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Survey Sampling Motivation

Data are {X(1)
i , Ri, Ri · (X(2)

i , Yi) : i ∈ S}

S ⊂ U is a probability sample drawn from frame U with known

inclusion prob’s πi (may depend on X
(1)
i )

X
(1)
i , X

(2)
i are predictive (unit-level) covariates

Yi is unit level attribute of interest with desired population

total tY , while totals of Xi vectors are known

Ri is a unit-response indicator, and Ri |= Yi |Xi (MAR)

For categorical X: Y, R uncorrelated within frame X-cells
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Stages of Observability

Household Surveys

• X
(1)
i geographic, neighborhood, housing-type info

• X
(2)
i demographic, maybe economic background

• Yi survey attribute (e.g., income, poverty,

govt. program status, or whatever)

Contrast with 2-phase Sampling (in biostat)

• Yi, X
(1)
i disease outcome & ‘cheap’ measurement

• X
(2)
i expensive accurate measurement
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Standard Double-Robust Estimating Eq’n

∑

i

Ri

ρ(X(1)
i , η̂)

a(Xi) {Yi − µ(Xi, β)} = 0

• Xi may contain components of both X
(1)
i , X

(2)
i

• Usual outcome model µ(Xi, β) = X ′
i β, a(Xi) = Xi.

• Propensity model ρ(x) = P(Ri = 1 |X(1)
i = x) fitted (e.g.,

by logistic regression) on same study data.

• Semiparametric theory shows this form of equation is optimal

when residuals Yi − µ(Xi, β) |= (X(1)
i , X

(2)
i ).
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Extensions for Household Surveys

(1) X
(1)
i may contain additional components [e.g., from

paradata, on modes of interim refusal in multistage attempts

at contact] without known national totals.

(2) Regression may not include enough terms to make resid-

uals independent of propensity predictors X
(1)
i .

(3) MAR assumption may hold with conditioning on Xi but

not on X
(1)
i .
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Two New Elements

(A) “Augmented” terms in survey estimating equations can

improve precision when E(Y − X ′
iβ |X(1)

i ) 6= 0, e.g., when

X(1) cannot be incorporated in regression.

(B) Estimating equation may be valid only with propensity de-

pending on X
(2)
i : then when p(X(1)

i , X
(2)
i ) is known, estimate

extended propensity

P(R = 1 |X(1), X(2)) = P(R = 1 |X(1))
P(X(2) |X(1), R)

p(X(2) |X(1))
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Augmented Estimating Equations

Data Structure {X(1)
i , Ri, Ri · (X(2)

i , Yi) : i ∈ S}

Robins, Rotnitzky, Zhao (1994) and Tsiatis (2006) advance

“augmented” estimating equations in MAR cases:

∑

i

Ri

ρ(X(1)
i , η̂)

a(Xi) {Yi − µ(Xi, β)} −
∑

i

Ri − ρ(X(1)
i , η̂)

ρ(X(1)
i , η̂)

L(Xi)

including outcome (E(Y |X) = µ(X, β)) and response

propensity (P(R = 1|X(1)) = ρ(X(1), η)) models, via influ-

ence functions for Regular Asymptotically Linear estimators.
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Augmented Estimating Eq’ns, Continued

∑

i

Ri

ρ(X(1)
i , η̂)

a(Xi) {Yi − µ(Xi, β)} −
∑

i

Ri − ρ(X(1)
i , η̂)

ρ(X(1)
i , η̂)

L(X(1)
i )

Augmented (incomplete-case) terms help only if

E(a(Xi)(Yi − µ(Xi)) |X
(1)
i ) 6= 0.

In that case, the optimal L is E(a(Xi)(Yi − µ(Xi)) |X
(1)
i ).

Can estimate conditional expectations if X(1), X discrete.
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Joint Distributional Calculations

We saw that estimating equations involving extended MAR con-

ditions or augmentation terms arise in realistic survey settings.

To calculate the necessary conditional probabilities, must fit

models jointly for Xi variables (some X
(1)
i and some X

(2)
i ).

Natural in surveys to model Ri given X
(1)
i and within responder-

set X
(2)
i given (X(1)

i , Ri = 1).

If convenient but unlikely assumption X
(2)
i |= Ri | X

(1)
i holds,

then propensity depends only on X
(1)
i .
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With known cross-classified totals for Xi

To model many categorical variables jointly, with or without

survey weights, try loglinear models with some suppressed

interactions.

Such ‘small-domain’ models for conditionals X
(2)
i given X

(1)
i

(within full population or responder-set) will yield extended

propensity models in terms of Xi, beyond ρ(X(1)
i ).

This is a promising future direction for household-survey

research.
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