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Survey Sampling Motivation

Data are {XZ-(l),RZ-, R; - (XZ-(Q), Y;)) : 1€ S}

S C U is a probability sample drawn from frame U with known
inclusion prob’s m; (may depend on XZ-(l))

XZ.(l), XZ.(Q) are predictive (unit-level) covariates

Y; is unit level attribute of interest with desired population
total ty, while totals of X, vectors are known

R; is a unit-response indicator, and R; |_|YZ-|XZ- (MAR)

For categorical X: Y, R uncorrelated within frame X-cells



Stages of Observability

Household Surveys
o XZ.(l) geographic, neighborhood, housing-type info

o XZ.(Q) demographic, maybe economic background

o Y, survey attribute (e.g., income, poverty,
govt. program status, or whatever)

Contrast with 2-phase Sampling (in biostat)

o Y, XZ.(l) disease outcome & ‘cheap’ measurement

2 :
° Xi( ) expensive accurate measurement



Standard Double-Robust Estimating Eqg’'n

X - 00 (- i) =0

e X; may contain components of both Xz.(l), XZ.(Q)
e Usual outcome model u(X;,68) = X! 8, a(X;) = X;.

e Propensity model p(z) = P(R; = 1|XZ.(1) = ¢) fitted (e.qg.,
by logistic regression) on same study data.

e Semiparametric theory shows this form of equation is optimal
when residuals Y, — u(X;, 3) A (XZ-(l), XZ.(Q)).



Extensions for Household Surveys

(1) XZ.(l) may contain additional components [e.g., from
paradata, on modes of interim refusal in multistage attempts
at contact] without known national totals.

(2) Regression may not include enough terms to make resid-
uals independent of propensity predictors XZ-(l).

(3) MAR assumption may hold with conditioning on X, but
not on XZ-(l) .



Two New Elements

(A) “Augmented” terms in survey estimating equations can
iImprove precision when E(Y—X{6|XZ-(1)) = 0, e.g., when
X)) cannot be incorporated in regression.

(B) Estimating equation may be valid only with propensity de-
pending on XZ.(Q) . then when p(XZ-(l),XZ-(Q)) is known, estimate
extended propensity

P(x@ | x1) R)

. (1) v(2)y _— _ (1)
P(R=1|x1, x2)) = p(r=1|xW)) P(X@ X D)




Augmented Estimating Equations
Data Structure {XZ.(l),RZ-, R; - (XZ-(Q), Y;) : 1€ S}

Robins, Rotnitzky, Zhao (1994) and Tsiatis (2006) advance
“augmented” estimating equations in MAR cases:

(1) =
DESREL SISO R NE N0} S pEL LI ELINISS
including outcome (E(Y|X) = w(X,8)) and response

propensity (P(R = 1|X1)) = p(Xx() 5)) models, via influ-
ence functions for Regular Asymptotically Linear estimators.



Augmented Estimating Eq’'ns, Continued

R, — p(XV) )

R; (1)
a(Xq) 1Y — p(Xy, - L(X,
zi: p(XZ.(l),ﬁ) ( ){ ,LL( 5)} zz: p(XZ.(l),ﬁ) ( )

Augmented (incomplete-case) terms help only if
1
E(a(X;)(Y; — u(X)) | X)) # 0.

In that case, the optimal L is E(a(X;)(Y; — p(X,;)) | X)),

Can estimate conditional expectations if X(l), X discrete.



Joint Distributional Calculations

We saw that estimating equations involving extended MAR con-
ditions or augmentation terms arise in realistic survey settings.
To calculate the necessary conditional probabilities, must fit
models jointly for X, variables (some XZ.(l) and some XZ.(Q)).

Natural in surveys to model R; given XZ.(l) and within responder-
set XZ.(Q) given (XZ-(l), R;=1).

If convenient but unlikely assumption XZ-(Q) AL R; | XZ.(l) holds,
then propensity depends only on X(l)

/l., .
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With known cross-classified totals for X;

To model many categorical variables jointly, with or without
survey weights, try loglinear models with some suppressed
interactions.

Such ‘small-domain’ models for conditionals XZ.(Q) given XZ.(l)
(within full population or responder-set) will yield extended
propensity models in terms of X;, beyond p(XZ-(l)).

This is a promising future direction for household-survey
research.
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