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Background
Process of Magnetic Resonance Imaging (MRI)
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Signal generation based on magnetic resonance properties of material or
tissue

Relaxation processes

Signal detection
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Background
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In biomedical Magnetic Resonance Imaging (MRI), an important task is to
recover parameter values for underlying MRI models, which could provide
important biophysical information.

The most common multi-component relaxometry model is the bi-exponential
model, which describes the simultaneous transverse relaxation, or signal loss,
of two tissue components that co-exist within a sample or tissue, i.e.,

S(TE; c1, c2, T21, T22) = c1 exp (−TE/T21) + c2 exp (−TE/T22)

where TE is the echo time, with the signal sampling times then given by
{kTE}nk=1, T21 and T22 are transverse relaxation time constants, and c1, c2
are component fractions.

The bi-exponential model is used for assessment of cartilage degeneration in
osteoarthritis:

rapidly relaxing component: proteoglycan
slowly relaxing component: less-bound water
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Motivation
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We are currently assuming known values for c1 and c2 and studying the
tissue characteristics by estimating the two relaxation times, T21 and T22,
which relate to tissue hydration and microscopic organization.

We seek to develop methods to decrease the Mean Squared Error (MSE) of
parameter estimation below the conventional lower limit of the Cramér-Rao
lower bound. In addition, we seek to reduce MSE below the values obtained
through conventional non-linear least squares.
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Mathematical Formulation
Cramér–Rao Lower Bound (CRLB)
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Definition

In the field of statistics, the Cramér–Rao lower bound (CRLB) gives a theoretical
lower bound on the variance of an unbiased estimator of model parameters.

Consider the the parameter vector θ = [θ1, θ2, . . . , θd]
T ∈ Rd, with

probability density function f(x;θ), and the Fisher information matrix is a

d× d matrix given by Im,k = −E
[

∂2

∂θm∂θk
log f(x;θ)

]
. Let T (X) be an

estimator, and denote its expectation vector E[T (X)] by ψ(θ), then the
Cramér–Rao bound states that the covariance matrix of T (X) satisfies

covθ(T (X)) ≥ ∂ψ(θ)

∂θ
[I(θ)]−1

(
∂ψ(θ)

∂θ

)T
(1.1)
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Previous Studies
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Previous work has focused on providing CRLB, which gives the lower bound
on the variance of unbiased estimators of parameters in MRI models.

CRLB gives the best we can do for Mean Squared Error (MSE) of an
unbiased estimator, and we wish to minimize MSE below CRLB. To do this,
we artificially introduce bias through regularization. With this expanded
space, we seek an estimator that provides MSE less than CRLB.

Additionally, we seek an estimator that improves upon conventional Nonlinear
Least Squares (NLLS). Note that since NLLS is biased in the presence of
noise, CRLB does not strictly apply. However, we will show that with
reasonable SNR, the CRLB is very close to the MSE for NLLS.
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Previous Studies
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Eldar, et al. (2006) [Eld06] showed that the performance of estimators could
be improved, provided that we introduce some bias.

Box, et al. (1971) [Box71] did important early first order approximation
analysis of bias in nonlinear estimation, using Taylor expansion.
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Our approach: Introduction of Regularization
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Our metric for the performance on an estimator is the MSE, defined as

MSE(θ̂) = Eθ

[
(θ̂ − θ)2

]
In addition, MSE(θ̂) = Var(θ̂) + Bias(θ̂, θ)2, where θ̂ is an estimator with
respect to an unknown parameter θ.

We propose to introduce regularization to the estimation procedure, which
could adjust to a better MSE.

How to select the appropriate regularization parameter λ?
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Mathematical Formulation
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We formulate the following general regularized nonlinear least squares problem:

p̂λ = argmin
p

{
‖G(p)− d‖22 + λ2 ‖Lp‖22

}
(1.2)

d: Noisy data vector.

p: Underlying parameters.

L: Weighting matrix L.

G: Physical model of the experiment, depending on particular models.

λ: Regularization parameter.
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Mathematical Formulation
Linear Least Squares Problem
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First, consider the simplified version of

p̂λ = argmin
p

{
‖G(p)− d‖22 + λ2 ‖p‖22

}
(1.3)

and assume G is a matrix of appropriate dimension, then we have

p̂λ = argmin
p

{
‖Gp− d‖22 + λ2‖p‖22

}
(1.4)

which has a closed-form solution p̂λ =
(
GTG+ λ2I

)−1
GTd , where I is the

identity matrix.

The role of λ is to perturb the ill-conditioned matrix GTG, which is precisely
what is required to improve its condition number.
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Mathematical Formulation
Regularized Nonlinear Least Squares Problem
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Spencer and Bi (2020) derived an explicit expression for the covariance matrix of
the solution to the optimization problem (1.2):

p̂λ = argmin
p

{
‖G(p)− d‖22 + λ2 ‖Lp‖22

}
given by

Cov (p∗λ) ≈ σ2
ε

(
JTJ+ λ2LTL

)−1
JTJ

((
JTJ+ λ2LTL

)−1)T
(1.5)

where σε is the standard deviation of noise of data, L is the weighting matrix, λ is
the regularization parameter, and J is the Jacobian of G.

If comparing with the non-regularized covariance matrix, the elements of the
covariance matrix are greatly reduced, indicating the improved stability of
regularized solution.
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Mathematical Formulation
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To solve nonlinear least squares problem (1.2),

p̂λ = argmin
p

{
‖G(p)− d‖22 + λ2 ‖Lp‖22

}
we implemented various optimization methods:

Grid Search + Mesh Adaptive Direct Search

Gauss Newton

VARPRO [OR13]

Levenberg-Marquardt Method
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Project Goals
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Evaluate a suitable degree of regularization, through the value of λ, that we
should introduce to achieve MSE less than CRLB.

If such λ exists, evaluate its robustness with respect to range of possible
parameter values. In practical applications, we will assume the realistic case
of having some a priori knowledge of plausible parameter ranges.
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Mono-exponential Model
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To establish methodology with a simpler but still-relevant problem, we first
analyze the simpler but still-important mono-exponential model:

S(TE; c, T ) = c exp
(
−TE/T

)
where TE = {TEk}nk=1 is the echo time, and c, T are parameters to be estimated.
In the actual signal measured, we have additive white Gaussian noise, namely,

S
(
TE; c, T

)
= c exp

(
−TE/T

)
+ ν (1.6)

where ν is the noise with normal distribution, i.e., ν ∼ N (0, σ2).
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Mono-exponential Model
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Now, we set up the optimization problem as follows

argmin
c,T

∥∥∥c exp(−TE/T )− d
∥∥∥2
2

s.t. c ≥ 0, T ≥ 0

(2.1)

where TE = {TEk}nk=1 is the echo time, d = {dk}nk=1 is the signal data of one
noise realization, i.e., dk is the datum we collect at time TEk, for k = 1, 2, . . . , n.
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Mono-exponential Model
Landscape Plot of Loss Function
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(a) (b)

Figure: Loss function vs. T , where c = 0.7,TE = 8 : 8 : 128, SNR = 1000.
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Mono-exponential Model
Regularized Least Squares Formulation
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Next we set up the regularized optimization problem as follows

argmin
c,T

∥∥∥c exp(−TE/T )− d
∥∥∥2
2
+ λ2

∥∥∥(c, T )>∥∥∥2
2

s.t. c ≥ 0, T ≥ 0

(2.2)

where TE is the echo time, d is the signal data, λ is the regularization parameter.
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Algorithm
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Algorithm 1: Monte Carlo Simulation

Input: Sequence of regularization parameters {λi}Mi=1, number of simulations
N , dimension of parameter p, weighting matrix L, MRI model G;

Output: Estimators of parameters sol vec;
Data: MRI model measurements d;
for i = 1 to M do

for j = 1 to N do
Using optimization solvers to solve

p̂λ = argmin
p

{
‖G(p)− d(:, j)‖22 + λ2i ‖Lp‖

2
2

}
;

sol veci(j, :) = (p̂λ)
>;

end

end
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Mono-exponential Model
Mean Squared Error (MSE) vs. Regularization Parameter λ
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(a) SNR = 10 (b) SNR = 100

Figure: Mean Squared Error of Estimators of T vs. λ by using Levenberg-Marquardt,
with different SNR.
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Guarantee Analysis
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Let X denote the random variable (θ̂ − θ)2, where θ̂ is the estimator of θ,
and θ denotes c or T in the mono-exponential model.

Using the Generalized Finite-Sample Chebyshev’s inequality by Kaban,
[Kab12],

P (|X −m| ≥ ks) ≤ 1

N + 1

⌊
N + 1

N

(
N − 1

k2
+ 1

)⌋
where X is the random variable (θ̂ − θ)2, m is the sample mean, s is the
sample standard deviation, k is an arbitrary constant, and N is the number of
times we sample X.
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Bi-exponential Model
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Bi-exponential analysis now proceeds analogously. We consider the following
model

S(TE; c1, c2, T21, T22) = c1 exp(−TE/T21) + c2 exp(−TE/T22)

where TE is the echo time, and c1, c2, T21, T22 are parameters to be estimated.
In spectroscopy, which we consider here, the noise model is additive white
Gaussian noise, namely,

S(TE; c1, c2, T21, T22) = c1 exp(−TE/T21) + c2 exp(−TE/T22) + ν (3.1)

where ν is the noise with the normal distribution ν ∼ N (0, σ2).
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Bi-Exponential Model
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Now, we set up the optimization problem as follows

argmin
c1,c2,T21,T22

∥∥∥c1 exp (−TE/T21) + c2 exp (−TE/T22)− d
∥∥∥2
2

s.t. c1 ≥ 0

c2 ≥ 0

T21 ≥ 0

T22 ≥ 0

(3.2)

where TE is the echo time, d is the signal data of one noise realization.
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Bi-exponential Model
Landscape Plot of Loss Function
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(a) Data with SNR = 1000 (b) Noiseless Data

Figure: Landscape of Loss Function and Estimators
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Bi-exponential Model
Mean Squared Error (MSE) vs. Regularization Parameter λ

100mm(.85-1cm)

(a) SNR = 10 (b) SNR = 100

Figure: Mean Squared Error of Estimators of T22 vs. λ by Levenberg-Marquardt, with
different SNR, c1 = c2 = 0.5, T21 = 50.
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Bi-exponential Model
Visualization of Regularization Effects
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(a) SNR = 10 (b) SNR = 100

Figure: Heat map of effects of regularization in estimating T21 for different SNR, where
c1 = 0.5, c2 = 0.5. Each entry in the table denotes improvement of MSE over CRLB,
i.e., CRLB−MSE

CRLB
.
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Bi-exponential Model
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In practice, we are only given a prior range of possible values of parameters.

Therefore, it is important to find optimal λ that works well for all parameters
in the given range on average.
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Bi-exponential Model
Proposed Strategy of Selecting λ’s
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(a) Improvements of MSE using λ = 1e− 6. (b) An example of prior range of parameters

Figure: Heat map of effects of regularization using λ = 1e− 6, where c1 = 0.5, c2 = 0.5,
Each entry in the table denotes improvement of MSE over CRLB, i.e., CRLB−MSE

CRLB
.
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Proposed Strategy of Selecting λ’s
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For the parameters in a reasonable range (orange region), we compute the
average value of improvements, which corresponds to a single value of λ.

Repeat the above step for all λ’s in a reasonable range of λ.

For all heat maps (corresponding to all λ’s), select the one that gives the
largest improvement on average.
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Conclusions
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In brief, we have successfully introduced regularization into NLLS parameter
estimation to decrease MSE below both the CRLB and the conventional NLLS
analysis.
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Future Work
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Given T21, T22, estimate for c1, c2.

All four parameters unknown.

Other biomedical MRI models.
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