
@ learning rate of 0.0005
@ No random sampling of computational domain
e 199,350 epochs



Domain |

Computational Mesh Computational Mesh . Computational Mesh

Figure 1 — Mesh |, 11, 111



Domain |

Deformation i x direction, u - PINNs

Deformation in # direction, u - FEM

Deformation in z directon, u - PINNs

Deformation n  diretion, u - FEM

Deformation in # direction, u - PINNs

Deformation in  direction, u - FEM

Figure 2 — Top: W-PINNs , Bottom: FEM, Left to Right: Mesh I, II, 11l




Domain |

Strain in ¢ direction, €,, - PINNs Strain in z direction, €,, - FEM
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Figure 3 — Strain in x direction, exx - Mesh Ill



Domain |

Error Deformation in  direction, u Error Deformation in  direction, u

Error Deformation in « direction, u

Figure 4 — Absolute Error for deformation in x direction, Left to Right: Mesh I, 11, 1ll



Domain |

Defocmation i y direction, o - PINNs

Deformation n y direction, v - FEM
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Figure 5 — Top: W-PINNs , Bottom: FEM, Left to Right: Mesh I, II, 11l

Deformation n y diretion, v - PINNs

Deformation n y direction, v - FEM



Domain |

Strain in y direction, €,, - FEM

Strain in y direction, ¢, - PINNs

Figure 6 — Strain in y direction, €yy - Mesh 111



Domain |

Error Deformation in y direction, v Error Deformation in y direction, v

Error Deformation in y direction, v

Figure 7 — Absolute Error for deformation in x direction, Left to Right: Mesh I, 11, 11l
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Relative Ly Error vs. N
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Domain |

Domain

Mesh |

Mesh I

Huapprox — Uexact | |2

| | Vexact l ‘2

||UexactH2 24e - 02 236 — 02 94e — 04
Wsppro—vewll2 | 7 30 — 03 | 9.0e — 03 | 4.7e — 04

Table 1 — Relative Ly errors




Domain |l

Computational Mesh Computational Mesh Computational Mesh

o8 ¥ L

Figure 8 — Computational Mesh IV, V, and VI



Domain |l

Deformation i x direction, u - PINNs

Deformation in z directon, u - PINNs Deformation in z direction, u - PINNs

jon in 7 direction, u - FEM Delormation n  direction, u - FEM Deformation n  direction, u - FEM

Figure 9 — Top: W-PINNs , Bottom: FEM, Left to Right: Mesh IV, V, VI



Domain |l

Error Deformation in  direction, u Error Deformation in  direction, u

Error Deformation in  direction, u

Figure 10 — Absolute Error for deformation in x direction, Left to Right: Mesh IV, V, VI



Domain |l

Deformation iy direction, o - PINNs Deformation n y dirction, v - PINNs

i EA

Deformation n y direction, v - PINNs

EBI

Deformation i y direction, v - FEM Deformation in  direction, v - FEM Deformation n y dirction, v - FEM

Figure 11 — Top: W-PINNs , Bottom: FEM, Left to Right: Mesh IV, V, VI



Domain |l

Error Deformation in y direction, v

Error Deformation in y direction, v Error Deformation in y direction, v o

Figure 12 — Absolute Error for deformation in y direction, Left to Right: Mesh IV, V, VI
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Domain |l

| | Vexact l ‘2

Domain Mesh IV Mesh V
[aspo—ticll [ 1,76 — 01 | 9.0e — 02 | 1.4e — 02
HVapprox*Vexact| 2 15e _ 01 596 _ 02 906 — 03

Table 2 — Relative Ly errors




Additional Mesh Refinement

Computational Mesh Computational Mesh

Computational Mesh

Figure 13 — Left: Mesh VI, Middle: Refined Mesh, Right: Locally Refined Mesh



Absolute Errors

Erro Deformation in 7 direction, u Ertar Deformation in 7 direction, u

Error Deforuation in y diection, v . Error Deformation i y diretion, v

Figure 14 — Top: Absolute error of deformation in x direction for each mesh. Bottom: Absolute error of
deformation in y direction for each mesh. Left: Mesh VI, Middle: Refined Mesh, Right: Locally Refined Mesh



Refinement Errors

| l Vexact ‘ |2

Domain Mesh VI Refined | Locally Refined
[spo—teacll |1 4e — 02 | 49e — 02 7.8 — 02
[eppron—veacill | 9 0¢ — 03 [ 2.0e —02| 4.8e—02

Table 3 — Relative Ly errors
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Computational Mesh
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Figure 15 — Mesh VII, N = 2, 320



Domain 1l

Deformation in z direction, u - PINNs Deformation in z direction, u - FEM
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Figure 16 — Deformation in x and y direction



Error Deformation in x direction, u
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Figure 17 — Absolute Error
| ‘ Uapprox — Uexact ‘ |2 | I Vapprox — Vexact I ‘2
||uexact||2 ‘|Vexact||2

9.9e — 03 9.8e — 03

Table 4 — Relative Ly errors



Domain IV

Computational Mesh
09
08 ‘
= R 7
07 Sl ;
06
0.5

-1 08 06 04 -02 0 02 0.4 06 08 1

Figure 18 — Mesh VIII, N = 3, 600



Domain IV
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Figure 19 — Deformation in x and y direction
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Error Deformation in y direction, v

Error Deformation in z direction, u

Figure 20 — Absolute Error




Domain IV

| | Uapprox — Uexact ‘ |2 | | Vapprox — Vexact | ‘ 2
||Uexact||2 HVexact||2

3.6e — 03 2.5¢ — 03

Table 5 — Relative Ly errors




Conclusion

@ W-PINNSs accurately compute solutions on moderately
refined mesh N < 4,000

@ Over refinement is computationally costly and accumulates
higher error

@ Local refinement increases error in refinement areas

@ 2,000 - 4,000 training points is recommended
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Software and Coding Languages

Coding Languages

@ Python
o MATLAB

Software and
Coding
Languages @ PyTorch




Software and

Coding
Languages

Reference

[1] Roesner, K. G, Leutloff, D, Srivastava, R. C. (1995). Computational
fluid dynamics: Selected topics. Berlin: Springer.

[2] Chen, Y, Press, H. H. (2013). Computational Solid Mechanics
Structural Analysis and Algorithms. Berlin: De Gruyter.

[3] Thomas, J. W. (1999). Numerical Partial Differential Equations:
Conservation Laws and Elliptic Equations. New York: Springer.

[4] Golsorkhi, N. A, Tehrani, H. A. (2014). Levenberg-marquardt Method
For Solving The Inverse Heat Transfer Problems. Journal of Mathematics
and Computer Science, 13(04), 300-310. doi:10.22436/jmcs.013.04.03

[5] Chen, Z. (2010). Finite Element Methods and its Applications. Berlin:
Springer.

[6] Mao, Z, Jagtap, A. D, Karniadakis, G. E. (2020). Physics-informed
neural networks for high-speed flows. Computer Methods in Applied
Mechanics and Engineering, 360, 112789. doi:10.1016/j.cma.2019.112789




Reference

[7] Raissi, M, Perdikaris, P, Karniadakis, G. (2019). Physics-informed
neural networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations. Journal of
Computational Physics, 378, 686-707. doi:10.1016/].jcp.2018.10.045

[8] Sirignano, J, Spiliopoulos, K. (2018). DGM: A deep learning algorithm
for solving partial differential equations. Journal of Computational Physics,
375, 1339-1364. doi:10.1016/j.jcp.2018.08.029

[9] Lu, L, Jagtap, A. D, Karniadakis, G. E. (2019). DeepXDE: A Deep
Learning Library for Solving Differential Equations.

Software and ) )
Coding ArXiv.org,arxiv.org/abs/1907.04502.

Languages

[10] Cybenko, G. (1989). Approximation by superpositions of a sigmoidal
function. Mathematics of Control, Signals, and Systems, 2(4), 303-314.
doi:10.1007/bf02551274

[11] Mishra, S, Molinaro, R. (2020). Estimates on the generalization error
of Physics Informed Neural Networks (PINNSs) for approximating PDEs I1:
A class of inverse problems. https://arxiv.org/abs/2007.01138



Reference

[12] Pinkus, A. (1999). Approximation theory of the MLP model in neural
networks. Acta Numerica, 8, 143-195. doi:10.1017/50962492900002919

[13] Sod, G. A. (1978). A survey of several finite difference methods for
systems of nonlinear hyperbolic conservation laws. Journal of
Computational Physics, 27(1), 1-31. doi:10.1016,/0021-9991(78)90023-2

[14] LeVeque, R. J. (2011). Finite volume methods for hyperbolic
problems. Cambridge: Cambridge Univ. Press.

Software and

Eoding [15] Michoski, C, Milosavljevi¢, M, Oliver, T, Hatch, D. R. (2020). Solving
angusgss differential equations using deep neural networks. Neurocomputing, 399,
193-212. doi:10.1016/j.neucom.2020.02.015

[16] Patel, R. G, Manickam, |, Trask, N, Wood, M. A. (2020).
Thermodynamically consistent physics-informed neural networks for
hyperbolic systems. doi:https://arxiv.org/abs/2012.05343



References

[17] Kim, J, Kim, A, Lee, S. Artificial Neural Network-Based Automated
Crack Detection and Analysis for the Inspection of Concrete Structures.
Applied Sciences, vol. 10, no. 22, 2020, p. 8105.,
doi:10.3390/app10228105.

[18] Cazzanti, L, Khan, M, Cerrina, F. Parameter Extraction with Neural
Networks. Metrology, Inspection, and Process Control for Microlithography

ézf;ivzagfe e XIl, 1998, doi:10.1117,/12.308780.

Languages
[19] Wang, S, Tang, Y, Perdikaris, P. Understanding and mitigating
gradient pathologies in physics-informed neural networks. 2020.



The End

Thank You! Questions?



	Introduction
	Solid Mechanics
	Linear Elasticity Boundary Value Problems
	W-PINNs
	Software and Coding Languages

