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Background
Processes of creation of an magnetic resonance image(MRI)

Signal generation based on properties of magnetic resonance

Relaxation processes

Signal detection

Encoding spatial information

Reconstruction of an image from signal

Remark
The project focuses on the second and the third step of the process.

Zezheng SongAdvisor: Dr.Richard Spencer AMSC 663/664 Proposal Presentation October 6, 2020 3 / 28



Background

In magnetic resonance imaging(MRI), an important task is to recover the
parameters in the underlying MRI models, which could provide important
clinical information. For example, in 1985, Stark found that MR images
based on a τ2-weighted contrast were more effective than CT or radionuclide
imaging, in classifying benign or malignant lesions.

The most common model is the bi-exponential model, i.e.,

S(TE; c1, c2, τ1, τ2) = c1 exp (−TE/τ1) + c2 exp (−TE/τ2)
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Motivation of the project

The bi-exponential model has two terms, which correspond to two different
type of molecules. If we can determine those parameters from the signal,
then we know how much of each type of molecule is present, which is of
great diagnosis value.

We are developing numerical methods to estimate parameters more
accurately.
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Mathematical Formulation
Cramér–Rao lower bound

Definition
In the field of statistics, Cramér–Rao bound gives a theoretical lower bound on the
variance of the estimator of deterministic parameter of the model.

Consider the the parameter vector θ = [θ1, θ2, . . . , θd]
T ∈ Rd, with

probability density function f(x;θ), and the Fisher information matrix is a

d× d matrix given by Im,k = −E
[

∂2

∂θm∂θk
log f(x;θ)

]
. Let T (X) be an

estimator, and denote its expectation vector E[T (X)] by ψ(θ), then the
Cramér–Rao bound then states that the covariance matrix of T (X) satisfies

covθ(T (X)) ≥ ∂ψ(θ)

∂θ
[I(θ)]−1

(
∂ψ(θ)

∂θ

)T
(0.1)
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Mathematical Formulation
Limitations of CRB

CRLB allows evaluation and improvement of variance (by trying to achieve
CRLB) of a measurement process.

Previous work has been focused on providing the Cramér–Rao bound, which
gives the lower bound on the variance of the estimators of parameters in the
MRI models

However, in general, we would prefer not to minimize variance, since small
variance with huge bias is not desirable.

Therefore, our goal is to achieve a good trade-off between bias and variance.
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Mathematical Formulation
How do we improve it?

By Yonina Eldar’s work[Eld06], the performance of estimators could be
improved, provided that we sacrifice some bias

Box’s work [Box71]included important early approximation analysis of bias in
nonlinear estimation, with effects of regularization via a Bayesian prior
information perspective

Therefore, we could use Mean Squared Error(MSE) to measure the
performance of estimators, by the formula that
MSE(θ̂) = Var(θ̂) + Bias(θ̂, θ)2
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Mathematical Formulation
Regularized Least Square Problem

p̂λ = argmin
p

{
‖G(p)− d‖22 + λ2 ‖L (p− p0)‖22

}
(0.2)

d: noisy data measured in experiment

p: parameters of the MRI model

p0: Priori estimated parameter

L: weighting matrix L

G: underlying MRI model, nonlinear in p

λ: regularization parameter

Zezheng SongAdvisor: Dr.Richard Spencer AMSC 663/664 Proposal Presentation October 6, 2020 9 / 28



Mathematical Formulation
By adding regularization

Advantages

Makes the potential ill-posed problem stable

Introduces another free parameter to adjust to a better MSE

balance the completing goals of minimizing the objective function while
controlling the norm of the solution

Problems

Larger regularization parameter λ gives more stability(less variance), but
introduces more bias, vice versa.

Therefore, we need to choose λ carefully to obtain a desired trade-off
between bias and variance.
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Mathematical Formulation
Linear Problem case

p∗
λ = argmin

p

{
‖Gp− d‖22 + λ2‖p‖22

}
(0.3)

= argmin
p

∥∥∥G̃λp− d̃
∥∥∥2
2

(0.4)

=
(
GTG+ λ2I

)−1
GTd (0.5)

where G̃λ =

(
G
λI

)
, I is the identity matrix

The role of λ is to perturb the ill-conditioned matrix GTG, which is precisely
what is required to improve its condition number.
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Mathematical Formulation
Relationship of regularization parameter λ and condition number κ(G̃)
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Mathematical Formulation
Regularized Least Square Problem

Cov (p∗
λ) ≈

((
J̃Tλ J̃λ

)−1

J̃Tλ

)
Cov(d̃)

((
J̃Tλ J̃λ

)−1

J̃Tλ

)T
(0.6)

≈ σ2
ε

(
JTJ+ λ2LTL

)−1
JTJ

((
JTJ+ λ2LTL

)−1
)T

(0.7)

where J̃λ =

(
J (p∗)
λL

)
, σε is the standard deviation of data,and J is the

Jacobian of G

If comparing with the non-regularized covariance matrix, the elements of the
covariance matrix are greatly reduced, indicating the improved stability of
regularized solution
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Mathematical Formulation
MRI models

bi-exponential model

S(TE; c1, c2, τ1, τ2) = c1 exp(−TE/τ1) + c2 exp(−TE/τ2)

Stretched exponential:

S(b;α,D) = S0 exp (−(bD)α)

, where α is the stretching constant. Arises from some models of restricted
diffusion.

Kurtosis models:

S(b;D,K) = S0 exp (−bD + b2D2K/6)

which is a first-order approximation to non-Gaussian diffusion.
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Mathematical Formulation
Noise distributions

Gaussian noise, a universal noise model

Rician noise, common for signal magnitude of MRI images[GP95]

pM (M) =
M

σ2
exp

(
−
(
M2 +A2

)
2σ2

)
I0

(
A ∗M
σ2

)
Non-central χ distribution, appropriate for multi-coil acquisition, such as in
parallel imaging[BS18]

Pχ(M,A, σ,m) =
A1−m

σ2
Mm exp

(
−M

2 +A2

2σ2

)
Im−1

(
MA

σ2

)
where A is the magnitude of underlying noise-free signal; M is the magnitude
of the observed signal; m is the number of coils; σ2 is the noise variance; Im
is the modified mth order Bessel function of the first kind.
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Mathematical Formulation
Algorithm

Algorithm 1: Monte Carlo Simulation

lambda vec = logspace(λmin, λmax,number of λs);
nl = length(lambda vec);
for n ∈ 1 : nl do

lambda = lambda vec(i);
sol vec = zeros(nrun,4);
for j ∈ 1 : nrun do

Use optimization solvers to (0.2), and store in sol vec(j,4)
end
Calculate bias, variance, and MSE

end
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Mathematical Formulation
Optimization Methods

Grid Search

Gradient Descent

VARPRO[OR13]

Mesh Adaptive Direct Search

Levenberg-Marquardt Method
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Project Goals

Study how much amount of regularization we should add, to achieve a
desired trade-off between variance and bias? and study if there is a range of
λ that makes MSE less than CRLB. If such ranges exist, how confident are
we to approximate the true range by our simulation results?

If such λ exists, study how robust it is with respect to the change within a
range of possible parameter values.
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Preliminary Work

Studied biexponential model + AWGN,

S(TE; c1, c2, τ1, τ2) = c1 exp(−TE/τ1) + c2 exp(−TE/τ2) + ε

For a chosen set of true parameters of the model
(c1, c2, τ1, τ2) = (0.5, 0.5, 30, 60), we implemented Algorithm 1 with the grid
search, obtained the plots of bias, variance and MSE vs. λ for each
parameter, and compared it with the theoretical results.
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Preliminary Work
Plots of Theoretical Results
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Preliminary Work
Plots of Numerical Simulation
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Preliminary Work

Table: Range of λ that make MSE below CRLB, calculated theoretically

c1 values Desired λ range

0.2 (0.0034, 2.8840)
0.3 (0.0020, 4.7121)
0.4 (0.0009, 5.0950)
0.5 (0.0002, 5.0643)
0.6 (0.0004, 4.8688)
0.7 (0.0010, 4.6628)
0.8 (0.0015, 4.4826)

Table: Range of λ that make MSE below CRLB, by grid search

c1 values Desired λ range

0.5 (0.0230,0.0966)
0.6 (0.0095,0.0142)
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Validation

Theory based method

By Box’s paper and Spencer’s tutorial paper, we are able to calculate the bias and
variance, thus MSE. Therefore, it could provide us a validation to our simulation
result.

Numerical method

Consider the limiting case(low noise or noiseless), then the performance of the
estimator should approach that of the unregularized estimator.
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Implementation

MATLAB 2020A, C++

High Performance Computing Cluster at UMD
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Deliverables

The code will be modularized nicely for the ease of extension, portability and unit
testing, with proper documentation

All MRI models and noise distributions will be written in different MATLAB
functions. Data generated by models and noise will be saved in .m files.

CRLB calculation will be written as MATLAB functions, suitable for different
models and noises.

Solver of optimization problems will be written and tested separately.

The desired range of regularization parameter will be computed and tested,
for different models and noises.
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Project Schedules

Phase 1(October - December): Focus on bi-exponential model and Gaussian
noise, exploring different nonlinear non-convex solvers, study the stability of
regularization parameter, which will make MSE lower than the corresponding
CRLB.

Phase 2(January and February): With the structure of the codes written,
re-do everything with kurtosis, stretched exponential, kurtosis +
monoexponential, kurtosis + stretched exponential, all with AWGN.

Phase 3(March):For bi-exponential model only, extend to Rician noise.
Compute the CRLB, analyze the stability of desired ranges of regularization
parameter λ.

Phase 4 (April): If that works, implement Rician noise in other models.
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Thank you!
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