1. Let

\[A = \begin{pmatrix} 1 & -3 & -5 \\ 0 & 1 & 1 \end{pmatrix} \]
\[b = \begin{pmatrix} 0 \\ 3 \end{pmatrix} \]

Give the solutions to \(Ax = b \) in parametric form.

2. Determine \(h \) and \(k \) such that the solution set of the system (i) is empty, (ii) contains a unique solution, and (iii) contains infinitely many solutions.
 a.
 \[
 \begin{align*}
 x_1 + 3x_2 &= k \\
 4x_1 + hx_2 &= 8
 \end{align*}

 b.
 \[
 \begin{align*}
 -2x_1 + hx_2 &= 1 \\
 6x_1 + kx_2 &= -2
 \end{align*}

3. a. Construct a \(4 \times 4 \) matrix \(A \) such that every collection of 3 columns is linearly independent, but all 4 vectors are linearly dependent.

 b. Show that if \(v_1, \ldots, v_4 \) are linearly independent vectors in \(\mathbb{R}^4 \), then \(\{v_1, v_2, v_3\} \) is also linearly independent.

4. Let \(T : \mathbb{R}^4 \to \mathbb{R}^3 \) be the linear transformation determined by the following rule:

\[
T(1, 0, 0, 0) = (-1, 5, 2) \\
T(0, 1, 0, 0) = (1, 0, 3) \\
T(0, 0, 1, 0) = (1, 1, 4) \\
T(0, 0, 0, 1) = (2, -7, 1)
\]

 a. Is \(T \) 1-1?

 b. Is \(T \) onto?