1. Let A be an $n \times n$ matrix.

 a. If A is diagonalizable, then A^3 is diagonalizable. Why?

 b. If A is invertible, then A^3 is invertible. Why?

2. a. Find all h such that the following matrix not diagonalizable

 $\begin{pmatrix} 1 & h \\ 1 & -1 \end{pmatrix}$

 b. Find all h such that the following matrix not diagonalizable

 $\begin{pmatrix} 1 & h & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$

3. a. Define a linear transformation

 $T : \mathbb{P}_3 \rightarrow \mathbb{P}_2$

 $T : p(t) \mapsto p'(t)$

 For example, if $p(t) = t^3 - t$, then

 $T(p(t)) = p'(t) = 3t^2 - 1$

 Find the matrix for T with respect to the bases $\mathcal{B} = \{1, t, t^2, t^3\}$ of \mathbb{P}_3 and $\mathcal{C} = \{1, t, t^2\}$ of \mathbb{P}_2.

 b. Multiplication by the matrix

 $A = \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix}$

 defines a linear transformation $\mathbb{R}^2 \rightarrow \mathbb{R}^2$. Find the matrix for this linear transformation with respect to the basis $\mathcal{B} = \{(-1, 1), (1, 1)\}$.

4. a. The transformation $x \mapsto Ax$ where

 $A = \begin{bmatrix} -3 & 0 \\ 0 & -3 \end{bmatrix}$

 is the composition of a scaling and rotation. Find the angle of rotation φ and the scaling factor r.

 b. Find the eigenspaces of the matrix

 $B = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$

 and prove they are orthogonal (Hint: just check the basis vectors).