

Introductior

PINNs Algorithm

Euler Equations

Navier-Stokes Equations

Linear Elasticity Boundary Value Problems

Software and Coding Languages

Validation

Milestones

Preliminar Results Using Physics-Informed Neural Networks for Solving Forward and Inverse Problems in Solid and Fluid Mechanics

Presented by: Alexandros Papados (AMSC) **Advisor:** Professor Balakumar Balachandran (ENME)

University of Maryland, College Park: Applied Mathematics, Applied Statistics, & Scientific Computing

September 29, 2020

PINNs Algorithm

Euler Equations

Navier-Stokes Equations

Linear Elasticity Boundary Value Problems

Software and Coding Languages

Validation

Milestones

Preliminary Results

Introduction

4 Navier-Stokes Equations

- 5 Linear Elasticity Boundary Value Problems
- 6 Software and Coding Languages

- 8 Milestones
 - Preliminary Results

Introduction

PINNs Algorithm

Euler Equations

Navier-Stokes Equations

Linear Elasticity Boundary Value Problems

Software and Coding Languages

Validation

Milestones

Preliminary Results

Introduction

- PINNs Algorithm
- B Euler Equations
- 4 Navier-Stokes Equations
- Linear Elasticity Boundary Value Problems
- Software and Coding Languages
- 7 Validation
 - 8 Milestones
 - Preliminary Results

Background

Introduction

PINNs Algorithm

Euler Equations

Navier-Stokes Equations

Linear Elasticity Boundary Value Problems

Software and Coding Languages

Validation

Milestones

Preliminary Results

- Since the late 90s researchers have been studying how to solve PDEs using neural networks
- Scientific machine learning has become a buzzing area of research since 2018
- PINNs are first introduced in the paper *Physics-Informed Neural Networks: A deep learning framework for solving forward and inverse problems involving partial differential equations* published in the *Journal of Computational Physics*

• Authors:

- Dr. George Karniadakis, Brown University
- Dr. Maziar Raissi, Colorado University, Boulder
- Dr. Paris Perdiakaris of the University of Pennsylvania
- This paper inspired me to research PINNs and their application to problems that arise in solid and fluid mechanics, particularly for parameter estimation

Why PINNs?

Introduction

PINNs Algorithm

Euler Equations

Navier-Stokes Equations

Linear Elasticity Boundary Value Problems

Software and Coding Languages

Validation

Milestones

Preliminar Results

- Provide an easy-to-use framework to solve forward and inverse problems successfully, with impressive degrees of accuracy
- Meshless method
- Research on PINNs is in high demand
- Purpose are to "solve supervised learning tasks while respecting any given law of physics described by a general nonlinear partial differential equation" (Karniadakis et al.)

Project Proposal

Introduction

- PINNs Algorithm
- Euler Equations
- Navier-Stokes Equations
- Linear Elasticity Boundary Value Problems
- Software and Coding Languages
- Validation
- Milestones
- Preliminar Results

- Investigate PINNs and their ability to solve forward and inverse problems in solid and fluid mechanics
- Compare to classical numerical methods
- Three types of equations:
 - Euler equations [1] for an incompressible and compressible fluid in 1/2-D Fluid Mechanics
 - Navier-Stokes Equations [1] for a compressible fluid in $1/2\mbox{-}D\xspace$ Fluid Mechanics
 - Plane stress linear elasticity boundary value problem [2] in 3-D (nonlinear if there is time) Solid Mechanics

Introductior

PINNs Algorithm

Euler Equations

Navier-Stokes Equations

Linear Elasticity Boundary Value Problems

Software and Coding Languages

Validation

Milestones

Preliminary Results

Introduction

2 PINNs Algorithm

- Euler Equations
- Navier-Stokes Equations
- Linear Elasticity Boundary Value Problems
- Software and Coding Languages
- Validation
- 8 Milestones
 - Preliminary Results

PINNs Algorithm

Introduction

PINNs Algorithm

Euler Equations

Navier-Stokes Equations

Linear Elasticity Boundary Value Problems

Software and Coding Languages

Validation

Milestones

Preliminary Results

- The PINNs algorithm stems from the Deep Galerkin Method (Sirignano et al., 2018).
- Difference between the two is that PINNs have incorporated inversion capabilities where DGM has not

Problem Statement

Consider a general nonlinear PDE:

$$\begin{cases} \frac{\partial u}{\partial t} + \mathcal{L}(u, a) = 0, & (x, t) \in \Omega \times \mathbb{R}^+ \\ u(x, t) = g(x, t), & (x, t) \in \Gamma \times \mathbb{R}^+ \\ u(x, 0) = h(x), & x \in \Omega \end{cases}$$
(1)

where \mathcal{L} is a nonlinear differential operator, $\Omega \subset \mathbb{R}^n$, u(x, t) be the exact solution to (1), and *a* is an arbitrary physical parameter for the governing PDE.

PINNs Algorithm - Forward Problem

Introduction

PINNs Algorithm

Euler Equations

Navier-Stokes Equations

Linear Elasticity Boundary Value Problems

Software and Coding Languages

Validation

Milestones

Preliminar Results Generate weights θ ∈ ℝ^k and DNN, f(t, x, θ), where number of layers, neurons per layer, and activation functions for each layer are prescribed by the user

- **2** Generate random points (x_n, t_n) from $\Omega \times \mathbb{R}^+$, (z_n, τ_n) from $\Gamma \times \mathbb{R}^+$, and w_n from Ω , according to respective probability densities ν_1, ν_2 , and ν_3
- 3 Calculate the squared error $G(\theta_n, s_n)$ at randomly sampled points $s_n = \{(x_n, t_n), (z_n, \tau_n), w_n\}$ where:

$$G(\theta_n, s_n) = \left(\frac{\partial f}{\partial t}(x_n, t_n, \theta_n) + \mathcal{L}(f(x_n, t_n, \theta_n), a)\right)^2 \\ + (f(z_n, \tau_n, \theta_n) - g(z_n, \tau_n))^2 \\ + (f(w_n, 0, \theta_n) - h(w_n))^2$$

Perform stochastic gradient decent at random points s_n :

$$\theta_{n+1} = \theta_n - \eta_n \nabla_\theta G(\theta_n, s_n)$$

PINNs - Inverse Problem

Introduction

PINNs Algorithm

Euler Equations

Navier-Stokes Equations

Linear Elasticity Boundary Value Problems

Software and Coding Languages

Validation

Milestones

Preliminar<u>.</u> Results

- Generate weights θ ∈ ℝ^k and DNN, f(t, x, θ), where number of layers, neurons per layer, and activation functions for each layer are prescribed by the user
- **2** Generate random points (x_n, t_n) from $\Omega \times \mathbb{R}^+$, (z_n, τ_n) from $\Gamma \times \mathbb{R}^+$, and w_n from Ω , according to respective probability densities ν_1, ν_2 , and ν_3 , and generate initial guess for the physical parameter, *a*
- 3 Calculate the squared error $G(\theta_n, s_n)$ at randomly sampled points $s_n = \{(x_n, t_n), (z_n, \tau_n), w_n\}$ where:

$$G(\theta_n, s_n) = \left(\frac{\partial f}{\partial t}(x_n, t_n, \theta_n) + \mathcal{L}(f(x_n, t_n, \theta_n), a)\right)^2 \\ + (f(z_n, \tau_n, \theta_n) - g(z_n, \tau_n))^2 \\ + (f(w_n, 0, \theta_n) - h(w_n))^2 \\ + (f(x_n, t_n, \theta_n) - u(x_n, t_n))^2$$

Perform stochastic gradient decent at random points s_n :

$$\theta_{n+1} = \theta_n - \eta_n \nabla_\theta G(\theta_n, s_n)$$

Introductior

PINNs Algorithm

Euler Equations

Navier-Stokes Equations

Linear Elasticity Boundary Value Problems

Software and Coding Languages

Validation

Milestones

Preliminary Results

Introduction

PINNs Algorithm

3 Euler Equations

Navier-Stokes Equations

- Linear Elasticity Boundary Value Problems
- Software and Coding Languages
- Validation
 - 8 Milestones
 - Preliminary Results

Euler Equations - Compressible Flow

Introduction

PINNs Algorithm

Euler Equations

Navier-Stokes Equations

Linear Elasticity Boundary Value Problems

Software an Coding Languages

Validation

Milestones

Preliminar Results Consider the Euler equations in conserved form for compressible flow:

$$\frac{\partial \boldsymbol{U}}{\partial t} + \nabla \cdot \boldsymbol{F} = 0 \tag{2}$$

In 1-D the conserved variables and fluxes are represented by:

$$\boldsymbol{U} = \begin{pmatrix} \rho \\ \rho u \\ \rho E \end{pmatrix}, \ \boldsymbol{F} = \begin{pmatrix} \rho u \\ \rho u^2 + p \\ u \left(\rho E + p\right) \end{pmatrix}$$
(3)

And in 2-D

$$\boldsymbol{U} = \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ \rho E \end{pmatrix}, \ \boldsymbol{F}_1 = \begin{pmatrix} \rho u \\ p + \rho u^2 \\ p + \rho uv \\ p u + \rho uE \end{pmatrix}, \ \boldsymbol{F}_2 = \begin{pmatrix} \rho v \\ p + \rho uv \\ p + \rho v^2 \\ p v + \rho vE \end{pmatrix}$$
(4)

Euler Equations - Compressible Flow

Introduction

PINNs Algorithm

Euler Equations

Navier-Stokes Equations

Linear Elasticity Boundary Value Problems

Software and Coding Languages

Validation

Milestones

Preliminar Results

- ρ is the density
- p is the pressure
- *u*, *v* correspond to the velocity in the *x*, *y*-directions respectively
- *E* is the total energy of the fluid.

Equation of State

Consider the equation of state based on the ideal gas-law. The equation of state relates the pressure and energy of the fluid by:

$$\boldsymbol{\rho} = (\gamma - 1) \left[\rho \boldsymbol{E} - \frac{1}{2} \rho ||\boldsymbol{u}||^2 \right], \quad \boldsymbol{u} = (\boldsymbol{u}, \boldsymbol{v})$$
(5)

where γ is the heat capacity ratio.

Introduction

PINNs Algorithm

Euler Equations

Navier-Stokes Equations

Linear Elasticity Boundary Value Problems

Software and Coding Languages

Validation

Milestones

Preliminar Results

- Use PINNs to solve for the physical quantities ρ, u, and p in 1-D, and additionally v in 2-D.
- We consider the shock tube problem in both dimensions.
- For the 1-D problem, we will reproduce the results from reference [1] as a starting point for the project.
- All remaining problems are original work

1-D (Mao, et all)

Introduction

PINNs Algorithm

Euler Equations

Navier-Stokes Equations

Linear Elasticity Boundary Value Problems

Software and Coding Languages

Validation

Milestones

Preliminar<u>.</u> Results

$$\begin{cases} \frac{\partial \boldsymbol{U}}{\partial t} + \nabla \cdot \boldsymbol{F} = 0, \quad (x,t) \in (0,1) \times (0,2] \\ \left(\rho, u, \rho\right)_{t=0} = \begin{cases} (1.4, 0.1, 1.0), & 0 \le x < 0.5 \\ (1.0, 0.1, 1.0), & 0.5 \le x \le 1 \end{cases}$$
(6)

with Dirichlet boundary conditions which take the values of the initial condition at each boundary point.

2-D

$$\left(\begin{array}{c} \frac{\partial \boldsymbol{U}}{\partial t} + \nabla \cdot \boldsymbol{F} = 0, \quad (x, y, t) \in (0, 1)^2 \times (0, 0.3] \\ \left(\rho, u, v, \rho\right)_{t=0} = \begin{cases} (0.5323, 1.206, 0.0, 0.3), & 0 \le x, y < 0.5 \\ (0.138, 1.206, 1.206, 0.029), & 0.5 \le x, y \le 1 \end{cases} \right)$$

with Dirichlet boundary conditions which take on the values of the initial condition at each boundary point.

We take $\gamma = 1.4$ in both problems.

Introduction

PINNs Algorithm

Euler Equations

Navier-Stokes Equations

Linear Elasticity Boundary Value Problems

Software and Coding Languages

Validation

Milestones

Preliminar Results

- After obtaining the PINNs solutions, we will compare them to a finite volume approximation with flux limiting [3]
- Finite Volume Method with Flux Limiting:
 - RK-2 in time
 - Lax-Friedrichs flux solver
 - Osher flux limiter
- Comparative study will measure run-time, shock capturing, and accuracy

Inverse Problem

Introduction

PINNs Algorithm

Euler Equations

Navier-Stokes Equations

Linear Elasticity Boundary Value Problems

Software and Coding Languages

Validation

Milestones

Preliminar<u>.</u> Results

- $\bullet\,$ The physical parameter for the Euler equations is the heat capacity ratio, $\gamma\,$
- For the inverse problem, we wish to use PINNs to obtain the original parameter $\gamma = 1.4$, based on three sets of target data and inputs to the network
- The three cases in consideration are:
 - A full analytic solution data set is used as target data, with initial and boundary conditions prescribed to the network
 - A full analytic solution data set is used as target data, with no initial and boundary conditions prescribed to the network
 - A partial analytic solution data set with 1% noise is used as target data, with initial and boundary conditions prescribed to the network

Inverse Problem

Introduction

PINNs Algorithm

Euler Equations

Navier-Stokes Equations

Linear Elasticity Boundary Value Problems

Software and Coding Languages

Validation

Milestones

Preliminar Results

- For each case, we will measure how well PINNs can calculate γ comparatively to the nonlinear least square method, using the Levenberg–Marquardt algorithm [4]
- The Levenberg–Marquardt method is a damped nonlinear least-squares algorithm
- MATLABs built-in function *fmincon()* provides a framework for solving NLS problems using the Levenberg–Marquardt algorithm

Introduction

PINNs Algorithm

Euler Equations

Navier-Stokes Equations

Linear Elasticity Boundary Value Problems

Software and Coding Languages

Validation

Milestones

Preliminary Results An incompressible fluid is a fluid whose density remains constant as pressure changes. Hence each derivative of ρ in (2) will be zero. This results in Euler equations for incompressible flow to be of the form:

$$\begin{cases} \frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} & + \frac{\nabla \rho}{\rho} = 0\\ \nabla \cdot \boldsymbol{u} = 0 \end{cases}$$
(7)

- Define the density to be $\rho=1g/cm^3,$ which corresponds to the density of water
- Solve for the physical quantities *u* and *p* in 1-D, as well as for *v* in 2-D.
- Prescribe continuous initial conditions and Neumann boundary conditions.

1-D

Introduction

PINNs Algorithm

Euler Equations

Navier-Stokes Equations

Linear Elasticity Boundary Value Problems

Software and Coding Languages

Validation

Milestones

Preliminar Results

$$\begin{array}{l} \frac{\partial u}{\partial t} + (u \cdot \nabla)u + \frac{\nabla p}{\rho} = 0, \quad \nabla \cdot u = 0, \ (x, t) \in (0, \pi) \times (0, 1] \\ u(x, 0) = 1.0 - 0.25 \sin(4\pi x) - 0.25 \sin(8\pi x), \quad x \in (0, \pi) \\ p(x, 0) = 1.0, \quad x \in (0, \pi) \\ \frac{\partial u}{\partial \nu} = \frac{\partial p}{\partial \nu} = 0, \quad t \in (0, 1] \end{array}$$

2-D

$$\begin{array}{l} \frac{\partial u}{\partial t} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} + \frac{\nabla p}{\rho} = 0, \quad \nabla \cdot \boldsymbol{u} = 0, \quad (x, y, t) \in (0, \pi)^2 \times (0, 1] \\ u_{t=0} = 1.0 - 0.25 \sin(4\pi x) - 0.25 \sin(8\pi x), x \in (0, \pi) \\ v_{t=0} = 1.0 - 0.25 \cos(4\pi y) - 0.25 \cos(8\pi y), \quad y \in (0, \pi) \\ p_{t=0} = 1.0, \quad (x, y) \in (0, \pi)^2 \\ \frac{\partial u}{\partial \nu} = \frac{\partial p}{\partial \nu} = 0, \quad t \in (0, 1] \end{array}$$

• A similar framework is used for that of compressible flow

Introduction

PINNs Algorithm

Euler Equations

Navier-Stokes Equations

Linear Elasticity Boundary Value Problems

Software and Coding Languages

Validation

Milestones

Preliminary Results

Introduction

PINNs Algorithm

Euler Equations

4 Navier-Stokes Equations

- Linear Elasticity Boundary Value Problems
- Software and Coding Languages
- 7 Validation
 - 8 Milestones
 - Preliminary Results

Consider the Navier-Stokes equations for compressible flow:

Introduction

PINNs Algorithm

Euler Equations

Navier-Stokes Equations

Linear Elasticity Boundary Value Problems

Software and Coding Languages

Validation

Milestones

Preliminary Results

$$\rho \boldsymbol{u}_{t} + \rho \boldsymbol{u} \cdot \nabla \boldsymbol{u} - \mu \nabla^{2} \boldsymbol{u} - (\lambda + \mu) \nabla \nabla \cdot \boldsymbol{u} + \nabla \boldsymbol{p} = 0$$

$$\rho_{t} + \nabla \cdot (\rho \boldsymbol{u}) = 0$$
(8)

- $\boldsymbol{u} = u$ in 1-D and $\boldsymbol{u} = (u, v)$ in 2-D, is the velocity in the x, y direction respectively
- p is the pressure
- ρ is the density
- λ is the bulk viscosity
- μ is the dynamic viscosity.

Remark: The physical parameters λ and μ are referred to as the Lamé parameters.

Introduction

PINNs Algorithm

Euler Equations

Navier-Stokes Equations

Linear Elasticity Boundary Value Problems

Software and Coding Languages

Validation

Milestones

Preliminar<u>.</u> Results

- In 1-D, impose discontinuous initial conditions for each physical quantity with periodic boundary condition
- In 2-D, impose continuous initial conditions, with periodic boundary conditions.
- The bulk viscosity, $\lambda=$ 0.001, and the dynamic viscosity, $\mu=$ 0.014

1-D Hydrodynamic Sod Problem

$$\left\{ \begin{array}{l} \rho u_t + \rho u \cdot \nabla u - \mu \nabla^2 u - (\lambda + \mu) \nabla \nabla \cdot u + \nabla p = 0, \quad \in (0, 1) \times (0, 0.2] \\ \rho_t + \nabla \cdot (\rho u) = 0, \quad (x, t) \in (0, 1) \times (0, 0.2] \\ \left(\rho, u, p\right)_{t=0} = \begin{cases} (1.0, 0.0, 1.0), & 0 \le x < 0.5 \\ (0.125, 0.0, 0.1), & 0.5 \le x \le 1 \\ \left(\rho, u, p\right)_{x=0} = \left(\rho, u, \rho\right)_{x=1}, \quad t \in (0, 0.2) \end{cases} \right.$$

- Finite Volume Method with Flux Limiting (1-D):
 - RK-3 in time
 - Lax-Friedrichs flux and second order viscous solver
 - Osher flux limiter

2-D

PINNs Algorithm

Euler Equation

Navier-Stokes Equations

Linear Elasticity Boundary Value Problems

Software and Coding Languages

Validation

Milestones

Preliminary Results

$$\begin{split} \rho \boldsymbol{u}_{t} &+ \rho \boldsymbol{u} \cdot \nabla \boldsymbol{u} - \mu \nabla^{2} \boldsymbol{u} - (\lambda + \mu) \nabla \nabla \cdot \boldsymbol{u} + \nabla \boldsymbol{p} = 0, \quad (0, \pi)^{2} \times (0, 1] \\ \rho_{t} &+ \nabla \cdot (\rho \boldsymbol{u}) = 0, \quad (0, \pi)^{2} \times (0, 1] \\ \rho_{t=0} &= (1.0 - 0.25 \cos(8\pi x))(1 - 0.20 \sin(4y)), \quad (x, y) \in (0, \pi)^{2} \\ p_{t=0} &= 1.0, \quad (x, y) \in (0, \pi)^{2} \\ u_{t=0} &= 1.0 - 0.25 \sin(4\pi x) - 0.25 \sin(8\pi x), \quad x \in (0, \pi) \\ v_{t=0} &= 1.0 - 0.25 \cos(4\pi y) - 0.25 \cos(8\pi y), \quad y \in (0, \pi) \\ \left(\rho, u, p\right)_{x=0} &= \left(\rho, u, p\right)_{x=\pi}, \quad (x, t) \in (0, \pi) \times (0, 1] \\ \left(\rho, v, p\right)_{y=0} &= \left(\rho, v, p\right)_{y=\pi}, \quad (y, t) \in (0, \pi) \times (0, 1] \end{split}$$

• Finite Volume Method without Flux Limiting (2-D):

- RK-3 in time
- Lax-Friedrichs flux and second order viscous solver

Introduction

PINNs Algorithm

Euler Equations

Navier-Stokes Equations

Linear Elasticity Boundary Value Problems

Software an Coding Languages

Validation

Milestones

Preliminary Results

Introduction

Euler Equations

Navier-Stokes Equations

- 5 Linear Elasticity Boundary Value Problems
 - Software and Coding Languages
- 7 Validation
 - 8 Milestones
 - Preliminary Results

LEBVP

- Introduction
- PINNs Algorithm
- Euler Equations
- Navier-Stokes Equations
- Linear Elasticity Boundary Value Problems
- Software and Coding Languages
- Validation
- Milestones
- Preliminar Results

- Motivation: Solid and Structural Mechanics
- The material matrix for an isotropic material in an elasticity boundary value problem consists of two parameters, *E* - Young's Modulus, and ν - Poisson Ratio.
- Let $M_{E\nu} = \frac{E}{(1+\nu)(1-2\nu)}$. Then the material matrix is defined by:

	$/1 - \nu$	0	0	0	ν	0	0	0	ν
	0	$1-2\nu$	0	0	0	0	0	0	0
	0	0	$1-2\nu$	0	0	0	0	0	0
	0	0	0	$1 - 2\nu$	0	0	0	0	0
$C = M_{E\nu}$	ν	0	0	0	$1 - \nu$	0	0	0	ν
	0	0	0	0	0	$1-2\nu$	0	0	0
	0	0	0	0	0	0	$1-2\nu$	0	0
	0	0	0	0	0	0	0	$1-2\nu$	0
	$\setminus \nu$	0	0	0	ν	0	0	0	$1 - \nu /$

• Solve for the amount of deformation a material undergoes under prescribed body loading, *f*, and surface loading, *g*

LEBVP

• The deformation tensor is define as

$$\boldsymbol{u}=\left(u_1,u_2,u_3\right)^{T}$$

- u_i corresponds to the deformation in the x, y, and z direction, and $u_i : \mathbb{R}^3 \to \mathbb{R}$.
- We solve for the deformation of a material undergoing loading by solving the equilibrium equation:

$$\begin{cases} -\nabla \cdot \boldsymbol{\sigma} = \boldsymbol{f}, & x \in \Omega \subset \mathbb{R}^3 \\ \boldsymbol{u} = \boldsymbol{0}, & x \in \Gamma_D \\ \boldsymbol{\sigma} \cdot \boldsymbol{\nu} = \boldsymbol{g}, & x \in \Gamma_N \end{cases}$$
(9)

where,

$$\boldsymbol{\sigma} = \boldsymbol{C}\boldsymbol{\epsilon}, \quad \epsilon_{ij} = \frac{1}{2} \left[\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right] + \frac{1}{2} \sum_{k=1}^{3} \frac{\partial u_i}{\partial x_k} \frac{\partial u_j}{\partial x_k}, \quad i, j = 1, 2, 3$$

Introduction

PINNs Algorithm

Euler Equations

Navier-Stokes Equations

Linear Elasticity Boundary Value Problems

Software an Coding Languages

Validation

Milestones

Preliminar Results

LEBVP

Since we are considering a LEBVP, the parabolic terms vanish, hence

Introduction

PINNs Algorithm

Euler Equations

Navier-Stokes Equations

Linear Elasticity Boundary Value Problems

Software ar Coding Languages

Validation

Milestones

Preliminar Results

$$\boldsymbol{\epsilon} = \frac{1}{2} \left[\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^T \right]$$
$$= A \nabla \boldsymbol{u}$$

_	$\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$\begin{array}{c} 0 \\ \frac{1}{2} \\ 0 \\ \frac{1}{2} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{c} 0 \\ \frac{1}{2} \\ 0 \\ 0 \\ \frac{1}{2} \\ 0 \\ 0 \\ \frac{1}{2} \\ 0 \\ 0 \\ 0 \\ \end{array}$	$\begin{array}{c} 0 \\ \frac{1}{2} \\ 0 \\ \frac{1}{2} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	0 0 0 1 0 0 0 0	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \frac{1}{2} \\ 0 \\ \frac{1}{2} \\ 0 \\ 0 \\ \frac{1}{2} \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 1 \\ 2 \\ 0 \\ 0 \\ 0 \\ 1 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \frac{1}{2} \\ 0 \\ \frac{1}{2} \\ 0 \\ 0 \\ \frac{1}{2} \\ 0 \end{array}$	0 0 0 0 0 0 0 0 1	$\begin{pmatrix} \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \\ \frac{\partial \mathbf{z}}{\partial \mathbf{x}} \\ \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \\ $
---	---	--	---	--	--------------------------------------	--	--	--	---	--

Plane Stress

Introduction

PINNs Algorithm

Euler Equations

Navier-Stokes Equations

Linear Elasticity Boundary Value Problems

Software an Coding Languages

Validation

Milestones

Preliminar Results A material undergoes plane stress provided the stress vector is zero in a specific plane. Here we chose to have zero stresses in the z - direction, hence,

$$\sigma_{3j} = \sigma_{i3} = 0$$
, for $i, j = 1, 2, 3$

Then the stress tensor in the xy - direction is defined by:

 $\sigma = C_{E\nu}\epsilon$ $= \frac{E}{(1-\nu^2)} \begin{pmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & (1-\nu)/2 \end{pmatrix} \begin{pmatrix} \epsilon_{11} \\ \epsilon_{22} \\ \gamma_{12} \end{pmatrix}$

where
$$\gamma_{12} = \left(\frac{\partial u_1}{\partial x_2} + \frac{\partial u_2}{\partial x_1}\right)$$

- $\bullet\,$ Let the Young's Modulus, $E=35\,$ GPa, and the Poisson Ratio, $\nu=0.16\,$
- Define the body force vector to be:

$$\boldsymbol{f} = \begin{pmatrix} \sin(\pi x) + \sin(2\pi y) \\ \sin^2(\pi y) \\ \sin(\pi x) \sin(2\pi y) \end{pmatrix}, \quad (x, y) \in (0, \pi)$$

• Take the surface force $\boldsymbol{g} = \boldsymbol{0}$.

LEBVP - Plane Stress

Let $\Omega = [0, \pi]^2$. Then, the LEBVP in consideration is of the form:

$$\begin{cases} -\nabla \cdot \boldsymbol{\sigma} = \boldsymbol{f}, & x \in \Omega \\ \boldsymbol{u} = \boldsymbol{0}, & x \in \Gamma_D \\ \boldsymbol{\sigma} \cdot \boldsymbol{\nu} = \boldsymbol{0}, & x \in \Gamma_N \end{cases}$$

We compare the PINNs approximated solution of *u*, *ε*, and *σ* to an finite element approximation [5] of the physical quantities.

Introduction

PINNs Algorithm

Euler Equations

Navier-Stokes Equations

Linear Elasticity Boundary Value Problems

Software an Coding Languages

Validation

Milestones

Preliminar<u>.</u> Results

- Introduction
- PINNs Algorithm
- Euler Equations
- Navier-Stokes Equations
- Linear Elasticity Boundary Value Problems
- Software and Coding Languages
- Validation
- Milestones
- Preliminar<u>.</u> Results

- Introduction
- 2 PINNs Algorithm
- 3 Euler Equations
- 4 Navier-Stokes Equations
- 5 Linear Elasticity Boundary Value Problems
- 6 Software and Coding Languages
- 7 Validation
- 8 Milestones
 - Preliminary Results

Software and Coding Languages

Introduction

PINNs Algorithm

Euler Equations

Navier-Stokes Equations

Linear Elasticity Boundary Value Problems

Software and Coding Languages

Validation

Milestones

Preliminar Results

Coding Languages

- Python
- MATLAB

• C++

Libraries

- DEEPXDE
- Tensorflow
- PyTorch

- Introduction
- PINNs Algorithm
- Euler Equations
- Navier-Stokes Equations
- Linear Elasticity Boundary Value Problems
- Software and Coding Languages

Validation

- Milestones
- Preliminary Results

- Introduction
- 2 PINNs Algorithm
- 3 Euler Equations
- 4 Navier-Stokes Equations
- Linear Elasticity Boundary Value Problems
- 6 Software and Coding Languages
- 7 Validation
 - B Milestones
 - Preliminary Results

Validation

To ensure a proper PINNs solution is obtained:

 Measure the relative L₂ error between the PINNs solution and an analytic solution, a classical numerical solution, or experimental data

$$\mathcal{E} = \frac{||\hat{u}_{PINNs} - u_{Exact}||_2}{||u_{Exact}||_2}$$

Universial Approximation Theorem (Cybenko, 1989)

Let $x \in I^n \equiv [0,1]^n$ and define

$$G(x) = \sum_{j=1}^{N} \alpha_j \sigma \left(y_j^{\mathsf{T}} x + \theta_j \right)$$

where $\sigma : \mathbb{R} \to \mathbb{R}$ is a continuous discriminatory function, $y_j \in \mathbb{R}^n$, and $\alpha_j, \theta \in \mathbb{R}$ are fixed .Then G(x) is dense in $C(I^n)$. In other words, for any $f \in C(I^n)$, and $\epsilon > 0$, there exists a finite sum of the form above, G(x), such that

$$|G(x) - f(x)| < \epsilon, \quad \forall x \in I^{r}$$

Coding Languages

Validation

Milestones

Preliminar<u>.</u> Results

- Under the assumptions of the UAT, solutions of PDEs can be approximated by neural networks
- (Mishra and Molinaro, 2020) relate number of layers, neurons per layer, and activation functions used, to obtain error estimates

- Introduction
- PINNs Algorithm
- Euler Equations
- Navier-Stokes Equations
- Linear Elasticity Boundary Value Problems
- Software and Coding Languages
- Validation

Milestones

Preliminary Results

Introduction

- 2 PINNs Algorithm
- 3 Euler Equations
- 4 Navier-Stokes Equations
- Linear Elasticity Boundary Value Problems
- 6 Software and Coding Languages
- 7 Validation
- 8 Milestones
 - Preliminary Results

Milestones

Introduction

PINNs Algorithm

Euler Equations

Navier-Stokes Equations

Linear Elasticity Boundary Value Problems

Software and Coding Languages

Validation

Milestones

Preliminar Results

- **November 1st, 2020:** Comparative study for the Euler equations for compressible flow
- **December 15th, 2020:** Comparative study for the Euler equations for incompressible flow
- February 24th, 2021: Comparative study for the Navier-Stokes equations for compressible flow
- April 1st, 2021: Comparative study for the LEBVP
- April 20th 2021: Comparative study for the NLEBVP

- Introduction
- PINNs Algorithm
- Euler Equations
- Navier-Stokes Equations
- Linear Elasticity Boundary Value Problems
- Software and Coding Languages
- Validation
- Milestones
- Preliminary Results

- Introduction
- 2 PINNs Algorithm
- 3 Euler Equations
- 4 Navier-Stokes Equations
- Linear Elasticity Boundary Value Problems
- Software and Coding Languages
- 7 Validation
 - 8 Milestones
- Preliminary Results

Preliminary Results

Introduction

PINNs Algorithm

Euler Equations

Navier-Stokes Equations

Linear Elasticity Boundary Value Problems

Software and Coding Languages

Validation

Milestones

Preliminary Results Mao et al. (2020), the authors solve a 1-D Riemann Problem for the Euler equations of a compressible fluid, of the form of the (6)

A deep neural network (DNN) with 6 layers, each layer with 40 neurons and consider two cases:

- $N_{x,t} = \{100, 100\}, N_f = 10000, N_{BC} = 50, N_{IC} = 100$
- $N_{x,t} = \{1000, 1000\}, N_f = 10000, N_{BC} = 50, N_{IC} = 1000$

We compare to FVM with flux limiting where:

- $N_{x,t} = \{100, 514\}$ • $N_{x,t} = \{1000, 5133\}$
- \bigcirc To validate each method the relative L_2 norm of each physical quantity is taken with respect to the analytic solution

PINNs Solution $-N_{x,t} = \{100, 100\}$

- Introduction
- PINNs Algorithm
- Euler Equations
- Navier-Stokes Equations
- Linear Elasticity Boundary Value Problems
- Software and Coding Languages
- Validation
- Milestones
- Preliminary Results

Finite Volume Solution - $N_{x,t} = \{100, 514\}$

Introduction

PINNs Algorithm

Euler Equations

Navier-Stokes Equations

Linear Elasticity Boundary Value Problems

Software and Coding Languages

Validation

Milestones

Preliminary Results

PINNs Solution - $N_{x,t} = \{1000, 1000\}$

- Introduction
- PINNs Algorithm
- Euler Equations
- Navier-Stokes Equations
- Linear Elasticity Boundary Value Problems
- Software and Coding Languages
- Validation
- Milestones
- Preliminary Results

Finite Volume Solution - $N_{x,t} = \{1000, 5133\}$

- Introduction
- PINNs Algorithm
- Euler Equations
- Navier-Stokes Equations
- Linear Elasticity Boundary Value Problems
- Software and Coding Languages
- Validation
- Milestones
- Preliminary Results

Results

Introduction

PINNs Algorithm

Euler Equations

Navier-Stokes Equations

Linear Elasticity Boundary Value Problems

Software and Coding Languages

Validation

Milestones

Preliminary Results

Method	$PINNs_{100,100}$	$PINNs_{\{1000,1000\}}$	$FVM_{\{100,514\}}$	FVM _{1000,5133}
Papprox — Pexact 2 Pexact 2	5.0e-03	4.2e-03	1.35e-02	3.5e-03
$\frac{ u_{approx} - u_{exact} _2}{ u_{exact} _2}$	1.11e-02	5.1e-03	5.308e-04	5.335e-05
Papprox — Pexact 2 Pexact 2	3.0e-04	1.0e-04	3.649e-05	3.652e-06
СРИ	923 sec	323 secs	1.41 secs	361.63 secs

Observations

Introduction

- PINNs Algorithm
- Euler Equations
- Navier-Stokes Equations
- Linear Elasticity Boundary Value Problems
- Software and Coding Languages
- Validation
- Milestones
- Preliminary Results

- PINNs experience some form of dissipation much like the FVM solution, except, less points are need to capture shock
- Less points required more training, hence higher CPU, whereas more points required less training and hence smaller CPU
- FVM required more points and effort
- PINNs are easier to implement

Inverse Problem and Results

Introduction

PINNs Algorithm

Euler Equations

Navier-Stokes Equations

Linear Elasticity Boundary Value Problems

Software and Coding Languages

Validation

Milestones

Preliminary Results Two out of three cases for the inversion problem are presented:

- A full analytic solution data set is used as target data, with initial and boundary conditions prescribed to the network
- A full analytic solution data set is used as target data, with no initial and boundary conditions prescribed to the network

A DNN with 4 layers, each layer with 60 neurons is constructed.

- $N_{x,t} = \{1000, 100\}, N_f = 2000, N_{BC} = 100, \text{ and } N_{IC} = 1000$
- For each layer we use the tanh activation function

Method	BC/ICs Prescribed	Full Solution Dataset	γ_{exact}	γ_{approx}	CPU
PINNs	Yes	Yes	1.40	1.405	107.71 secs
PINNs	No	Yes	1.40	1.404	40.31 sec
NLS	Yes	Yes	1.40	1.410	173 secs

Observations

- Introduction
- PINNs Algorithm
- Euler Equations
- Navier-Stokes Equations
- Linear Elasticity Boundary Value Problems
- Software and Coding Languages
- Validation
- Milestones
- Preliminary Results

- BCs/ICs and full solution data sets must be prescribed for parameter estimation using NLS
- PINNs do not require BC/ICs and full solution data prescribed to the network
- PINNs have predictive capabilities, whereas NLS does not
- NLS only obtained γ when total energy, *E*, solution data was provided, and could not approximate γ when pressure, *p*, solution data was provided

Reference

ntroduction

PINNs Algorithm

Euler Equations

Navier-Stokes Equations

Linear Elasticity Boundary Value Problems

Software and Coding Languages

Validation

Milestones

Preliminary Results [1] Roesner, K. G., Leutloff, D., Srivastava, R. C. (1995). *Computational fluid dynamics: Selected topics*. Berlin: Springer.

[2] Chen, Y., Press, H. H. (2013). *Computational Solid Mechanics Structural Analysis and Algorithms*. Berlin: De Gruyter.

[3] Thomas, J. W. (1999). *Numerical Partial Differential Equations: Conservation Laws and Elliptic Equations*. New York: Springer.

[4] Golsorkhi, N. A., Tehrani, H. A. (2014). Levenberg-marquardt Method For Solving The Inverse Heat Transfer Problems. Journal of Mathematics and Computer Science, 13(04), 300-310. doi:10.22436/jmcs.013.04.03

[5] Chen, Z. (2010). *Finite Element Methods and their Applications*. Berlin: Springer.

[6] Mao, Z., Jagtap, A. D., Karniadakis, G. E. (2020). *Physics-informed neural networks for high-speed flows*. Computer Methods in Applied Mechanics and Engineering, 360, 112789. doi:10.1016/j.cma.2019.112789

Reference

Introduction

PINNs Algorithm

Euler Equations

Navier-Stokes Equations

Linear Elasticity Boundary Value Problems

Software and Coding Languages

Validation

Milestones

Preliminary Results [7] Raissi, M., Perdikaris, P., Karniadakis, G. (2019). *Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations*. Journal of Computational Physics, 378, 686-707. doi:10.1016/j.jcp.2018.10.045

[8] Sirignano, J., Spiliopoulos, K. (2018). *DGM: A deep learning algorithm for solving partial differential equations*. Journal of Computational Physics, 375, 1339-1364. doi:10.1016/j.jcp.2018.08.029

[9] Lu, L., Jagtap, A. D., Karniadakis, G. E. (2019). *DeepXDE: A Deep Learning Library for Solving Differential Equations*. ArXiv.org,arxiv.org/abs/1907.04502.

[10] Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals, and Systems, 2(4), 303-314. doi:10.1007/bf02551274

[11] Mishra, S., amp; Molinaro, R. (2020). *Estimates on the generalization error of Physics Informed Neural Networks (PINNs) for approximating PDEs II: A class of inverse problems*. https://arxiv.org/abs/2007.01138