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CONVEX REAL PROJECTIVE STRUCTURES
ON COMPACT SURFACES

WILLIAM M. GOLDMAN

Abstract

The space of inequivalent representations of a compact surface S with
χ(S) < 0 as a quotient of a convex domain in RP2 by a properly dis-
continuous group of projective transformations is a cell of dimension
-*X(S)

The purpose of this paper is to investigate convex real projective struc-
tures on compact surfaces. Let RP2 be the real projective plane and
PGL(3, R) the group of projective transformations RP2 —• RP 2 . A convex
real projective manifold {convex RP2 -manifold) is a quotient M = Ω/Γ,
where Ω c RP2 is a convex domain and Γ c PGL(3, R) is a dis-
crete group of projective transformations acting properly on Ω. The
universal covering of M may then be identified with Ω, and the fun-
damental group πx(M) with Γ. Two such quotients Mχ - Ω J / Γ J and
M2 = Ω2/Γ2 are projectively equivalent if there is a projective transfor-
mation h e PGL(3, R) such that h(Ωχ) = Ω2 and hΓχh~ι = Γ 2 . The
classification of convex RP2-manifolds with χ{M) > 0 is due to Kuiper
[30], [31] in early 1950's.

If S is a closed smooth surface, then a convex RP2-structure on S is
defined to be a diffeomorphism f:S —• M where M is a convex RP2-
manifold; two such pairs (/, M) and (/, M1) are regarded as equiv-
alent if there is a projective equivalence h\M —• M1 such that ho f
is isotopic to f . Let π = π{(S) by the fundamental group of S.
Given a convex RP2-structure on S, the action of π by deck transforma-
tions on the universal covering space of S determines a homomorphism
π -• PGL(3, R), well defined up to conjugacy in PGL(3, R). The set of
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projective equivalence classes of convex RP2-structures on S has a natu-
ral topology which can be identified with an open subspace of the space
Hom(π, PGL(3, R))/PGL(3, R) of conjugacy classes of representations
π —> PGL(3, R). (When S has boundary, we assume that the boundary
is represented by closed geodesies each having a geodesically convex collar
neighborhood). We call this space the deformation space of convex RP2-
structures on S and denote it by φ(S). We determine explicit coordinates
on this space; our main result is the following.

Theorem 1. Let S be a compact surface having n boundary compo-
nents such that χ(S) < 0. Then φ(S) is diffeomorphic to a cell of dimen-
sion -Sχ(S) and the map which associates to a convex RP2-manifold M
the germ of the RP2-structure near dM is afibration of φ{S) over an open
2n-cell with fiber an open cell of dimension -&χ(S) - 2n.

Corollary. Let S be a closed orientable surface of genus g > 1. Then
the deformation space φ(5) of convex RP2 -structures on S is diffeomor-
phic to an open cell of dimension \6{g - 1).

The deformation space φ(S) is an analogue of the Teichmϋller space
%{S) of S, which is classically known (Fricke and Klein [12]) to be an
open cell of dimension 6(g - 1). Using the Klein-Beltrami projective
model for hyperbolic geometry, every hyperbolic structure on S defines
a convex RP2-structure; thus X(5) embeds in φ{S). The mapping class
group of S acts properly discontinuously on φ{S) as well as on X(S)
indeed φ(5) admits an equivariant retraction onto T{S). The space φ(S)
promises to have very interesting geometry: there is a canonical symplectic
form on φ{S) ([14], [19]) as well as Riemannian metrics on φ(S) both of
which restrict to the Weil-Petersson Kahler form and the Weil-Petersson
Riemannian metric on Ϊ(S) perhaps these constitute a Kahler geometry
on φ(5) extending the Weil-Petersson Kahler geometry of T{S) (see [40]).
Moreover projective duality defines a natural involution φ{S) —• φ(S)
whose stationary set equals X(S).

Recently Suhyoung Choi, in his Princeton dissertation [7], showed that
every closed RP2-manifold M with χ(M) < 0 admits a canonical decom-
position into convex subsurfaces along closed geodesies. Such decompo-
sitions (and hence the developing maps) are parametrized by a countably
infinite set Ώ(S) defined as follows. Consider families of pairs (γi, w^
where { y , } , ^ is a family of disjoint simple closed curves such that
each yi is homotopically nontrivial and no two yi are homotopic. Let
wi = wi(x» y) b e an element of the free semigroup on two generators
x, y which has even word-length in the x,y. The set B(S) is defined
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as the set of equivalence classes of families {{7iwi)}i^r , where two such
families are equivalent if the corresponding families {yz}/€Jr are isotopic
collections of curves. As in [16], the various ways M can be decomposed
into convex subsurfaces are parametrized by Ώ(S), and combining Choi's
theorem with the coordinates developed in this paper we obtain [8]:

Corollary. Let S be a closed surface with χ(S) < 0. Then there exists
a canonical diffeomorphism

RF2(S) -> φ(S) x D(S).

In particular RP2(S) is a countable union of open cells of dimension -&χ(S).
The paper is organized as follows. In § 1, certain facts about the group of

projective transformations are collected. The projective transformations
which arise from convex RP2-structures on closed surfaces are all repre-
sented by matrices with three positive eigenvalues; we call such projective
transformations positive hyperbolic. Their conjugacy classes in PGL(3, R)
form an open 2-cell. In 1.4-1.8 we give three equivalent sets of coordi-
nates for this space of conjugacy classes. In 1.9-1.11 the dynamics of a
positive hyperbolic projective transformation is discussed, and in 1.12 a
technical lemma on the action of PGL(3, R) by conjugation is proved.

§2 discusses general facts concerning real projective structures and their
deformation spaces. The definition of a general RP2-structure on a mani-
fold is given and the development theorem is stated; from this we define the
deformation space RP2(5) of RP2-structures on a closed surface S. Such
deformation spaces have been studied in numerous related contexts ([13],
[22], [29], [34], [35], [38]); their prototype being the Teichmϋller space,
regarded as the deformation space for hyperbolic structures on compact
surfaces. Unlike surfaces of zero Euler characteristic ([2], [13], [20], [35])
where the deformation space is neither Hausdorff nor a manifold, we prove
in 2.4:

Theorem. Let S be a closed surface with χ(S) < 0. Then the defor-

mation space RP (S) is a Hausdorff real analytic manifold of dimension

*()
In 2.7 these notions are extended to RP2-structures on surfaces with

boundary. If S is a compact surface with boundary, we consider RP2-
structures such that each boundary component possesses a convex collar
neighborhood.

§3 is concerned with the property of convexity of RP2-structures. The
usual notion of geodesic convexity is equivalent to the condition that the
universal covering space is projectively equivalent to a convex domain in

2 T h e basic results on convex RP2-structures on a closed surface S are
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due to Kuiper [31], Kac-Vinberg [23] and Benzecri [4]. It follows from this
work that if M is a convex RP2-manifold with χ(M) < 0, then the univer-
sal covering space of M is a strictly convex domain Ω c RP2 containing
no affine lines; the boundary <9Ω is a C1-curve which is either a conic
(in which case the convex RP2-structure on M arises from a hyperbolic
structure on M) or is nowhere C 1 + ε for some ε > 0. Furthermore every
element of Γ is a positive hyperbolic projective transformation. Results of
Koszul [28], [29] imply (Proposition 3.3) that the condition of convexity
defines an open subset ty(S) c MP2(5T) in the full deformation space and
indeed (Proposition 3.4) φ(S) may be identified with an open submani-
fold of the space Hom(π, PGL(3, R))/PGL(3, R) of equivalence classes
of representations of the fundamental group π of S. The rest of this
section is devoted to the proof of the following "combination theorem"
(Theorem 3.7), which allows one to build convex RP2-structures by gluing
together RP2-structures on surfaces with boundary along boundary com-
ponents. It is here that the existence of principal collar neighborhoods of
boundary components of convex RP2-manifolds is crucial.

Theorem. Let MQ be a (possibly disconnected) compact RP2-manifold
with principal boundary, and suppose that b{, b2 c dMQ are boundary
components with collar neighborhoods bt c N(b;) c Mo (i = 1, 2). Sup-
pose that f:N(bx) —• N(b2) is a projective isomorphism. Then there exist
an RP2-manifold M = M0/f and a simple closed geodesic b c M such
that M\b = A/Q and a tubular neighborhood N(b) c M of b with a re-
flection R:N(b) -> N(b) such that R induces f on N(b)\b c Λf0. If Mo

is a convex RP -manifold, then M is also a convex RP -manifold.

§4 proves Theorem 1 for the special case that S is a pair of pants (a
sphere minus three discs). The argument uses the preceding theory to re-
duce the classification to a calculation involving 3 x 3 matrices. Theorem
1 is proved in general in §5, using the results of §§3 and 4 and the decom-
position techniques for surfaces as in [1], [10], [17], [18], [21], [38]. In
5.6 explicit coordinates are given for φ(S) based on the Fenchel-Nielsen
coordinates on X(5).
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1. The group of projective transformations

1.1. The real projective plane MP2 is the space of all lines through the
3 3 3

origin in E if (JC , y, z) e R - {0} is a nonzero vector in R , the

corresponding point in RΨ2 will be denoted
x
y
z

in homogeneous coordinates. A linear transformation A e GL(3, R) pre-
serves lines through the origin; hence A induces a transformation of RP 2 ,
which by definition is a projective transformation. The group of such trans-
formations is denoted PGL(3, R), and it is easy to see that there is an
exact sequence

{1} -+ R* -> GL(3, R) -* PGL(3, R) -> {1} ,

where R* <GL(3, R) is the central subgroup consisting of scalar matrices.
The analytic homomorphism GL(3, R) —• SL(3, R) defined by

defines an isomorphism PGL(3, R) —> SL(3, R) as analytic groups. In
particular every projective automorphism g of RP2 lifts to an orientation-
preserving linear transformation (also denoted g) of M3. Thus we shall
henceforth use only the group SL(3, R), tacitly using the above analytic
isomorphism whenever convenient.

1.2. A projective transformation A e SL(3, R) is a reflection if and only
if A has order two in SL(3, R). Such a transformation is represented
by a diagonalizable matrix with eigenvalues ± 1 . Necessarily the (-1)-
eigenspace has dimension two, and the stationary set (the (l)-eigenspace)
has dimension one. On the projective plane the (-l)-eigenspace determines
a line I (A) which is pointwise fixed, and the (l)-eigenspace determines a
fixed point p(A) disjoint from I (A). There are coordinates near I (A) in
which the projective transformation A appears as a (Euclidean) reflection,
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and near the isolated fixed point p(A) there are coordinates in which A
appears as symmetry about p(A).

1.3. Consider the three points

P\ =

corresponding to the coordinate axes in R . The three lines joining them

1
0
0

P =
0
1

0
P3 =

0
0
1

= P2P3' = P\Pi

correspond to the coordinate planes and divide RP2 into four triangular
regions:

= {[x,y,z]eMF2\x>0, 0},

A{ = {[x,y,z]eRΨ2\x<0, y>0, z > 0 } ,

A2 = {[x,y,z]eRF2\y<0, x>0, z > 0},

Δ 3 = { [ X , ) / , Z ] < Ξ R P 2 | Z < 0 , x>0, y>0}.

A projective transformation A G SL(3, R) which fixes p{, p2, p3 is rep-
resented by a unique diagonal matrix in SL(3, R) the transformation
A leaves invariant one triangular region Δ (and hence every Δ f) if and
only if it is represented by a diagonal matrix with positive eigenvalues. We
shall denote the full group of diagonal matrices in SL(3, R) by J / and
the subgroup of diagonal matrices with positive eigenvalues by J/^ . Let
jtfQ c SL(3, R) be the four-element group represented by diagonal matri-
ces with eigenvalues ±1 then <$fQ — {/} consists of three reflections, each
one of which fixes one of the three coordinates lines as well as the corre-
sponding coordinate point (image of the corresponding coordinate axis in
RP 2 ). Clearly / = i + x i 0 and we see that sf0 acts transitively and
freely on the set of four invariant triangular regions, £f+ acts transitively
and freely on any one of the regions, and s/ acts transitively and freely
on the union of all four invariant regions.

Invariants of positive hyperbolic projective transformations.
1.4. Consider an arbitrary element A of SL(3, R). Then A is said

to be hyperbolic if it has three distinct real eigenvalues, and A is positive
hyperbolic if it is conjugate in SL(3, R) to a diagonal matrix with positive
eigenvalues. We denote the set of positive hyperbolic elements of SL(3, R)
by Hyp+ . We shall presently determine an invariant of conjugacy classes
of positive hyperbolic elements which will be calculationally useful in §4.
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Suppose that A G SL(3, R). We define λ(A) to be the real eigenvalue
of A G SL(3, R) having the smallest absolute value and τ(A) G R as the
sum of the other two (possibly unreal) eigenvalues. Thus if A G Hyp+ is
represented by the diagonal matrix

(1-1)

with

(1-2)

λ
0
0

0
μ
0

0
0
V

0<λ<μ<ιs,

then λ(A) = λ and τ(A) = μ + v . Moreover A G Hyp+ is determined up
to SL(3, M)-conjugacy by the set of eigenvalues of A which are

= λ(A),

μ = \[τ(A) - yJτ(A)2 - 4/λ(A)],(1-3)

It follows that the pair (λ(A), τ(A)) is a complete invariant of the SL(3, R)-
conjugacy class of A .

1.5. Proposition. Consider the action of SL(3, R) on Hyp+ by conju-
gation. Then the restriction of

A»(λ{A),τ(A))

to Hyp+ is a SL(3, R)-invariant fibration with image the region

= {(λ, τ ) G R 2 | 0 < λ < 1, 2/Vλ<τ<λ

(depicted in Figure 1.1 (a)). Furthermore Hyp+ = (λ, τ ) " 1 ^ ) and
SL(3, R) acts transitively on each fiber with isotropy group the subgroup
srf corresponding to diagonal matrices.

The proof will be based on the following lemma.
1.6. Lemma. Let A e SL(3, R). Suppose that υ e R3 is an eigenvector

for A with eigenvalue 0 < λ < 1 and £ c R 3 is a 2-dimensional invariant
linear subspace not containing v . Let τ equal the trace of the restriction
A\E. Then A is positive hyperbolic with λ(A) = λ if and only if

0<λ< 2/\/λ<τ<λ
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inc=0.2
0<y<12 inc=2

FIGURE 1.1 (a)

1 - 1Proof. Let B = A\E since A e SL(3, R), we have detB = λ > 0.
Then:

B has distinct positive eigenvalues

τ = tr(5) > 2

Since 0 < λ < 1, it follows that τ > 2/vΊ > 2 > 2λ. The eigenvalues of
Λ consist of A together with the eigenvalues of B which are given by
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These eigenvalues are real and distinct, provided τ > 2/y/λ. Now:

λ is the smallest eigenvalue of A

λ<t_

- 4/λ < τ - 2λ

φ (since τ-2A>0)

τ2 - 4/λ < (τ - 2λf

Thus A is positive hyperbolic if and only if τ < 2/>/A,.and in that case
Λ, is the smallest eigenvalue of A if and only if 2/yfλ < τ < λ + λ~2.
(If 0 < λ < 1, then λι/2 + A~3/2 > 2 and thus 2/Vλ < λ + λ~2.) This
concludes the proof of Lemma 1.6.

Proof of 1.5. Clearly (λ,τ):Hyp+ -* n̂ is SL(3, R)-invariant. By
(1-3) (λ, τ) determine the eigenvalues of A, and hence SL(3, R) acts
transitively on each fiber. The isotropy over a diagonal matrix in Hyp+

equals its centralizer which is the full group sf of diagonal matrices. By
Lemma 1.6 the image of Hyp+ lies in 9t; if (λ0, τ0) e JH, then (1-3)
determines a diagonal matrix with (λ9 τ)(A) = (λ0, τ 0 ) . The converse
assertion in Lemma 1.6 implies that if A e SL(3, R) has (A, τ)(A) G 1R,
then A e Hyp+ . The proof of 1.5 is now complete.

1.7. The invariants (A, τ) will be useful for the calculations later on,
although more customary sets of invariants are equivalent to them. Al-
gebraically more natural are the coefficients (x, y) of the characteristic
polynomial of A,

χA(t) = del(tl - A) = t3 - xt2 +yt - I;

if A is represented by the diagonal matrix (1-1), then

x = tv(A) =λ + μ + v= λ(A) + τ(A),

(1-4) y = iv{A~l) = λ~l +/Γ1 +z/-1 =μv+λv+λμ
l +λ(A)τ(A).

Now a matrix in SL(3, R) has real distinct eigenvalues if and only if its
characteristic polynomial has three distinct real roots; this condition is
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easily expressed in terms of the discriminant δ(A) of χA

δ(A) = Resultant^,, χ'A) =

-X

1
-2x

3
0

y
— X"

y

-2x
3

-1
y
o
y

-2x

0
-1
0
0

y

= -x2y2 + 4(JC3 + y3) - 1 Sxy 27

and Λ is hyperbolic if and only if δ(A) < 0; furthermore 4̂ is positive
hyperbolic if and only if δ{A) < 0 and x, y > 0.

It follows that the correspondence (A, τ) <-* (JC, y) defined by (1-4) is
a difFeomorphism

9t ^ {(x, y) € M2|x,

(compare Figure l.l(b)).

0, +y3) - 27 > 0},

FIGURE 1.1 (b)

1.8. Another pair of invariants of a positive hyperbolic element of
SL(3, R) is more closely related to the geometry of convex RP2-manifolds.
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Define

(1-5) l(A) = log(v/λ)>0, m{A) = 3log(μ),

where A is represented by a diagonal matrix (1-1) satisfying (1-2). The
conditions 0 < λ < μ < v and λμv = 1 are equivalent to the conditions

(1-6) t(A)>0, \m{A)\

The invariants λ{A) and τ(A) are easily expressed in terms of ί{A) and
m(A) by

ί(A) m(A)\
λ{A) = exp ( -

(1-7)

Clearly {ί(A)9 m(A)) can be an arbitrary element of M + x l satisfying (1-
6), and any A e Hyp+ is determined up to conjugacy by (I(A), m(A)) e
R+ x R. The correspondence (λ(A), τ{A)) <-• (i(A)9 m{A)) defined by
(1-7) is a diffeomoφhism

9t <-• {(ί , m) e R+ x R| \m\ < t]

giving another set of parameters for conjugacy classes in Hyp+ .
Geometry of positive hyperbolic projective transformations.
1.9. Let A e Hyp+ then the stationary set Fix(^4) consists of three

noncollinear points. By applying an inner automorphism of SL(3, R) we
may assume that A is represented by a diagonal matrix (1-1). The fixed
point corresponding to the eigenvector for λ is a repelling fixed point
Fix_(Λ), the fixed point corresponding to the eigenvector for v is an
attracting fixed point Fix+(^ί), and the fixed point corresponding to the

eigenvector for μ is a saddle point Fixo(^4). Let £{A) c RP2 be the line
joining the attracting and repelling fixed points of A. We shall refer to
I (A) as the principal line for A. The unique reflection R G SL(3, R)
with stationary set Fix(Λ) = I (A) U Fix(^4) will be called the principal
reflection for A clearly R commutes with A. The two fixed points of
A on I (A) separate I (A) into two ^-invariant segments, which we call
principal segments for A .

1.10. An affine space A in RF2 is by definition the complement of a
(projective) line / c RP2 an affine line in RP2 is the intersection of a
projective line /' distinct from / with the affine space A = RP2 - /, i.e.,
the complement of a point in a projective line; we define a half-plane to
be a component of the complement of two distinct lines in RP 2 . We say
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that a subset S c MF2 is convex if there exists an affine space A c MP2

containing S such that S is convex in the usual sense, i.e., if x, y e S,
then the line segment xμ lies in S. If 5 c A, then its convex AM// (with
respect to A) is the smallest convex subset of A containing S.

Lemma. Let A e Hyp+ and suppose that x e RP2 does not lie on an
A-invariant line. Then the closure of any convex set containing the (A)-orbit
of x contains a principal segment for A.

Proof Let A c RP2 be an affine space and let S c A be a closed
convex set containing the orbit (A)x . As n —• +oc the sequence Anx —>
Fix+(^4), and as n —• -oo the sequence Anx -> Fix_(Λ). For n > 0, let
σΛ denote the segment with endpoints An(x) and A~n(x). Then clearly
σ̂  lies in the convex hull of (A)x (with respect to A) and converges to a
principal segment for A , which must lie in the closure of the orbit of x .
Thus S contains a principal segment for A, as desired. (Compare Figure
1.2.)

Fixo(Λ)

Fix_(Λ) V

FIGURE 1.2

1.11. When A is represented by the matrix (1-1) as above, then it lies
on a unique one-parameter subgroup comprised of elements

[λs 0 0
(1-8) As = μs

0
0
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for s € R. Let p0 e RP2 be a point with homogeneous coordinates
[x0 ,yQ, z0] where xQ, yQ, z0 > 0 . Let / ^ be a projective line not meet-
ing the triangular region {[x, y, z] e RF\x > 0, y > 0, z > 0 } . Then
the convex hull of the orbit {As(p0)\s e R} in RP2 - / ^ equals the set

In general we can define families of (A)-invariant convex sets

(1-9) Wη = {[x, y ,z] e RF2\x,y, z > 0, χWMz

ι<*»/» >

for each η > 0. If R is the principal reflection for A, then W U R( W)
is a closed convex neighborhood of a principal segment for A which is
invariant under the one-parameter subgroup containing A .

Consider the one-parameter subgroup of sf comprised of elements

?~s 0 0
(1-10) B = 0 e2s 0

0 0 e~\

for 5ER. Then Bs commutes with A . The orbits of the one-parameter
subgroup {Bs:s e R} are line segments joining Fixo(^4) to the principal
line of A. Furthermore Bs maps the convex set W to W, where

n =(i//A) η.

In particular the convex sets W (for η > 0) are all projectively equiva-
lent.

The invariant ί(A) defined in 1.8 may now be interpreted geometrically
as follows. Consider a principal segment σ for A and choose x e σ.
Then the cross-ratio of the four points

Έix_{A),x,A(x),Έix+(A)

on the principal line / for A equals eί<yA). If Ω is any (Λ)-invariant
convex domain, then [4], [5], [25]-[27], [39] for definition of the Hubert
metric on the convex domain in RP 2). If <9Ω is a conic, then the Hubert
metric is the hyperbolic metric, and I (A) equals the geodesic length dis-
placement function discussed in [15].

The action of SL(3, R) by conjugation.
1.12. For later use we prove the following results concerning the action

of SL(3, R) on representations. For related material, see [22], [14].
Lemma. Let G = SL(3, R) and m > 1. Let % c Gm denote the open

set consisting of all (X{, ••• , X ) such that no line in R3 is simultaneously
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invariant under Xx, , Xm . Then the action of G on % by conjugation
is proper and free.

Proof W e first s h o w t h a t G ac t s p r o p e r l y o n %. L e t A,B <z% b e
c o m p a c t ; we m u s t s h o w t h a t

G(A,B) = {ge G\gA ΠB^0}

is compact. Thus we assume a sequence # ( 1 ) , , g{n), e G satisfies
g{n)A ί l δ / 0 , and we must prove that the g{n) remain bounded in
G. Since G(A, B) is necessarily closed, it suffices to replace A, B by
compact sets A1 D A, B1 D B and prove that G(Af, Bι) is compact,
whenever convenient. Let K = SO(3) c SL(3, M) thus we may assume
that A, B are each A^-invariant compact subsets of ^ .

Let J / c G denote the subgroup of diagonal matrices in G since
G = Ks/K and A and B are each AΓ-invariant, it suffices to consider the
case where g{n) e srf . Write

λf 0 0
0 λf 0
0 0 λf λ

Assume that the sequence g{n) is unbounded in srf c G. Then by conju-
gation we are led to consider two cases:

(i) Iλĵ l —• oo for k = 1, 2 and Iλ^l remains bounded;

(ii) \λ^]\ —• oo and Iλĵ l remains bounded for k = 1, 2 .

Since A and B are compact, there exists M > 0 such that if (X{, ,
XJ eAuB, then

(1-11) {(X^jlKM

for / = 1, , m. Let G3 = {X e SL(3, R)|AΓ13 = X>3 = 0} be the

stabilizer of the third coordinate line in M3. Since A U B is compact in

^ c Gm - (G3)
m , we may further assume that

m

(1-12) Σ IWπl + IW23I ^ M ~ !

If X G SL(3, R), then the entries of g{n)X are given by

i ( Λ )
( §Ί \ xL
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In case (i) above,

+ OO,

and (1-11) implies that (ΛΓ/)13 = (^/)23 = 0 for / = 1, , m contradict-
ing Xι £ G3. In case (ii) above,

*3

contradicting (1-12). The proof that G acts properly on % is complete.
We prove that G acts freely on %. Suppose that 1 Φ g eG stabilizes

X e %. Then there exists a line / c R3 which is invariant under the full
centralizer of g (for example, take the line spanned by the eigenvector
for the smallest or largest real eigenvalue of g). Since Xι centralizes
g, it follows that / is stabilized by X{ for / = 1, , m contradicting
X G %. Hence the proof of Lemma 1.12 is complete.

2. Real projective structures and their developing maps

2.1. In this section we describe basic general properties of real projective

structures and describe several specific classes of such structures which are

needed to build real projective structures on surfaces. Let Ω c RP be

an open set. A map φ: Ω —• RP2 is said to be locally projective if for

each connected component W c Ω, there is a projective transformation

g:MF2 -»- RP2 such that the restriction φ\w equals the restriction g\w .

Obviously a locally projective map is a local diίfeomorphism. Let M

denote a connected surface, i.e., a smooth 2-dimensional manifold. An

RP2-atlas on M is given by an open cover ^ of M , and a collection of

coordinate charts {ψv: U —• R P 2 } ^ ^ satisfying the following:

(i) Each ψυ is a diίfeomorphism U -> ψυ(U)\

(ii) For each U, V e ^ , the change of coordinates ψv o ψ~x:

ψv(U Π V) —• ψv(U Π V) is locally projective.

A real projective structure (or RP2-structure) on M is by definition a

maximal RP2-atlas on ¥ . A manifold with an RP2-structure will be

called an RP2-manifold'.

Let M, N be RP2-manifolds and let f:M ^ N be a smooth map.

Then / is a projective map (or an RF2-map) if for each coordinate chart

(U, ψυ) on M and each coordinate chart (V, ψv) on N , the com-

position ψyl o f o ψv is a locally projective map ψv{f~\V) n C/) -•



806 WILLIAM M. GOLDMAN

ψv{f{U) nV). An RP2-map between RP2-manifolds is necessarily a lo-
cal diffeomorphism. Conversely, if f:M —• N is a smooth map which
is a local diffeomorphism, and N is an RP2 -manifold, then there exists
a unique RP2-structure on M such that / is an RP2-map with respect
to these structures. In particular an RP -structure on M induces one on
every covering space of M.

The following basic theorem is well known.
2.2. Development Theorem. Let M be an RP2 -manifold.
(i) Let p:M-+M denote a universal covering space of M and let π de-

note the corresponding group of covering transformations. Then there exist
a projective map dev:M —• RP2 and a homomorphism h:π —• SL(3, R)
such that for each γ eπ the diagram

M ^ RP 2

y I i h{γ)

M —> RP 2

dev

commutes.
(ii) Suppose that (dev', h') is another such pair. Then there exists a

projective transformation g e SL(3, R) such that dev' = g o dev and
h' = ιgoh where ι :SL(3, R) —> SL(3, R) denotes the inner automorphism
defined by g.

The projective map dev: M —• RP2 is called a developing map and the
homomorphism h: π —• SL(3, R) is called the holonomy homomorphism.
We shall refer to a pair (dev, h) as a development pair. Once a universal
covering M —• M has been fixed, the developing map determines the RP -
structure on M uniquely. The image h(π) is called the holonomy group
and will be denoted Γ. The developing image de\(M) is a Γ-invariant
open subset of RP 2 . In many cases (such as the RP2-structures discussed
in this paper) the developing map is a diffeomorphism from the universal
covering of M onto its image. Then the holonomy homomorphism h
will be an isomorphism of nx{M) onto a discrete subgroup of SL(3, R)
which acts properly and freely on the developing image. For examples
where the developing map is not injective the reader is referred to [13],
[16], [20], [36], [37].

Let M be an RP2-manifold. We denote by Proj(AΓ) the group of all
projective automorphisms of M. Fix a development pair (dev, h) and
let g e Proj(Af) be an automorphism. Then there exists a lift g:M —•
M which is an automorphism of M. Any two lifts differ by a covering
transformation of M, and the group of covering transformations is a
normal subgroup π < Proj(M). The automorphism group Proj(Af) is
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isomorphic to the quotient Proj(M)/π .
Let g e Proj(M). Then there exists a projective transformation H(g) e

SL(3, R) such that the diagram
dev

M
g I I H(g)
M — • RP 2

dev

commutes. Clearly i/:Proj(M) —• SL(3, R) is a homomorphism whose
kernel is the (discrete) group consisting of all diffeomorphisms f\M —• M
such that

M ^ RP2

n ii
M —> RP 2

dev

commutes. The image of H lies in the subgroup Proj(dev(M)) of SL(3, R)
stabilizing the developing image dev(M). If dev is a covering map M —•
dev(M), then /f(Proj(Λ/)) actually equals the stabilizer Proj(dev(M)).

A geodesic on M is a curve g c M such that for each component
I Q C P ^ ^ C M , the developing map takes gQ into a line in R P 2 . We
shall say that a geodesic g is a simple closed geodesic if it is an embedded
closed 1-dimensional submanifold of M.

Deformation spaces.

2.3. A developing map is uniquely determined by its restriction to any
nonempty open set. Let M be a connected RP2-manifold and let x e M.
A projective chart at x is any projective map from a neighborhood of x
into RP 2 . We then define a projective germ at x in the usual way as an
equivalence class of projective charts at x. Thus for any x e M the
projective germ at x determines a unique developing map, and the group
SL(3, R) acts simply transitively on the set of projective germs at x . We
can use this to construct a deformation space of RP -structures on a fixed
surface as follows.

Let S be a fixed compact smooth surface. Let x e S be a base-point,
and let p:5 —• S be be a corresponding universal covering space and
n = πx(S) the corresponding group of covering transformations. Con-
sider triples (M, f9ψ), where M is an RP2-manifold, / is a diffeo-
morphism and ψ is a projective germ at f(x). Such a triple is equivalent
to a development pair (dev, h), where dev:S —• RP2 is a developing map
and h: π —• SL(3, R) is the corresponding holonomy homomorphism. We
shall say that two such triples {Mι, fχ, ψχ) and (Af2, f2, ψ2) are equiva-
lent if there is an RP2-isomorphism φ:Mι —• M2 such that φofχ ~ f2 by
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an isotopy leaving x fixed and φ*(ψ2) = ψx Using the C 1 topology on
developing maps, we give the set of equivalence classes of such triples a
topology Σ)(5) which is Hausdorff. There is a canonical SL(3, Reaction
on £>(5) which corresponds to changing the projective germ. The map
which associates to such a triple the corresponding holonomy homomor-
phism defines a SL(3, R)-equivalent continuous map

hoi: £(5) -> Hom(7Γ, SL(3, R))

which is a local homeomorphism (see [6], [17], [34], and [38] for fur-
ther discussion). Since Hom(π, SL(3, R)) is a real algebraic variety, we
may use this local homeomorphism to define the structure of a real ana-
lytic space on £ ( 5 ) . This structure is clearly preserved by the action of
SL(3, R). We denote the quotient 5)(5)/SL(3, R) by RP2(S).

2.4. Theorem. Let S be a closed surface with χ(S) <0. Then RP 2(5)
has the structure of a (Hausdorff) real analytic manifold of dimension
-8χ(S).

By contrast if S is a torus, then RP2(5) is neither HausdorfF nor a
manifold. RP2-structures on a torus are classified in [13], see also [2], [3],
[16], [30], [35], [20].

Proof of 2.4. Choose a set of generators A{, , An for π then the
evaluation map E:Hom(π, SL(3, R)) -+ SL(3, R)" defined by E(p) =
(p{Ax)9 ••• , p{An)) is an SL(3, R)-equivariant embedding. Let % c
SL(3, R)n be the subset defined in 1.12 and let 1ί{τι) = Έ~\1S) be the
set of representations π -> SL(3, R) whose image has no fixed point in
RP2 . It follows from [14, 1.2] that f/{π) is a manifold of dimension

-dim(SL(3, R)) (χ(S) - I) = -Sχ(S) + 8.

By Lemma 1.12, SL(3, R) acts properly and freely on ίί{n) so the quo-
tient ^ ( π ) is a real analytic manifold of dimension - 8 / ( 5 ) . Thus to
prove 2.4 it will suffice to show that the space of holonomy representa-
tions of RP2-structures on S lies in ^ ( π ) . Hence the proof of 2.4 is
reduced to the following.

2.5. Lemma. Let M be a closed RP2-surface with holonomy group
Γ c SL(3, R). // χ{M) < 0, then Γ cannot fix a point in RP 2 .

Proof Suppose that Γ fixes a point y e RP 2 . Let 5 be the (singular)
foliation of RP2 consisting of the pencil of lines through y the only
singular point of # is y. Then dev*£ is a foliation of M invariant
under the group π,(Af) with singularities at dev~ι{y). Thus there is a
foliation $M of M such that P*(3r

Λ/) = dev*(#). The singularities of
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$M comprise the finite set p(dev~1(y)) c M , and since p and dev are
local diffeomorphisms, the Poincare-Hopf index of $M at each singularity
equals the index of $ at y, which equals + 1 . Summing these indices over
pίdev" 1^)) we obtain χ(M) = ^(dev" 1 ^))! > 0, a contradiction.

Surfaces with boundary.
2.6. We can extend all of the above definitions to surfaces with boundary

as follows. Let M be a surface with boundary. An MF2-structure on M
with geodesic boundary is defined by a maximal atlas of coordinate charts
(U, ψv), where (U, ψj) is as above when U is disjoint from dM, and
ψυ is a diffeomorphism restricting to a diffeomorphism from ΘU to a
line in RP2 and to a diffeomorphism on int(ί7) when U ΠdM Φ 0 .

Clearly the interior int(M) is an RP -manifold.
Suppose that M is an RP -manifold and b c dM is a boundary com-

ponent. Let γ e nx{M) be the corresponding deck transformation of
M, and b c M the corresponding (y}-invariant lift of b. We say that
b is principal if, for a fixed development pair (dev, h), the holonomy
h(γ) e Hyp+ and dev maps b diffeomorphically onto a principal segment
for h(γ). If 5 is a smooth surface with boundary, we shall denote the
corresponding deformation space of RP2-structures on S with principal
boundary by RP2(S).

If M is an RP2-manifold, and g c M is a simple closed geodesic,
then there exists an RP2-manifold with boundary M\g (M "split along
g") and an identification map ι:M\g —> M. The interior of M\g is
projectively equivalent to the complement M - g, and Λf|g has two
"new" boundary components each of which is mapped diffeomorphically
onto g c M.

2.7. Let 4̂ G Hyp+ be a positive hyperbolic projective transformation.
As usual, when we desire explicit coordinates we represent A by the di-
agonal matrix (1-1). We denote by (A) the cyclic group generated by A .
Let I (A) denote the principal line for A , and choose a principal segment
σ c I (A). Let Δ z, / = 1, 2 , denote the two invariant (open) triangular re-
gions bounded by σ . Then for each / = 1, 2, the quotient Mi(AiUσ)/(A)
is an RP2-manifold with geodesic boundary σ/(A) and is diffeomorphic
to an annulus with a single boundary component. Furthermore the quo-
tient M = (Δj UσUΔ2)/(^4) is an open annulus with an RP2-structure. We
shall call Mi a principal half-annulus with holonomy {A), and M a prin-
cipal annulus with holonomy (A). The projective automorphism group
Proj(M) of M acts simply transitively on the complement of the closed
geodesic σM = σ/(A) and is generated by the images in Proj(Λf) of a
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principal reflection R and the one-parameter groups defined by (1-8) and
(1-10). The image in Proj(Λf) of the one-parameter group { / | ί G l } is
a circle group C of rotations on M and acts simply transitively on the
closed geodesic σM. If x0 e σM, then its stabilizer in Proj(M) is the
image of the group {RjBs\ j e Z/2, s e R} which is isomorphic to the
multiplicative group of real numbers.

The annulus M is foliated by the C-orbits which are all circles. More-
over the images of the convex sets W U RW defined in (1-9) are open
subsets M which define tubular neighborhoods of the geodesic σM , called
principal annular neighborhoods. These tubular neighborhoods are all pro-
jectively equivalent submanifolds since the image of Bs maps M to Mi

where η = (v/λγsl2η. We shall refer to an RP2-manifold of the form
W /(A) as a principal collar.

The principal annulus M covers a unique RP2-structure on a Mόbius
band defined as follows. The projective transformation B defined by

Γ-VX o o
0 yβ 0
0 0

defines an orientation-reversing involution on M leaving invariant σM

and interchanges the two half-annuli comprising M. The quotient is then
an RP2-manifold diffeomorphic to a Mόbius band which we call a principal
cross-cap with holonomy (B). The quotient (W \JRW)/(B) we call a

principal cross-cap neighborhood. These RP -manifolds will be used to
build convex RP -structures on nonorientable surfaces.

2.8. Lemma. Let M be an RP2 -manifold with boundary and suppose
b c dM is a compact principal boundary component. Then there exists a
principal collar neighborhood N(g) c M.

Proof. The essential point here is that b is compact. Let Nf(b) c M
be a collar neighborhood of b in M. We shall find a principal collar N(b)
contained in N1. Fix a development pair so that the holonomy γ e Hyp+

of b is represented by the diagonal matrix (1-1) and that dev(int(iV/))
lies in the triangular region

Δ = {[x, y, z]GRP 2 | x , y, z > 0}.

Let φ: Δ -» R be the y-invariant function defined by

φ([x,y, z]) = χWMy-wmzWβlλ)9

Let c = dN\b) -be dN\b) and choose a lift c C N\b). Let <?0 be a
fundamental interval for the cyclic group (γ) acting on c. Then since c0
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is compact and dev(c) c Δ, there exists φ0 > 0 such that φ o dev(x) > φ0

for x e cQ . As φ is y-invariant, it follows that φodev(x) > φQ for x e c .
Then

Ĥ  = { [ x , ; μ , z ] e R P 2 | x , ; μ , z > 0 , /(x, y, z) < /0} udev(£)

is a principal (y)-invariant collar neighborhood of dev(5) inside de\(N'(b))
which projects to a principal collar neighborhood N(b) of b inside iV'(O).

2.9. Suppose that Λf is an RP2-manifold and C is a principal bound-
ary component. It follows from 2.7 that any collar neighborhood con-
structed in the above way is projectively equivalent to any other one;
the projective equivalence class depends solely on the SL(3, R)-conjugacy
class of the holonomy transformation h(γ) € Hyp+ of b . Thus the germ

of an RP2-structure near a principal boundary component is determined by
the conjugacy invariants (A, τ) or (I, m) of H(γ) e Hyp+ discussed in
1.4-1.8. For example, ί{h(γ)) is the Hubert length of the closed geodesic
b , measured in any principal tubular neighborhood of b . If C is a closed
1-dimensional manifold, we denote the space of germs of RP -structures
on principal collar (or tubular) neighborhoods of C by 9β{C). Clearly
φ{C) is a product of open 2-cells, one for each component of C the
coordinates (ί , m) define a diffeomorphism

V(C)-+ Y[{(ί,m)eR+xR\\m\<£}.

Thus associating to an RP2-manifold M the germ of its RP2-structure
near a collection B of principal boundary components bχ, •• , bk defines
a map

In a similar way, if C c M is a principal two-sided simple closed
geodesic, then the preceding discussion applies to the RP2-manifold M\C.
There exist principal annular neighborhoods of C c M, the germ of which
is recorded by the invariant (ί , m)(C)(M) e R+ x R + φ ( C ) . If C c M
is a principal one-sided simple closed geodesic, then a similar invariant
(t, m)(C)(M) expresses the germ of a principal cross-cap neighborhood
of C in M. In §5 these invariants will be used as coordinates for convex
RP2-structures.

3. Convex RP2-structures

In this section we shall describe basic properties of convex RP2-structures
on closed surfaces. This important class of projective structures can be
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characterized in several ways. Recall (1.10) that a domain Ω c l P is
convex if there exists a projective line / c RP2 such that Ω Π / = 0 and
Ω is a convex subset of the affine plane RP2 - /. Equivalently Ω c RP2

is convex if for any two points x j e Ω there is a unique geodesic join-
ing x and y. Another equivalent condition is that there exists an open
convex cone Ω ' c l 3 - {0} such that Ω = P(Ω') where P: R3 - {0} - RP2

denotes projection. With this definition, RP2 itself is not convex, while
the affine plane R2 is convex.

3.1. Proposition. Let M be an RP2 -manifold. Then the following are
equivalent:

(1) Every path in M is homotopic (rel endpoints) to a unique geodesic
path,

(2) A developing map dev: M —> RP2 is a diffeomorphism onto a convex
domain in RP .

(3) M is projectively isomorphic to a quotient Ω/Γ, where Ω c RP2

is a convex domain and Γ c Proj(Ω) c SL(3, R) is a discrete group acting
properly and freely on Ω.

Proof (1) => (2). Let p:M —• M be a universal covering space and
(dev, h) be a development pair. We first show that dev is injective. Sup-
pose that x, y e M satisfy dev(x) = dev(y) let f be a path in M joining
x to y and let r = po f. By (1), r is homotopic to a geodesic path r0

in M joining x = p(jc) to y = p(j>). Lift rQ to a geodesic path rQ in M
joining x to y then dev|~ maps rQ diffeomorphically to the geodesic
joining dev(x) and dev(j ), which must be a point (a constant geodesic)
since dev(jc) = dev(y) and r0 is unique. It follows that r0 must be a point
and hence x = y .

Thus dev maps M bijectively onto a domain Ω c RP 2 , which we
presently show is convex. Given u, v € Ω, there exist unique inverse
images dev-1(w), de\~{(v) e M which can be joined by a path; by (1)
we may assume this path is a geodesic f. Then dev o f is a line segment
joining u and v, whence Ω is convex.

(2) => (3) Let Ω = dev(M) and Γ = h{πx{M)). Then dev: AT -> Ω is
a projective isomorphism which induces an isomorphism M —• Ω/Γ.

(3) => (1) Let r be a path in M and lift to a path r in M. The path
dev o f is a path in the convex domain Ω = dev(Λ/), which is homotopic
(rel endpoints) to a unique line segment r0 c Ω. Composing this homo-
topy with the inverse of the diffeomorphism dev: M —• Ω one obtains a
homotopy from r to the geodesic dev~ !(r0). q.e.d.

Property (1) is the usual condition of geodesic convexity. An RP2-



CONVEX REAL PROJECTIVE STRUCTURES ON COMPACT SURFACES 813

manifold satisfying any of the above equivalent conditions is said to be
convex. If M = Ω/Γ is a convex MP2-manifold, then its universal cover-
ing we identify with Ω and its fundamental group with Γ.

The following fundamental facts are due to Kuiper [31], Kac-Vinberg
[23] and Benzecri [4] (see Kobayashi [25]-[27] and Vey [39], [40] as well
as Goldman [20] for related matter):

3.2. Theorem. Let M = Ω/Γ be a closed surface with a convex RP2-
structure. Suppose that χ(M) < 0. Then the following hold.

(1) Ω c RP2 is a strictly convex domain with C1 boundary and there-
fore contains no affine line.

(2) Either <9Ω is a conic in RP2 or is not C 1 + ε for some 0 < ε < 1.
(3) IfγeΓ is nontrivial, then γ e Hyp+ . Furthermore every homotopi-

cally nontrivial closed curve on M is freely homotopic to a unique closed
geodesic which must be principal.

(4) The attracting and repelling fixed points of elements of Γ form a
dense subset of <9Ω. Furthermore given any pair (x, y) edΩxdΩ, there
exists a sequence y w e Γ such that ¥ix+{γn) —• x and ΈΊx_(γn) —• y.

(Examples of such domains are drawn in Figure 3.1.) Let 5 be a closed
surface; define φ(5) c RP2(5) to be the subset of RP2(5) corresponding
to convex RP2-manifolds.

3.3 Proposition. φ(5) is open in RP2(5).

Proof By [4] (see also [36], [13], [19]) to every RP2-manifold M there
is a naturally associated flat affine manifold A(Λf) diffeomorphic to M x
Sι. Suppose that S is a closed surface. Then by 3.2(1) an RP2-manifold
M representing a point in RP2(S) is convex if and only if a developing
map for A(Af) is a diffeomorphism onto a convex cone in R3 containing
no complete straight line. By Koszul [28], [29] (see also Kobayashi [27,
6.22]), the class of such affine structures is open in the deformation space
of affine structures on M x Sι . It follows that the space of convex RP2-
structures on S is open in RP 2(5).

3.4. Proposition. The restriction of

hoi: RP2(5) -> Hom(π, SL(3, R))/SL(3, R)

to φ(S) is an embedding of φ(S) onto a Hausdorff real analytic manifold
of dimension -8/(5) .

Proof By 3.3, φ{S) is open in RP2(S). By 2.4, RP2(S) is a Haus-
dorff real analytic manifold of dimension - 8 / ( 5 ) , and hoi is a local
diffeomorphism

RP2(5) -> Hom(π, SL(3, R))/SL(3, R).
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FIGURE 3.1(a) FIGURE 3.1(b)

FIGURE 3.1(C)
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Thus all that remains to prove 3.4 is that the restriction of hoi to φ(5)
is injective.

Suppose that M{ and M2 are convex RP2 -manifolds such that

hol(M{) = hol(M2) G Hom(π, SL(3, R))/SL(3, R).

We may assume that M{ = ΩJΓ where Γ c SL(3, R) is the holonomy

group of either structure. Let γ e Γ. Since dΩ{ is a y-invariant C1

convex curve, the two tangents to dΩ{ at the attracting and repelling

fixed points of γ intersect in a fixed point of γ which lies outside Ω{

and thus equals the saddle fixed-point Fixo(y). It follows from 3.2(4) that

the set {Fixo(y): y e Γ } is dense in the complement RP2 - Ω{ . Therefore

if Γ acts properly on an open subset W c RP 2 , then W c Ω{. (Compare

the discussion in Kulkarni [33, 7.1].) Thus Ω2 c Ω,, and replacing Ωχ

by Ω2 gives that Ωχ c Ω 2 , so that Ω{ = Ω 2 . Hence

M{ = Ω{/T = Ω2/Γ = M2

as desired. This completes the proof of 3.4.
Gluing convex RP2-manifolds.
3.5. Suppose M is a closed convex RP2-surface Ω/Γ with χ(M) <

0. If c c M is a homotopically nontrivial closed curve, there exists a
unique closed geodesic gc c M homotopic to c. If c c M is simple,
then gc must also be simple. Moreover if c{, , cn c M is a disjoint
family of simple closed geodesies, then the corresponding simple closed
geodesies gc , , gc are also disjoint. These facts follow from the usual
arguments for hyperbolic surfaces (see [1, expose 3], [38, 5.3.3]): If c c M
is a homotopically nontrivial closed curve, then the corresponding deck
transformation h(c) € Γ has two fixed points on dΩ and the image in
M = Ω/Γ of the line segment in Ω which they span is gc. The condition
that c be simple is that all the components of the inverse image p~ ι (c) c
M be disjoint, implying that for each pair of components C p ^ c p " 1 (c),
the endpoints of c{ in dΩ do not separate the endpoints of c2. But
for any closed curve c c M, the endpoints of a component c c p~1 (c)
are the endpoints of the corresponding geodesic gc—the condition that
the endpoints of ci in d Ω do not separate each other is equivalent to
the condition that gc be simple. Thus gc is simple if c is. Similarly,
if c{, c2 are disjoint simple closed curves in M, then for any pair of
lifts c{ c p~\c{), c2 c p~Vi) Λe endpoints of cx do not separate the
endpoints of c2, i.e., the corresponding geodesies gc and gΓ are disjoint.
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Thus if cχ and c2 are disjoint simple closed curves, then the corresponding
simple closed geodesies gc and gc are disjoint.

3.6. The main result of this section concerns identifying convex RP2-
manifolds along boundary components to obtain convex RP2-manifolds.
We carefully describe the process of gluing surfaces, first for smooth man-
ifolds, and then for RP2-manifolds.

Let Mo denote a (not necessarily connected) smooth manifold with a
pair of boundary components bι , c d Mo , / = 1, 2 . We wish to glue MQ

along these boundary components by identifications of bχ with b2. That
is, we seek a manifold M with a submanifold b c M such that the (split)
manifold with boundary M\b is diffeomorphic to Mo and the boundary
components of M\b corresponding to b are b{ and b2. Let ι:M0-+M
be the identification map. Choose a tubular neighborhood N(b) c M
and an orientation-reversing involution (a "reflection") p: N(b) -> N(b)
with Fix(p) = b\ the inverse image Γι(N(b)) is a disjoint union of
collar neighborhoods iV(6j) of bx and iV(Z>2) of b2 in Λί0. Moreover
/? induces a diffeomorphism / : JV(fej) —• N(b2).

Conversely, suppose Mo is a manifold with boundary, and bx, b2 c
9M 0 are boundary components with collar neighborhoods bi C N(b() C
Af0 (/ = 1,2). Suppose that f:N(bx) —• iV(62) is a diffeomorphism.
Then there exists a unique smooth manifold M (denoted MQ/f) with an
identification map i: MQ —• Λf which induces a diffeomorphism M\b ^
MQ (where b = i(b()) such that a reflection in a tubular neighborhood of
b induces / .

Now let MQ be an RP2-manifold with boundary, and suppose that
b{, b2 c CJA/Q are boundary components with collar neighborhoods bt c
iV(6f.) c Λf0 (/ = 1, 2). Suppose that f:N(b{) -• 7V(£2) is a projective
isomorphism. Then there exists a unique RP2-structure on the identify
cation space such that the identification map ι:M0 —• MQ/f induces a
projective isomorphism M\b —> Af0 where a reflection in a tubular neigh-
borhood of b induces / .

In terms of a developing map, this construction may be described as

follows. Choose a universal covering p: Mo —• MQ , a development pair

(dev0, h0) for M o , and lifts bi c p" 1 ^-) for z = 1, 2. Let yz € π be the

corresponding elements of the fundamental group. Let έ/. c Nib^ c M be

the corresponding lifts of the collar neighborhoods; corresponding to the

projective isomorphism f\N(bχ) —• iV(62) is a projective isomoφhism

f:N(bx) -> N(b2). Thus there exists a projective transformation g G

SL(3, R) such that
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N[b{) ^ RP2

H Is
N{b2) —- RP2

dev0

commutes and g~ιh0(yx)g = ho(γ2).

Consider the product Mo x {yι)\πι {MQ)/(γ2) as a collection of "copies"

of Mo for each double coset [γ] € {γι)\πι{M0)/(γ2) let hfψ = Mo x [y]

be the corresponding copy of MQ , and yίy]: Mo —• A/Ĵ  the corresponding

diffeomorphism. We build Λf from copies of MQ as follows. Attach

MQΪ] to Mo = MQ1] by identifying boundary components ybχ c 9M 0 and

έ^1 C 9MQ / ] the resulting identification space will be a combinatorial

neighborhood of MQ inside M. Then M is obtained by repeating this

process for each new copy of Mo which has been added. The developing

map for Mo is extended to an adjacent M^] as the composition

where R is the principal reflection for the holonomy transformation
h(γ2) e Hyp+.

3.7. Theorem. Let MQ be a compact convex RP2-manifold with prin-
cipal boundary, and suppose that bχ,b2c dM0 are boundary components
with collar neighborhoods bi c ΛΓ(6|.) c Mo (/ = 1, 2). Suppose that
f:N(b{) —• N(b2) is a projective isomorphism. Then the RP2-manifold
M0/f obtained by identification by f:N(bχ) -* N(b2) is a convex RP2-
manifold.

The proof of this theorem is based on several lemmas dealing with the
structure of collar neighborhoods of principal boundary components in
convex RP -manifolds.

3.8. Lemma. Let MQ be a compact convex RP2-manifold with a set B
of principal geodesic boundary components b c dMQ . Then there exists a
convex RP -manifold M with a set B1 of simple closed geodesies b' c M
such that M\B' is isomorphic to a disjoint union of MQ and principal half-
annuli, one for each b e B. If m0 is not a principal halfannulus, then the
developing image of M is properly contained in a half-plane.

We call M the enlargement of MQ along B and denote it ^{Mo, B).
If MQ is a convex RP2-manifold with principal boundary, the enlargement
of Mo along its full boundary will be called the enlargement of Mo and
denoted f (Af0).
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Proof. For each b e B, let N(b) be a principal collar neighbor-

hood of b constructed as above. Choose a generator γb for the image

β of πι(N(b)) in π = ^ ( Λ / Q ) . Let Mb be the principal half-annulus

with convex RP2-structure such that there exists a projective monomor-

phism ιb:N(b) <-+ Mb. Explicitly, choose a universal covering p:M0 —•

Mo, a development pair (dev0, A) for Mo, and a component N(b) of

p~1(Λ^(δ)) c M. Consider the holonomy transformation h(yb) around

b. Let Δ be a A(/?)-invariant triangular region containing άe\(N(b)),

and R e SL(3, R) the principal reflection for h{yb). Then

Ω = de\0(N(b))uR(A)

is a ^-invariant convex region, and the quotient Mb — Q/β is the desired
annulus. Let MB denote the disjoint union \JbeB Mb , N(B) the disjoint
union {}beB

 N(b) c Mo» a n d l e t ι' N(B) -• ̂  be the map induced by
all ιb, b e B. Let M be the RP2-manifold obtained by identifying the
disjoint union of Mo u AfB via /.

We must show that M is a convex RP2-manifold. By induction it
suffices to consider the case that B consists of one boundary component
b. To show that M is convex, we must show that a developing map
for M is a homeomorphism onto a convex set. Let dev: M —• RP2 be a
developing map for M extending dev0 .

We begin by showing that dev is injective. Since the natural inclusion
MQ —• M is a homotopy equivalence, there is an embedding of universal
covering spaces MQ-+ M. Indeed, M is obtained from MQ by attaching
to each component of p~~l(b) a copy of the universal covering Mb of
the annulus Mb . Choose a component b of p~~\b). The inverse image
p~ (b) is the disjoint union of γb, where γ ranges over a system π/β of
coset representatives of β in π .

Since MQ is convex, its developing map dev0 is a diffeomorphism of

Mo onto a convex domain Ωo c RP2 invariant under the holonomy group

Γ c SL(3, R). Let σ be the open interval dev(Z?) then the inverse image

p~ (b) develops to the disjoint union of open intervals

U h(γ)σcdίlQ.
yeπ/β

Let Δ be as above; then Ωo is an Λ(/?)-invariant convex domain whose

boundary contains a as a maximal line segment, and, it follows that Ωo c

Δ. The component Mb of p~ι(Mb) which is attached to Mo along b
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develops diffeomorphically onto RA where R is the principal reflection
for h{β). Since Δ and RA are disjoint, it follows that the restriction
of dev: M —• RP2 to MQ U Mb is injective. Suppose that γ e π - β
then h(γ)σ is a line segment inside Δ. Let T denote the triangular
region in Δ which is bounded by a and whose boundary contains the
endpoints of h(γ)σ . Since the intersection TΓ\Ω0 is bounded by h{γ)σ
and <9Ω0 is an h(γγbγ~^-invariant convex curve, the image h(γ)RA c T
(Figure 3.2); the inclusion is proper unless Ωo c T, in which case Ωo

is a quadrilateral. In particular h(γ)RA c Γ C A is disjoint from n.Δ.
Thus the restriction of dev to MbuM0UyMb is injective. Now it follows
easily that dev:M -> RP2 is injective: if x e 7γMb and y e y2Mb, and

dev(x) = dev(y), then γ~ιx e Mb and y2y^Xy ^ y-)Mb have the same
developing image, whence x = y by the preceding fact.

Let Ω = de\(M). We have just seen that Ω = ΩQu\Jγeπβ h{y)RA. The
boundary <9Ω is obtained by replacing each segment h(γ)σ by the union
of the remaining sides of h(γ)RA. Clearly Ω is locally convex at each
point of dΩ it follows that Ω is a convex domain.

RA

FIGURE 3.2
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Finally we show that Ω is properly contained in a half-plane. We have
already seen that Ω c Δ U σ U RA. Suppose that Ω equals the half-
plane ΔUσ URA. Unless πx(b) = πx(M0), there will exist a line segment
h{γ)σ c 9 Ω O Π Δ . Then either Ω is properly contained in ΔUσUi^Δ
or (using the above notation) h(γ)RA = T9 in which case Ωo must be a
quadrilateral. But this implies that

Ω= TuRA^AUσURA.

Therefore β <—• π is an isomorphism whence Mo is an annulus. If Ω
equals Δ u σ U RA, then Ωo equals Δ U σ and MQ is a principal annulus.
The proof of Lemma 3.8 is now complete.

Proof of Theorem 3.7. It suffices to consider the case that M is con-
nected, whence MQ has either one or two connected components. We
discuss these cases separately, starting with the case that MQ has two
components Mχ and M2. In that case M = Mχ Uf M2, the fundamental
group π - nχ(M) is the amalgamated free product nι(M{) \}π ^b) πx(M2),
and the map i^.πχ(Mχ) —• πχ(M) induced by the inclusion i:Mχ ^+ M
is injective. Let M denote the covering space of M with fundamental
group ijtγ(Mχ) c π, and let M2 denote the covering space of M2 hav-
ing a fundamental group the cyclic group β = i*πχ(b) c nx(M2) there
is a compact boundary component b2 c dM2 corresponding to b. Let
N(b) C Mχ be a principal collar of b in Mx . There is a projective
monomorphism / : N(b) —> M2, which lifts to a projective monomor-
phism f:N(b2) °-> M2 . Then M is projectively equivalent to the union
Mχ U^ M2 . Since M2 is convex with principal boundary, it follows that

the image of its developing map dev2: M2 —• RP2 lies in a triangular region
Δ bounded by the developing image a of a lift of b . The composition

M2 -^i dev2(M2) ^ Δ U ( T

induces a projective monomorphism M2 -> (Δ u σ)/h(β). Thus there
is a projective monomorphism M = Λfj U^ M2 —• ̂ (Af,). Since M
embeds into the enlargement &(MX) and the developing map for &(Mχ)
is injective, the developing map for M (and hence for M) is injective.

We claim that the developing image de\(M) is convex. To this end we
show that any path in M is homotopic to a geodesic path. Let r be a path
in M since M <-• %{Mχ) and &{Mχ) is convex, the path r is homotopic
(rel endpoints) to a geodesic path rQ to &(Mχ). Since Λ/ ^^ ^ ( ^ i ) is a
homotopy equivalence, it will suffice to show that rQ c M.
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If both endpoints of r lie in Mχ c M, then r is homotopic to a path

lying entirely in M{, and to a geodesic path in M{ since M{ is convex.

By uniqueness, r o c M , c M. Let Γj be a component of r0 n Mb it will

suffice to show that rχ c M2 . If r{ c int(r0), then both endpoints of r{

lie on b, so by uniqueness r{ c b C M{ . Since rQ D ry is a geodesic,

rQ c b c M{ c M. Thus r, must contain an endpoint of rQ. If r{

contains both endpoints of rQ, then rχ = r0 c Λ/̂  has both endpoints

lying in Af2 . Since M2 is convex, it follows that r0 = r{ c Aί2 c Af. It

remains to consider the case that one endpoint of rχ lies in Mb . Since

Λf2

 c-^ Mb is a homotopy equivalence, rχ is homotopic (rel endpoints) to

a geodesic r2 c M2. By the uniqueness of homotopic geodesic paths, we

must have rχ = r2 c M2 . It follows that M is convex.

In the case that Mo is connected, πλ(M) is obtained by an HNN-con-

struction on π{(M0) where the inclusions nx{bt) —• πt(Af0) are identi-

fied. In particular the homomorphism i^π^M^) -+ πj(Af) induced by

inclusion /: MQ —»• M is injective. Let A/ denote the covering space of

M having fundamental group iiicπι(MQ), and M. (j = 1, 2) the cov-

ering space of Mo having fundamental group i^πχ(bj) c nx(M^). Then

ΛdΓ can be identified with the union M{ Ub MQ ub M2 which embeds in

the enlargement of MQ . The rest of the proof proceeds as before. This

concludes the proof of Theorem 3.6.

Attaching cross-caps.

3.9. If M is a convex RP2-manifold, and C c M is an orientation-
reversing simple closed curve, then there exists a tubular neighborhood
of C which is a principal cross-cap neighborhood as defined in 2.7. Let
f:M—>M denote the oriented double covering of M. Since M is
convex, c — f~x{c) has a principal annular neighborhood N(c) invariant
under the deck transformation of M and the image f(N(c)) c M is a
principal cross-cap neighborhood N(c) of c.

Conversely suppose that Mo is an EP -manifold, and b c dMQ is a

principal boundary component. In the enlargement <^{M0, b) let
be a principal annular neighborhood of b then there exists a unique
orientation-reversing free involution / of N(b) such that N(b)/J is a
principal cross-cap neighborhood. Let ζ: N(b) —> N(b)/J be the quotient
map. The resulting identification space M = l?(Aί0, 6) Û  N(b)/J is

an MP2-manifold with an orientation-reversing simple closed geodesic /?
such that M\β = Mo indeed Af is diffeomorphic to Mo with a cross-cap
attached along b.
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Doubling convex RP2-manifolds.
3.10. Theorem 3.6 can be used to construct doubles of convex RP2-

manifolds with boundary. This construction is useful for deducing re-
sults about convex RP2-structures on manifolds with boundary from cor-
responding results on closed manifolds. Let M be a closed convex RP2-
manifold with principal geodesic boundary. Consider the product M x
{1,2}. For each component C c dM let N(C) be a principal collar.
The double 2M of M is by definition the RP2-manifold obtained by
identifying M x{ l} with M x {2} by means of projective isomorphisms
N(C) x {1} -+ N(C) x {2} as above. Thus the double of M has a natural
RP2-structure. An immediate consequence of 3.7 is the following.

Corollary. Let M be a compact convex RP"'-manifold with principal
geodesic boundary. Then the natural RP2 -structure on the double 2M of M
is convex. In particular every compact convex RP2-manifold with principal
geodesic boundary embeds in a closed convex RP''-manifold.

We may apply this doubling procedure to deformation spaces as follows.
Recall that if S is a surface with boundary, then RP2(5) is the deforma-
tion space of RP2-structures on S with principal boundary, and φ(S)
is the deformation space of convex RP2-structures on S with principal
boundary.

3.11. Corollary. Let S be a compact surface with boundary such that
χ(S)<0. Then RP2(5) is a Hausdorff real analytic manifold of dimension
-&χ{S), and φ(S) is an open subset of RP 2(5).

Proof Let Γ c SL(3, R) be the holonomy group of an RP2-manifold
M representing a point in RP2(5 f). Let Γ7 be the subgroup of SL(3, R)
generated by Γ and the principal reflections Ri for the holonomy of the
boundary components bi of M the holonomy group for the double 2M
lies in Γ*.

We claim that Γ fixes no point p e RP 2 . Suppose not; then since p e
RP2 is stationary under the holonomy of a boundary component bi, it is
also stationary under Ri. Thus Γ* fixes p, and hence the holonomy group
of 2M fixes p, contradicting 2.5. It follows that the holonomy homomor-
phism of M lies in the open subset 2^(π) C Hom(π, SL(3, R)) compris-
ing representations with no stationary point in RP 2 , as in 2.4. Since π
is a free group of rank 1 — χ(S), the dimension of Hom(π, SL(3, R)) «
SL(3, R)ι~χ{S) equals 8(1 - χ(S)). Applying 1.12 as in the proof of 2.4
we see that RP2(*S) is a Hausdorff real analytic manifold of dimension
- 8 / ( 5 ) , and by 3.4 the deformation space φ(S) is open in RP 2(5). This
concludes the proof of 3.11.
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4. Convex RP2-structures on a pair-of-pants

4.1. In this section we classify RP2-structures on a pair-of-pants, that
is, a compact oriented surface of genus zero with three boundary compo-
nents. Throughout this section S will denote such a surface, and A, B, C
its three boundary components. The main result of this section is the fol-
lowing. Recall (§1.5) that the set of conjugacy classes of positive hyper-
bolic projective transformations can be parametrized by an open 2-disk
ίK; a closed curve γ in a convex EP2-manifold has well defined invari-
ant {{λ, γ) = {λ(γ), τ(y)) E 9t. The main result of this section is the
following.

Theorem. The deformation space φ(S) of convex RP2-structures on S
is an open %-dimension cell. Furthermore the map

obtained by associating to a convex structure the boundary invariants

is a fibration over an open 6-cell with fiber a 2-dimensional open cell.
(Equivalently we could use the more geometric invariants (ί , m) they

are easily related to (A, τ) by (1-6).)

S. Choi has pointed out that there exist convex RP2-structures on pairs-
of-pants such that the holonomy of a boundary component has real re-
peated eigenvalues (although not diagonalizable); such structures cannot
be embedded, however, in closed RP2-manifolds.

The proof centers on a computation. We shall show that a convex RP2-
structure on S determines a geometric configuration (equivalent to its
developing map) for which the holonomy representation will be given by
a triple of 3 x 3 matrices satisfying certain equations and inequalities.
Given the boundary invariants (a point in 1H3) we shall solve the resulting
equations to explicitly parametrize the possible solutions by points in a 2-
cell. We shall denote the space of solutions by (&. What is not immediately
obvious is that a point of β (which represents a RP2-manifold M with
the correct behavior at the boundary) determines a convex structure. This
shall be demonstrated indirectly as follows. The double 2S of S admits a
natural RP2-structure, which by Corollary 3.10 is convex if M is convex.
By applying Proposition 3.3 to 2S the convex structures on 25 form an
open subset %S(S) c S. Furthermore this subset is nonempty since it
contains points corresponding to hyperbolic structures on S. Since β
is connected, it suffices to show that φ(S) is closed in &. To this end
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we consider a limit in @ of a sequence of structures in φ(S). Since an
injective developing map determines a closed subset in the deformation
space of geometric structures, the developing map of the limiting structure
must be injective. By the explicit description of the developing map it will
be shown that the developing image is indeed convex.

4.2. We establish the following conventions concerning the fundamental
group and the universal covering space of S. Choose a basepoint s0 G
S, and let p: S —• S be the corresponding universal covering space with
covering group π = π{(S). Then π is generated by three loops (denoted
A, B, C G π) obtained by joining sQ to the three boundary components
A, B, C c dS, and there is a corresponding presentation

π = {A,B,C\CBA = I).

We shall decompose S into two open 2-simplices T+, T_ along three
simple arcs a, b, c. The curve a will spiral in the positive direction
towards boundary components B and C similarly b (resp. c) will spiral
positively towards C and A (resp. A and B). (Compare Figure 4.1.)
Choose a component Γo of p~ ι(Γ+) c S. Inside S there are lifts Ta

(resp. Tb, Tc) of T_ which are adjacent to Γ_ along a (resp. b, c).
The deck transformation A maps Tb to Tc, the deck transformation
B maps Tc to Ta and the deck transformation C maps Ta to Tb.
(Compare Figure 4.2.)

Let F = TouTc c S, where TQ and Tc denote closed 2-simplices
with their vertices removed; then F is a fundamental domain for π acting
on S. Thus .F is (combinatorially) a quadrilateral minus its vertices and
we label its four edges: there are edges ea, eb, e-, e^, where ea, eb are
the edges corresponding to a, b in TQ c F, and e-, e^ are the edges
corresponding to a, b in Tc c F . A model for the universal covering is
given by the identification space of the disjoint union

yen

where the edges of yF are identified by the following instructions (com-
pare Figure 4.3):

yea <-• yBe- c yBF,

y ^ <r+ γA e-^cyA F,

ye_ <-* y/? e c yi? F,

ye£ «-• 7^4^ c γAF.
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FIGURE 4.1

FIGURE 4.2

A model developing map is obtained by mapping TQ diffeomorphically

onto Δo (where the edges a, b, c are mapped to the corresponding edges

of Δ o ) and Tc diffeomorphically onto Ac. This map F -+ RP2 extends

uniquely to a developing map S
to A : - S L ( 3 , R ) .

which is equivariant with respect
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FIGURE 4.3

Suppose that M is given a convex RP2-structure with principal bound-
ary and let (dev, h) be a development pair. Then dev:M —• RP is a
projective isomorphism from M to a convex domain Ω c RP . Let
a, b, c be the arcs bounding To then the endpoints of dev(ά) (resp.
dev(δ) and dev(c)) are the repelling fixed points of h{B), h(C) (resp.
h(C),h(A) and h{A), h(B)). Let a (resp. &,c) be geodesic segments
joining the repelling fixed points of h(B) and h(C) (resp. h(C), h(A) and
h(A), h{B)). Then the collection of geodesies p(ό), p(έ), p(c) on M is
isotopic to the original collection of curves a, b, c. We shall henceforth
replace the original curves a, b, c by these geodesic curves. In that case
dev(Γ0), de\(Ta), de\(Tb), dev(Γc) are triangular regions in Ω and their
union is a convex hexagon in Ω. We henceforth abbreviate the holonomy
transformations h(A), h(B), h(C) by A, B, C respectively.

Thus we associate to a convex RP2-structure M representing a point
in φ(S) the following: four triangular regions Δ o , Aa , Ab , Ac c RP2 and
three projective transformations A, B, C e SL(3, R) which satisfy the
following conditions:



CONVEX REAL PROJECTIVE STRUCTURES ON COMPACT SURFACES 827

(i) Δ β , Δ^, Ac each intersect Δo along each of the three edges of Δo

(ii) the union Δ o u Δ α u Δ f t u Ac is a convex hexagon;
(iii) CBA = I and

= Ac, B(Ac)=Aa, C(Aa)=Ab;

(iv) A, B, C e Hyp+ and the vertices of Δo are the repelling fixed
points

of A, B, C respectively and satisfy

Δ f lΠΔ έ = Fix_(C), Δ^ Π Ac = Fix_(A), AcΠ\ = Fix_(B).

We denote the set of all (Δo, Aa, Δ^, Ac, A, B, C) satisfying (i)-(iv)
by &' the projective group SL(3, R) acts properly and freely on S1 and
we denote the quotient by S. Since a convex RP2-structure determines a
projective class of such configurations, there is an embedding ty(S) —• (§.
Furthermore each point in S1 determines an RP -structure on S with
principal boundary. The proof of Theorem 4.1 will be broken up into two
steps.

4.3. Proposition. @ is an open cell of dimension 8 and the map

(Δo, Δ β , Δ^, Ac, A, B, C) H+ ((A, τ)Λ, (A, τ ) 5 ? (A, τ) c )

w Λ fibration with fiber an open 2-cell over the 6-cell ίH3. Furthermore
there is an embedding 1(5) c φ(S) c f̂ w/ẑ re X(5) w ίΛe deformation
space (an open 3-cell) of convex hyperbolic structures on S.

4.4. Proposition. Each RP2-structure corresponding to a point in & is
convex, i.e., & = ()

Proof of 4.4 assuming 4.3. Let M be an RP2-manifold whose struc-
ture corresponds to a point of β such an RP2-manifold has principal
boundary, so its double 2M is an RP -manifold diffeomorphic on a
closed surface Σ of genus two. Thus there is an embedding E2 of the
space @ in the deformation space RP2(Σ). The image E2[β) consists
of RP2-structures on Σ which admit the symmetry of a double of a pair-
of-pants—i.e., structures which admit an orientation-reversing involution
whose stationary set consists of three disjoint simple closed curves. Now
X(5) C φ(5) C β, so that φ(5) is nonempty. Furthermore by Proposi-
tion 3.3, the subset E2{φ(S)) is open in E2(&) c RP2(Σ). It follows that
φ(S) is a nonempty open subset of β.
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We claim that φ(S) is in addition closed in @. To this end suppose
that Qn e φ(S) is a sequence converging to a point Q^ e &. The
corresponding sequence E2(Qn) of convex structures on Σ converge to an
RP2-structure E2(Qoo) on Σ, which we must show is convex. Concerning
convergence of geometric structures we have the following elementary fact
(compare [6, 1.5.3]):

4.5. Lemma. Let X be a manifold upon which a Lie group G acts
strongly effectively {i.e., two transformations of G which agree on a non-
empty open set are identical), and let Mn be a sequence of (X, G)-structures
on a manifold S converging to a (X, G)-structure M^ . If each Mn has
injective developing map, so does M^ .

Proof of 4.5. Convergence of the structures implies that there are de-
veloping maps de\n:Mn —• X which converge to dev^iΛ/^ —> X in the
C -topology. Suppose that dev^ is not injective. Then there exist disjoint
open sets U{, U2c M^ such that devoo(ί71) = devoo(ί72). For n suffi-
ciently large, de\n will be C1-close to dev^ and devw(ί71) Πdevoo({72) /
0 , contradicting the injectivity of devΛ . q.e.d.

Thus the RP2-structure E^Q^) has injective developing map. It fol-
lows that Q^ has injective developing map as well. To see that it is
actually convex, it suffices to show that its developing image is convex.

The universal covering M can be represented by an increasing union
\$k=\ ^k where each Pk is a connected union of closed 2-simplices with
their vertices removed. Indeed there exists a space M with a π{(M)-
action having the following properties:

(1) M is a union of closed 2-simplices permuted by nx(M)
(2) M contains M as a dense open π1(M)-invariant subset;
(3) the complement M - M is a disjoint union of closed 1-simplices,

the interiors of which are permuted freely by πx(M) with exactly three
orbits corresponding to the three faces of a 2-simplex;

(4) the developing map dev: M —• RP2 extends to an embedding M —•

RP2 with closed image.
Explicitly Jΐ can be constructed from a convex structure on M as

follows. Choose a developing pair (dev, h) and let g denote a Rie-
mannian metric on RP 2 . Then (Λf, dev*#) is a metric space for which
dev: M —• RP2 is an isometric embedding onto the interior of a compact
convex set Ω. Let ~M denote the metric completion of (M,dev*g).
Then dev extends to an isometric embedding M —• RP2 . The simplices
comprising M are the inverse images under dev of simplices in Ω having
vertices the fixed points of elements of τtx{M). Convex polygons Pk are



CONVEX REAL PROJECTIVE STRUCTURES ON COMPACT SURFACES 829

constructed by taking successive star-neighborhoods: Pk+ι is the union of
all 2-simplices in Λ? having a face in dPk . Clearly each Pk is convex.

Applying this construction to the sequence of convex structures Qn ,
each Pk develops to a convex polygon. Since the development of Pk in
the limiting structure Q^ is the C1-limit of the development of Pk in the
structures Qn , it follows that the restriction devoo(P^) is a convex polygon.
Thus the developing image of Q^ is the increasing union \J™=1 d

evoo(^:)
of convex sets and is therefore convex. This concludes the proof of 4.4
assuming 4.3.

4.6. Proof of 4.3. We turn now to the main computation. We choose
coordinates in RP2 so that the vertices of Δo have homogeneous coordi-
nates

T
0
0

J

0"
1
0

5

"0"
0
1_

where the repelling fixed point of A is

0

the repelling fixed point of B is

0
1
0

and the repelling fixed point of C is

Γ0"
0
1

Furthermore Δo will be the triangular region defined by

Δo = {\x, y, z] eRΨ2\x, y, z > 0}.

We respectively assign to the remaining vertices of Aa, Δ^, Ac the homo-
geneous coordinates

K
' a2 '
- 1

-C2.

b3

_-l_
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so that the other triangular regions are given by

A a = {[x,y, z] eRΨ2\x < 0 , 0<y <-b{x, 0 < z <-c{x}9

(4-1) A b = {[χ,y,z]eRF2\0<x<-a2y, y<0, 0 < z < -c2z},

A c = {[x, y, z] eRΨ2\0<x <-a3z, 0<y <-b3z, z < 0 } ,

respectively (see Figure 4.4). At each of the vertices of Δo , the cross-ratios
of the four lines containing edges of the incident triangles define invariants

(4-2) p { = b3c2, p 2 = a3c{, p 3 = a2b{

(see Figure 4.5) a n d the hexagon Δ o UΔ Λ UΔ^ UΔ C is convex if a n d only if

(4-3) b{>0, C j > 0 , a2>0, c 2 > 0 , Λ 3 > 0 , 6 3 > 0 ,

a n d the cross-ratio invariants satisfy

(4-4) , P3>
1

AF

FIGURE 4.4
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FIGURE 4.5

In this way configurations (Δo, ΔΛ ,
ordinates

, Δf) are parametrized by their co-

satisfying (4-2), (4-3) and (4-4).
Ultimately interested in the space of projective equivalence classes S =

S'/SL(3 ? M), we replace the actual coordinates of the fixed points by alter-
nate parameters invariant under a larger subgroup of SL(3, R). The only
choice of coordinates thus far made has involved identifying Δo with the
simplex in MP with positive homogeneous coordinates. Since the sta-
bilizer of Δo consists of the group £/+ consisting of positive diagonal
matrices, the group sf+ acts upon the set of configurations. The action of
such a diagonal matrix

(4-5)
λ
0
0

0
μ
0

0
0
V
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on the corresponding coordinates is given by

(μ/λ)b{

(λ/μ)a2

(u/μ)c2

It is easy to see that the cross-ratio invariants p{, p2, p3 defined in (4-2)
are invariant under this action and together with

(4-6) σx = a2b3c{, σ2 = a3bχc2

generate all such invariants. They satisfy the relation

as well as inequalities pt > 1, ai > 0. Given p{, p2, p3 > 1 and an
arbitrary value of σ{ > 0, then the choice

2 σι
is dictated.

4.7. Of particular interest is the special case that A, B, C preserve a
conic—then the RP2-structure on S is a hyperbolic structure. If A, B, C
preserve a conic Ψ c RP 2 , then necessarily the vertices of Δo lie on ^ .
Such a conic is the locus

where , P: - {0} —• RP denotes projection and

B =
0
c

b

c
0
a

b
a
0.

is a symmetric matrix with entries a, b, c Φ 0. The conic ^ circum-
scribes the triangle Δo if and only if the real numbers a, b, c all have
the same sign. The conic Ψ is determined by the projective class of this
matrix in the projective space associated to the vector space of nonzero
3 x 3 matrices. The diagonal matrix (4-5) transforms such conies in terms
of these coordinates by:

and we shall fix a choice of conic ^ by taking a = b = c = 1:

% = {[*,y, z]€ RP2|y ̂  + zx + xy = 0}.
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Given p{, p2, p3 > 1 and σx > 0, we obtain explicit choices for the
coordinates by assigning coordinates to one of the vertices not on Δo . For
example suppose that the vertex

- 1

of Δ has homogeneous coordinates

Γ 2
2

- 1

Then (4-2) and (4-5) imply that the original coordinates are given by
(4-7)

#2 = t, #3 = 2 , 6>j = — , #3 = 2 , Cj = — , C2 = - y ,

where ί = (Tj//?2 > 0 is an arbitrary positive real number.
4.8. We have expressed the geometric conditions (i) and (ii) analyti-

cally. Now we compute the possible projective transformations A, B, C e
SL(3, R) satisfying conditions (iii)-(iv). The most general projective
transformation taking A, to Δ is given by the matrix

A = a,

(4-8)

o

[1 a2 0]

- 1

[0 c2 1]

0 -βχ+yχi
0 -γ.c2

[0 - 1 0]

where

α , > 0 , 0,

having determinant 0,^,7, = det^ = 1 and τ{A) = -βχ + γi{pi - 1).
Similarly a projective transformation taking Ac to Δα corresponds to a
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matrix

B =

(4-9)

2 '
π

- C l -

h γ2 •

"0"
0

. 1 .

[1 0 a3] + β2-
0
1

0

[0 0 - 1 ]

'-a2 0 -a2a3

-a2

H

(

[0 1 b3]

where
c* 2 >0, £ 2 > 0 , γ2>0,

a2β2γ2 = detB = 1 and τ(5) = -y2 + a2(p2 - 1). Finally a projective
transformation taking Δc to Aa corresponds to a matrix

C = α 3

(4-10)

1
0
0

0"
0
1

[-1 0
" 2

-1 [*,

where
«3>0,

α3/?373 = detC = 1 and τ(C) =
maps vectors

0 1]

β3a2 0

-β, 0

> 0 , 7 3 > 0 ,

-α3 + ^3(/>3 - 1). Since the matrix A

"1"
0
0

Γ
0
0

- 1

. C 2 -

"0"
1
0

Ό "
0

. 1 .
>̂3

. - 1 .

the matrix B maps vectors

Γ
0
0.

2

- 1

- C\

j

0
1

0

l~~̂  βj

0"
1

0 - 1

i—> γ7

0
0
1

and the matrix C maps vectors

- 1

Lc, J

Γ
0

.0.
J

"0"
1

.0
- f t

"α

2"- 1

. C 2 -

>

"0"
0

. 1 .

H+y3

Ό
0

. 1 .
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it follows that CBA maps

11 Γ l l Γ α 2 ] Γ Λ 2 ] ΓO] ΓO

0 !-• aχa2a3 0 , - 1 H+ βxβ2β3 - 1 , 0 H+ yjy2y3 0

o j L o j L ci J L ^2 J I . 1 J L 1

Thus CBA = / if and only if

(4-11) axa2a3 = βxβ2β3 = γιγ2γ3 = 1.

From det A = det 5 = det C = 1 we obtain the further conditions

(4-12) aχβχγx = a2β2γ2 = a3β3γ3 = 1.

The invariants λ, τ of Λ, 5 , C are then given by:

λ(A) = λχ=aχ, τ(A) = τχ = -βχ + ^ ( ^ - 1 ) ,

(4-13) λ(B) = λ2 = β2, τ{B) = τ 2 = -y2 + α2(/?2 - 1),
A(C) = A3 = y3, τ(C) = τ 3 = - α 3 + )83(/ι3 - 1).

4.9. Now we may parametrize the space of convex EP2-structures on
M. Choose boundary invariants

Then we seek

(4-14)

with αj = λ{,

(4-15)

(4-16) α ^ j

= {{λ, τ) e R 2 | 0 < A < 1 , 2/Vλ <τ<λ + λ~2}

a{,a2,a3, β{, β2, β3,γι,γ2,γ3>0,

p { , p 2 , p3> 1 ,

σ,, σ2 > 0

ff2 = λ2, y3 = A3 satisfying the equations

- l) = τ 3 ,

= α 1 α 2 α 3 =

(4-17) σχσ2 = pχp2py

To fix the origin in our coordinates on @, we observe that a hyper-
bolic structure on S with geodesic boundary is determined up to isometry
by the lengths of the boundary curves, and thus that the corresponding
MP2-structure is determined by the germ of the structure near dS. Since
a projective transformation preserving a conic has 1 as an eigenvalue, its
invariants satisfy τ = 1 + λ~{ . The condition that A, B, C preserve a



836 WILLIAM M. GOLDMAN

0
1

.1

1
0
1

1
1

0

conic (i.e., the representation is conjugate to a representation in SO(2, 1))
is determined by checking that A, B, C preserve the bilinear form deter-
mined by the matrix

(4-18)

(for which

is an isotropic basis). Then A, B, C preserve a conic if and only if the

boundary invariants satisfy τi = 1 +λ~ι and

Γ
0
0

5

o-
1

0

0
0
1

Qfi = λ, ,

(4-19)

7, =

and

(4-20)

t= 1 +

We claim that the solutions are parametrized by arbitrary pairs s, t > 0
of positive real numbers. By taking logarithms, (4-16) is equivalent to a
system of six inhomogeneous linear equations in six real unknowns

logα2, logα3, log/ϊ,, logβ 3, logyS3, logy,, logy2,
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which has rank 5. Thus the solutions of (4-16) are parametrized by a
positive real number s > 0 as follows:

α , = . 3-J-1

(4-21) /?. =
Λ,V

^

A2

v 3 'n d > '2
Λ 3 Λ 1

By (4-14) all /?/ > 1 and, by (4-21) and (4-15), are given by quadratic
polynomials in s:

s + ^
ι

(4-22)
X3

A, 2

' L 3

l 7 2

U s i n g ( 4 - 7 ) t h e c o o r d i n a t e s a 2 , a 3 , b { 9 b 3 , c { 9 c 2 a r e

(4-23) 6 l B = i + ^ S t 3 f + ^ , 63 = 2,

' A, 2 1 11 1 /λ,A
c. = - + -,

1 Λ 2 ,

polynomials in 5, 5""1, /, Γι, (Af.)
I/2, (Λ,)~I/2, τ / . It follows that the

fiber of the boundary-invariant map @ -*• ίH3 is parametrized by arbi-

trary pairs

j , ί j t JR. X JR., ,

so that & -^y? is 2-cell fibration over the open 6-cell £H3. This concludes
the proof of Proposition 4.3 and hence of Theorem 4.1.

5. Assembling convex RP2-manifolds

5.1. In this section the results of the two preceding sections are used to
prove Theorem 1. The proof is based on the Fenchel-Nielsen coordinate



838 WILLIAM M. GOLDMAN

system on Teichmϋller space (compare [1, 3.2], [10, expose 6], [17], [18],
[21], [38, §5]). Let M be a convex EP2-manifold representing a point
in φ{S), and fix a universal covering p: M —• M, a fundamental group
π = πχ (M) and a development pair (dev, h). To each simple closed curve
C c S there is a unique simple closed geodesic gc representing it; gc

develops to a principal line segment, and by 2.8 each tubular neighborhood
contains a principal annular neighborhood. It follows that the germ of the
EP2-structure at gc is completely determined by the conjugacy class of
the holonomy h(γc) where γc G π corresponds to C. This conjugacy
class is recorded in the invariants Θ(C) = {λ, τ)(C):φ{S) -+ φ(C) = *H
defined in 2.9. Recall that if OS = d{(S) U U dn(S) the map

θos:φ(S)
z = l

which records the germ of a convex RP2-manifold M near dM is given
by

M^{θ{dχM),.. ,θ(dnM)).

We shall prove Theorem 1 stated in the following form:
5.2. Theorem. Let S be a compact surface with χ{S) < 0 and having

n>0 boundary components. Then the map

is a fibration over the In-cell φ(dS) with fiber an open cell of dimension
-Sχ(S) - In.

The proof of 5.2 will be based on the following two lemmas.
5.3. Lemma. Suppose that C c S is a two-sided simple closed curve

such that each component of S\C has negative Euler characteristic. Let

be the map which arises from splitting a convex EP -structure on S along
the closed geodesic homotopic to C. Let bY, b2 c d(S\C) be the two
boundary components corresponding to C. Then there exists an TO?-action
Ψ on φ(S) such that Π c is a Ψ-invariant fibration onto the subspace of
φ(S\C) defined by the conditions

and Ψ is simply transitive on each fiber of Π c . In particular each fiber of
Π r is an open 2-cell.
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5.4. Lemma. Suppose that C c S is a one-sided simple closed curve.
Then the map

which arises from splitting a convex RP2 -structure on S along the closed
geodesic homotopic to C is a diffeomorphism.

Proof of 5.2 assuming 5.3 and 5.4. We claim that 5.2 follows for a
compact connected surface S with n > 0 boundary components satisfying
χ(S) < 0 once it is known for each component of S\C where C c S is a
simple closed curve such that each component of S\C has negative Euler
characteristic. For every compact surface of negative Euler characteristic
can be split along such curves into pairs-of-pants as follows: If S is not
already a planar surface, then S can be successively split along simple
closed curves to obtain a planar surface of the same Euler characteristic.
The resulting planar surface can then be split along a family of 3 - χ(S)
disjoint simple closed curves into —χ(S) pairs-of-pants. For each cut,
the Euler characteristic of each component of the complement is negative
and (by additivity of χ under identification along boundary components)
cannot be decreased. Thus the proof of 5.2 will be a double induction on
-χ{S) and 2 — χ(S) + n where n is the number of boundary components.
The initial stage of the induction occurs when S is a pair-of-pants; that
special case of 5.2 was proved as Theorem 4.1. Thus we consider a simple
closed curve C c S such that each component S^ of S\C has negative
Euler characteristic, and we inductively assume that 5.2 is valid for each
S{1).

We begin with the case that C separates S into two components 5 ( 1 )

and S{2). Write the components of dS{i) as dxS
{i\ ••• , dnS

{i) where

ni is the number of components of dS^ι), and dxS^ι) is the boundary
component corresponding to C, for / = 1, 2. We denote the invariant
of djS{i) by θf E φ{djS{i)). By 5.2 applied to S{i), the map

is a fibration with fiber a cell of dimension -&χ(Siή) - 2n /. Thus their
Cartesian product θ a ( S | C ) :53(5 |C) -• φ(d(S\C)) is a fibration with fiber
a cell of dimension

) - 2nx) + (-8*(S ( 2 )) - 2n2) = -Sχ(S) - 2(n + 2)

(since n{ +n2 = n + 2) over a cell of dimension 2(π + 2). Now 5.3 implies
that the image Uc(φ(S)) equals the inverse image under θd{S\C) of the
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subset of φ{d{S\C)) consisting of all

satisfying θ\ι) = 0(,2) evidently this subset of φ(d(S\C)) is a 2(w + l)-cell,
and Π c (φ(5)) is a cell of dimension

-8/(5) - 2{n + 2) + 2(n + 1) = -8/(5) - 2.

But 5.3 implies also that Π c is a 2-cell fibration over its image and hence
φ(S) is a cell of dimension —8/(5) as desired. Furthermore θdS is the
composition of θ a ( 5 . C ) o Π c with the projection

and is thus a (-8/(5) + 2/?)-cell fibration as desired.
Next consider the case that C c S is a nonseparating two-sided simple

closed curve. In that case S\C is connected, has two more boundary
components than S, and /(5|C) = ^(5) . By 5.2 applied to 5 |C, the
map

expresses φ(S\C) as a -8χ(5)-2(«+2)-cell fibration over the 2(w+2)-cell
φ(9(5 |C)). Write the components of β(5|C) as d{(S\C), ••• , βΛ + 2(S|C)
where 9j(S|C) and d2(S\C) are the boundary components corresponding
to C. We denote the invariant of dj(S\C) by θ. e φ(dj(S\C)). By 5.3
the image Πc(ίp(5)) equals the inverse image under Θ->(5)C) of the subset
of φ(0(S|C)) consisting of all

satisfying

θx = θr

Evidently this subset of φ(d(S\C)) is a 2(n + l)-cell and thus Π c(φ(S))
is a cell of dimension

-Sχ(S) - 2(Λ + 2) + 2(Λ + 1) = -&χ(S) - 2.

As in the above case, 5.3 implies that Π c is a 2-cell fibration over its image
and hence *J}(5) is a cell of dimension -8/(5) as desired. Furthermore
θϋS is the composition of θ y ( 5 . C ) o Π c with the projection

and is thus a (-8/(5) + 2«)-cell fibration is desired.
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Finally consider the case that C is a one-sided simple closed curve in
S. Then S\C has one more boundary component than S and χ{S\C) =
χ{S). By 5.2 applied to S\C, the map

expresses φ(S|C) as a (-8χ(5')-2(«+l))-cellfibration over the 2(w+l)-
cell φ(d(S\C)). By 5.4 the map

is a diffeomorphism. Now θdS is the composition of θ a ( 5 . C ) o Π c with
the projection φ(d(S\C)) -+ φ(dS), which is a 2-cell fibration over a 2/2-
cell; it follows that ΘdS is a (-8χ(5r) + 2«)-cell fibration over a 2«-cell
as desired. This concludes the proof of 5.2 assuming 5.3 and 5.4.

5.5. We now define the R2 action Ψ on φ{S). This action generalizes
the Fenchel-Nielsen twist flows (also known as "earthquakes"—see [10],
[29], [41], [9, 3.5]) on the Teichmuller space. We define the action of
an element (M, υ) G R2 on a point in φ(S) represented by a convex
RP2-manifold M. Thus for (u,v)e R2 we construct a new convex RP2-
manifold Ψ (w υ){M) representing a point in φ(s). Choose a universal
covering \>:M -> M and a development pair (dev, h). We assume that
C is a simple closed geodesic on M and that a representative element
γ e π has been chosen so that h(γ) e <$/ is represented by the diagonal
matrix (1-1) satisfying (1-2). Clearly the centralizer of h(y) in SL(3, R)
equals si whose identity component A+ is the direct product of the two
one-parameter groups

where u, v e R. Consider the split RP2-manifold M\C\ let bx, b2 c
d(M\C) be the two boundary components corresponding to C . For any
(M, V) € R2 , there exist principal collar neighborhoods iV^ ) c M\C of

f for / = 1, 2 and a projective isomorphism f:N(bx) 2

that / is related by dev to the projective transformation TUUV . As in
3.6 there is a corresponding RP2-manifold (M\C)/f representing a point
Ψ(M i;)(Λf) in φ ( 5 ) . It is easy to check that (M\C)/f is independent

of the choices of collar neighborhoods and that Ψ determines an Re-
action on φ ( 5 ) . (The flows Ψ(w 0 ) and Ψ ( 0 ?;) on φ(S) are actually
special cases of the "generalized twist flows" discussed in Goldman [15]
on Hom(π, SL(3, R)). The potential functions for these twist flows are
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the invariant functions i(C) and m{C), respectively, defined in 1.8. A
generalization of these flows to real projective structures on hyperbolic
manifolds of higher dimension is discussed in Johnson-Millson [22].)

Proof of 5.3. An RP2-structure on S\C arises from an RP2-structure
on S if and only if there exist collar neighborhoods of the two bound-
ary components of S\C which are projectively isomorphic; the various
structures on S which give the same structure on S\C correspond to the
possible identifications between these collars. Suppose that M is a con-
vex RP2-manifold representing a point in φ(S), and let bx, b2 c d(S\C)
be the two boundary components which correspond to C. By the Col-
lar Lemma 3.8 and the remarks in 2.6 there are collar neighborhoods
N(b{), N(b2) C M\gc which are projectively isomorphic, and the projec-
tive isomorphism class depends solely on the invariants of the holonomy.
Thus the image Πc(φ(S)) consists of all convex RP2-manifolds in φ(5|C)
such that θ{b{) = θ{b2).

Clearly M\C = (Ψ(M υ)(M))\C, so that Π c is invariant under the ac-
tion Ψ . We now identify the fiber of Πc over the point in φ(S\C) cor-
responding to a convex RP2-manifold Λf0 diffeomorphic to S\C. Let M
be a convex RP2-manifold corresponding to a point in φ(S) such that
M\gc = Mo. The fiber of Π c may then be identified with all germs
of projective isomorphisms N(b{) -* N(b2). By 2.8 this centralizer acts
simply transitively on the set of such germs; evidently the action of this
centralizer determines the action Ψ on φ(S). The proof of 5.3 is com-
plete.

Proof of 5.4. Suppose that C c S is a one-sided simple closed curve;
then topologically S is obtained from S\C by attaching a cross-cap to
the boundary component Co of S\C corresponding to C. Let MQ bean
RP2-manifold representing a point in φ(S |C) . Then the germ of the RP2-
structure at Co c MQ determines a unique principal cross-cap neighbor-
hood, and by 3.9 there is a unique RP2-manifold M obtained by attaching
this cross-cap. Thus Π c is bijective and the proof of 5.4 is complete.

5.6. Using these techniques we can give explicit coordinates for the
space φ(S) in the spirit of Fenchel-Nielsen. These coordinates depend on
a decomposition of S as a union of pairs-of-pants P{ since χ(P) = - 1 ,
there will be -χ(S) pants in the decomposition. Let M be a convex RP2-
manifold representing a point in φ ( 5 ) . To a simple closed curve C c S,
there are invariants
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or alternately

Θ(C) = (ί(C), m(C)) e {(£ , m) e R+ x R| \m\ < £} = 91 = ®(C).

The (i , m) invariants may be preferable here because of their more geo-
metric interpretation as the generalization of the length coordinate in
the Fenchel-Neilsen description. For a given Pι, write its boundary as
dPt = ^(P/) U d2{Pι) U d3(P[). Then given boundary invariants

it follows from Theorem 4.1 that the RP2-structures on P( are parametrized
by R+ x R+ . Suppose that C c S is a curve which lies on the common

boundary of two adjacent pants Pι and Pι . Then the RP2-structure on

P, can be deformed so that the new RP2-structure on P, has the same

invariants ΘΊP and the same invariants in φ(P,) = R, xR, as P, . This

deformation extends to a deformation of the RP -structure on P, LU P,

to an RP2-manifold Q. Let 2cPι denote the RP2-manifold obtained by

doubling P, c M along the boundary component C then by Lemma

5.3 there exists a unique (u,v)e R2 such that Q •- Ψ(M υ){2cPι). We

regard (M, V)(C) = (U, υ) e R2 as another pair of coordinates depend-
ing on the curve C these are the analogues of the twist parameter in the
Fenchel-Nielsen coordinates. Just as for the classical twist parameter these
coordinates are much less canonical than the (ί, m)-coordinates associ-
ated to C the choice of such coordinates is equivalent to finding a slice
for the Reaction Ψ associated with C.

We are now ready to define an explicit diffeomorphism to a cell. Let
S have boundary components bx, •- , bn , and cut S along disjoint one-
sided simple closed curves a{, , am (actually at most one such curve
will suffice). Decompose S into pants Pt for / = 1, ••• , -χ(S) along
simple closed curves cx, , cp then it is easy to see that n + m + 2p =
-3χ(S). It follows from 4.1, 5.3 and 5.4 that the map

defined by

is a diffeomorphism of φ(5) onto a -8/((S')-dimensional cell.
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