Нур	erbo	olizi	ng
S	urfa	ces	

Surface group

3∟(∠, ™)

SU(2, 0)

SL(3, ℝ)

Hyperbolizing Surfaces

William M. Goldman

Department of Mathematics University of Maryland

Fourth Ahlfors-Bers Colloquium, 11 May 2008

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Hyperbolizing Surfaces

Surface group: SL(2, \mathbb{R}) SL(2, \mathbb{C}) SU(2, 1) SL(3, \mathbb{R})

 $\operatorname{Aff}(2,\mathbb{R})$

1 Surface groups

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Hyperbolizing Surfaces

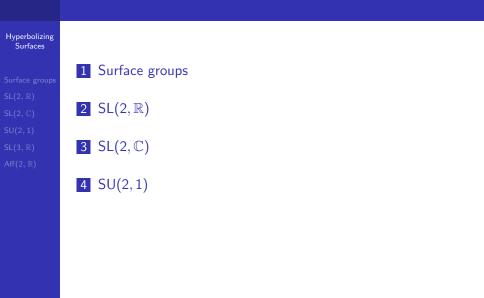
1 Surface groups

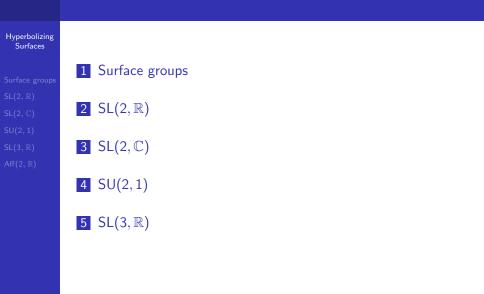
◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

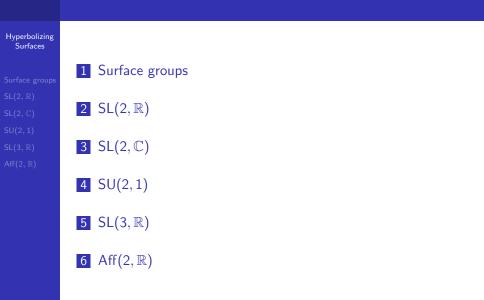
2 SL(2, ℝ)

Hyperbolizing Surfaces 1 Surface groups 2 SL(2, ℝ) 3 SL(2, ℂ)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで







Hyperbolizing Surfaces

Surface groups

SL(2, ℝ)

SL(2, ℂ)

SU(2,1)

 $SL(3, \mathbb{R})$

 $Aff(2,\mathbb{R})$

Let Σ be a compact surface of $\chi(\Sigma) < 0$ with fundamental group $\pi = \pi_1(\Sigma)$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Hyperbolizing Surfaces

Surface groups

SL(2, ℝ)

SL(2, ℂ)

SU(2,1)

SL(3, ℝ)

 $Aff(2, \mathbb{R})$

Let Σ be a compact surface of $\chi(\Sigma) < 0$ with fundamental group $\pi = \pi_1(\Sigma)$.

Since π is finitely generated, Hom(π, G) is an algebraic set, for any algebraic Lie group G.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Hyperbolizing Surfaces

Surface groups

SL(2, ℝ)

SL(2, ℂ

SU(2, 1

```
SL(3, ℝ)
```

Aff(2 ℝ)

Let Σ be a compact surface of $\chi(\Sigma) < 0$ with fundamental group $\pi = \pi_1(\Sigma)$.

- Since π is finitely generated, Hom(π, G) is an algebraic set, for any algebraic Lie group G.
- This algebraic structure is invariant under the natural action of Aut(π) × Aut(G).

▲日▼▲□▼▲□▼▲□▼ □ ののの

Hyperbolizing Surfaces

Surface groups

SL(2, ℝ)

SL(2, C)

SU(2, 1)

SL(3, ℝ)

 $Aff(2, \mathbb{R})$

Let Σ be a compact surface of $\chi(\Sigma) < 0$ with fundamental group $\pi = \pi_1(\Sigma)$.

- Since π is finitely generated, Hom(π, G) is an algebraic set, for any algebraic Lie group G.
- This algebraic structure is invariant under the natural action of Aut(π) × Aut(G).
- The mapping class group Mod(Σ) ≃ Aut(π)/Inn(π) acts on Hom(π, G)/G.

Hyperbolizing Surfaces

Surface groups

- SL(2, ℝ)
- SL(2, C)
- SU(2, 1)
- SL(3, ℝ)
- Aff(2, \mathbb{R})

- Let Σ be a compact surface of $\chi(\Sigma) < 0$ with fundamental group $\pi = \pi_1(\Sigma)$.
 - Since π is finitely generated, Hom(π, G) is an algebraic set, for any algebraic Lie group G.
 - This algebraic structure is invariant under the natural action of Aut(π) × Aut(G).
 - The mapping class group $Mod(\Sigma) \cong Aut(\pi)/Inn(\pi)$ acts on $Hom(\pi, G)/G$.
 - Representations $\pi \longrightarrow G$ arise from *locally homogeneous* geometric structures on Σ , modelled on homogeneous spaces of G.

Navigating the deformation space

Hyperbolizing Surfaces

Surface groups

SL(2, ℝ)

SL(2, ℂ)

SU(2,1)

SL(3, ℝ)

 $Aff(2, \mathbb{R})$

• The fundamental group $\pi = \pi_1(\Sigma)$ is the fundamental group of a closed orientable surface admits a presentation

$$\pi = \langle A_1, \dots, B_g \mid A_1 B_1 A_1^{-1} B_1^{-1} \dots A_g B_g A_g^{-1} B_g^{-1} = 1 \rangle$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Navigating the deformation space

Hyperbolizing Surfaces

Surface groups

SL(2, ℝ)

SL(2, ℂ)

SU(2,1)

SL(3, ℝ)

 $Aff(2, \mathbb{R})$

• The fundamental group $\pi = \pi_1(\Sigma)$ is the fundamental group of a closed orientable surface admits a presentation

$$\pi = \langle A_1, \dots, B_g \mid A_1 B_1 A_1^{-1} B_1^{-1} \dots A_g B_g A_g^{-1} B_g^{-1} = 1 \rangle$$

Associated to simple closed curves α ⊂ Σ are generalized twist deformations, paths in Hom(π, G) supported on α.

Navigating the deformation space

Hyperbolizing Surfaces

Surface groups

SL(2, ℝ)

SL(2, ℂ)

SU(2,1)

SL(3, ℝ)

 $Aff(2, \mathbb{R})$

• The fundamental group $\pi = \pi_1(\Sigma)$ is the fundamental group of a closed orientable surface admits a presentation

$$\pi = \langle A_1, \dots, B_g \mid A_1 B_1 A_1^{-1} B_1^{-1} \dots A_g B_g A_g^{-1} B_g^{-1} = 1 \rangle$$

Associated to simple closed curves α ⊂ Σ are generalized twist deformations, paths in Hom(π, G) supported on α.

• For example, if α is the nonseparating simple loop A_1 :

$$\rho_t : \begin{cases} A_i & \longmapsto \rho(A_i) \text{ if } i \ge 1\\ B_j & \longmapsto \rho(B_j) \text{ if } j > 1\\ B_1 & \longmapsto \rho(B_1)\zeta(t) \end{cases}$$

where $\zeta(t)$ is a path in the centralizer of $\rho(A_1)$.

Generalized twist flows

Hyperbolizing Surfaces

Surface groups

SL(2, ℝ

SL(2, ℂ

SU(2,1)

 $SL(3, \mathbb{R})$

 $Aff(2, \mathbb{R})$

Similarly if C = [A₁, B₁]...[A_k, B_k] corresponds to a separating simple loop on Σ, then

$$\rho_t : \begin{cases} A_i & \longmapsto \rho(A_i) \text{ if } i \leq k \\ B_i & \longmapsto \rho(B_i) \text{ if } i \leq k \\ A_i & \longmapsto \zeta(t)\rho(A_i)\zeta(t)^{-1} \text{ if } i > k \\ B_i & \longmapsto \zeta(t)\rho(B_i)\zeta(t)^{-1} \text{ if } i > k \end{cases}$$

▲日▼▲□▼▲□▼▲□▼ □ のので

where $\zeta(t)$ is a path in the centralizer of $\rho(C)$.

Generalized twist flows

Hyperbolizing Surfaces

Surface groups

SL(2, ℝ

SL(2, C

SU(2, 1)

 $SL(3, \mathbb{R})$

 $Aff(2, \mathbb{R})$

Similarly if C = [A₁, B₁]...[A_k, B_k] corresponds to a separating simple loop on Σ, then

$$\rho_t : \begin{cases} A_i & \longmapsto \rho(A_i) \text{ if } i \leq k \\ B_i & \longmapsto \rho(B_i) \text{ if } i \leq k \\ A_i & \longmapsto \zeta(t)\rho(A_i)\zeta(t)^{-1} \text{ if } i > k \\ B_i & \longmapsto \zeta(t)\rho(B_i)\zeta(t)^{-1} \text{ if } i > k \end{cases}$$

where $\zeta(t)$ is a path in the centralizer of $\rho(C)$.

Example for G = SL(2, ℝ): When ρ(A₁) leaves invariant a geodesic I ⊂ H², then ζ(t) is a group of *transvections* along I.

Observing the deformation space

Hyperbolizing Surfaces

Surface groups

SL(2, ℝ

SL(2, ℂ

SU(2, 1)

SL(3, ℝ)

 $Aff(2, \mathbb{R})$

A natural class of functions on Hom(π, G)/G arise from functions G ^f→ ℝ invariant under conjugation and α ∈ π:

$$\mathsf{Hom}(\pi, G)/G \xrightarrow{f_{\alpha}} \mathbb{R}$$
$$[\rho] \longmapsto f(\rho(\gamma))$$

Observing the deformation space

Hyperbolizing Surfaces

Surface groups

SL(2, ℝ

SL(2, ℂ

SU(2, 1)

 $SL(3, \mathbb{R})$

 $Aff(2,\mathbb{R})$

• A natural class of functions on Hom $(\pi, G)/G$ arise from functions $G \xrightarrow{f} \mathbb{R}$ invariant under conjugation and $\alpha \in \pi$:

$$\mathsf{Hom}(\pi, \mathcal{G})/\mathcal{G} \xrightarrow{f_{lpha}} \mathbb{R} \ [
ho] \longmapsto f(
ho(\gamma))$$

• The *trace* of any linear representation $G \longrightarrow GL(N, \mathbb{R})$

Observing the deformation space

Hyperbolizing Surfaces

Surface groups

SL(2, ℝ

SL(2, ℃

SU(2, 1)

SL(3, ℝ)

 $Aff(2, \mathbb{R})$

A natural class of functions on Hom(π, G)/G arise from functions G ^f→ ℝ invariant under conjugation and α ∈ π:

$$\mathsf{Hom}(\pi, \mathcal{G})/\mathcal{G} \xrightarrow{f_{lpha}} \mathbb{R} \ [
ho] \longmapsto f(
ho(\gamma))$$

- The *trace* of any linear representation $G \longrightarrow GL(N, \mathbb{R})$
- The geodesic displacement function (only defined for hyperbolic elements)

$$\operatorname{tr}(\gamma) = \pm 2 \cosh\left(\ell(\gamma)/2\right)$$

if $\gamma \in SL(2, \mathbb{R})$ is hyperbolic.

Surface groups

SL(2, ℝ]

- SL(2, ℂ)
- SU(2, 1)
- $SL(3, \mathbb{R})$
- $Aff(2, \mathbb{R})$

When G possesses a nondegenerate bi-invariant pseudo-Riemannian metric, Hom(π, G)/G inherits a Mod(Σ)-invariant symplectic structure.

- Surface groups
- SL(2, ℝ)
- SL(2, ℂ)
- SU(2, 1)
- SL(3, ℝ)
- $Aff(2, \mathbb{R})$

- When G possesses a nondegenerate bi-invariant pseudo-Riemannian metric, Hom(π, G)/G inherits a Mod(Σ)-invariant symplectic structure.
- When G = R or C, then Hom(π, G) is a real (or complex) symplectic vector space H¹(Σ).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Surface groups
- SL(2, ℝ)
- SL(2, ℂ]
- SU(2, 1)
- SL(3, ℝ)
- Aff(2, ℝ)

- When G possesses a nondegenerate bi-invariant pseudo-Riemannian metric, Hom(π, G)/G inherits a Mod(Σ)-invariant symplectic structure.
- When G = R or C, then Hom(π, G) is a real (or complex) symplectic vector space H¹(Σ).
- The $Mod(\Sigma)$ -action is the symplectic representation

$$\mathsf{Mod}(\Sigma) \longrightarrow \mathsf{Sp}(2g,\mathbb{Z}).$$

▲日▼▲□▼▲□▼▲□▼ □ のので

Hyperbolizing Surfaces

- Surface groups
- SL(2, ℝ)
- SL(2, ℂ]
- SU(2, 1)
- SL(3, ℝ)
- $Aff(2, \mathbb{R})$

- When G possesses a nondegenerate bi-invariant pseudo-Riemannian metric, Hom(π, G)/G inherits a Mod(Σ)-invariant symplectic structure.
- When G = R or C, then Hom(π, G) is a real (or complex) symplectic vector space H¹(Σ).
- The $Mod(\Sigma)$ -action is the symplectic representation

$$\mathsf{Mod}(\Sigma) \longrightarrow \mathsf{Sp}(2g,\mathbb{Z}).$$

• When α is represented by a simple closed curve, and $G \xrightarrow{f} \mathbb{R}$ is an invariant function, then the Hamiltonian flow of f_{α} is covered by a generalized twist flow on Hom (π, G) .

Hyperbolizing Surfaces

Surface group

 $SL(2,\mathbb{R})$

 $SL(2, \mathbb{C}$

SU(2,1)

SL(3, ℝ)

 $Aff(2, \mathbb{R})$

$$\pi := \pi_1(\Sigma) \stackrel{
ho}{\hookrightarrow} \mathsf{PSL}(2,\mathbb{R})$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

onto discrete subgroups.

Hyperbolizing Surfaces

Surface group $SL(2, \mathbb{R})$

SL(2, ℂ

SU(2, 1)

SL(3, ℝ)

 $Aff(2, \mathbb{R})$

$$\pi := \pi_1(\Sigma) \stackrel{
ho}{\hookrightarrow} \mathsf{PSL}(2,\mathbb{R})$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

onto discrete subgroups.

Furthermore if $\gamma \neq 1$, then $\rho(\gamma)$ is hyperbolic.

Hyperbolizing Surfaces

Surface grou $SL(2, \mathbb{R})$

 $SL(2, \mathbb{C})$

SU(2, 1)

SL(3, ℝ)

 $Aff(2, \mathbb{R})$

$$\pi := \pi_1(\Sigma) \stackrel{
ho}{\hookrightarrow} \mathsf{PSL}(2,\mathbb{R})$$

onto discrete subgroups.

- Furthermore if $\gamma \neq 1$, then $\rho(\gamma)$ is hyperbolic.
- Components of Hom(π, PSL(2, ℝ)) are detected by the Euler class of the associated oriented ℝP¹-bundle over Σ:

$$\operatorname{Hom}(\pi, \operatorname{PSL}(2, \mathbb{R})) \xrightarrow{e} \mathbb{Z}.$$

▲日▼▲□▼▲□▼▲□▼ □ のので

Hyperbolizing Surfaces

Surface grou $SL(2, \mathbb{R})$

 $SL(2, \mathbb{C})$

SU(2, 1)

 $\mathsf{SL}(3,\mathbb{R})$

 $Aff(2, \mathbb{R})$

$$\pi := \pi_1(\Sigma) \stackrel{
ho}{\hookrightarrow} \mathsf{PSL}(2,\mathbb{R})$$

onto discrete subgroups.

- Furthermore if $\gamma \neq 1$, then $\rho(\gamma)$ is hyperbolic.
- Components of Hom(π, PSL(2, ℝ)) are detected by the Euler class of the associated oriented ℝP¹-bundle over Σ:

$$\operatorname{Hom}(\pi, \operatorname{PSL}(2, \mathbb{R})) \xrightarrow{e} \mathbb{Z}.$$

▲日▼▲□▼▲□▼▲□▼ □ のので

• $|e(
ho)| \leq |\chi(\Sigma)|$ (Milnor 1958, Wood 1971)

Hyperbolizing Surfaces

Surface grou $SL(2, \mathbb{R})$

 $SL(2, \mathbb{C}$

SU(2, 1)

 $SL(3,\mathbb{R})$

 $\operatorname{Aff}(2,\mathbb{R})$

$$\pi := \pi_1(\Sigma) \stackrel{
ho}{\hookrightarrow} \mathsf{PSL}(2,\mathbb{R})$$

onto discrete subgroups.

- Furthermore if $\gamma \neq 1$, then $\rho(\gamma)$ is hyperbolic.
- Components of Hom(π, PSL(2, ℝ)) are detected by the Euler class of the associated oriented ℝP¹-bundle over Σ:

$$\operatorname{Hom}(\pi, \operatorname{PSL}(2, \mathbb{R})) \xrightarrow{e} \mathbb{Z}.$$

■ $|e(\rho)| \le |\chi(\Sigma)|$ (Milnor 1958, Wood 1971) ■ Equality $\iff \rho$ is a discrete embedding. (1980)

Branched hyperbolic structures

Hyperbolizing Surfaces

Surface group

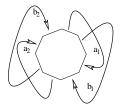
 $\mathsf{SL}(2,\mathbb{R})$

 $SL(2, \mathbb{C}$

SU(2, 1)

SL(3, ℝ)

■ Obtain a genus *g* surface from a 4*g*-gon.

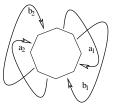


◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Branched hyperbolic structures

Hyperbolizing Surfaces

Surface groups **SL(2, ℝ)** SL(2, ℂ) SU(2, 1) SL(3, ℝ) Aff(2, ℝ) ■ Obtain a genus g surface from a 4g-gon.



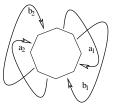
If the sum of the interior angles is $2\pi k$, where $k \in \mathbb{Z}$, then quotient space is a hyperbolic surface with one singularity (the image of the vertex) with cone angle $2\pi k$.

▲日▼▲□▼▲□▼▲□▼ □ のので

Branched hyperbolic structures

Hyperbolizing Surfaces

Surface groups **SL(2, ℝ)** SL(2, ℂ) SU(2, 1) SL(3, ℝ) Aff(2, ℝ) ■ Obtain a genus g surface from a 4g-gon.

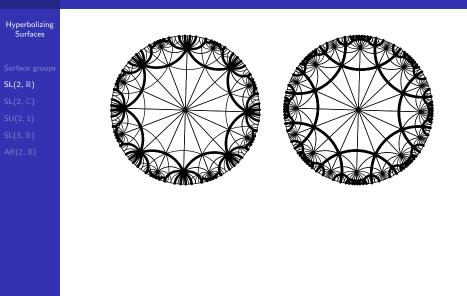


- If the sum of the interior angles is $2\pi k$, where $k \in \mathbb{Z}$, then quotient space is a hyperbolic surface with one singularity (the image of the vertex) with cone angle $2\pi k$.
- The holonomy representation of a hyperbolic surface with cone angles 2πk_i extends to π₁(Σ) with Euler number

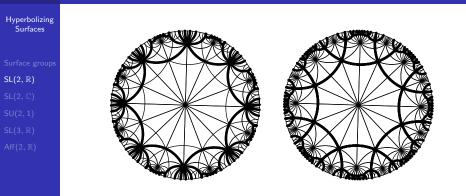
$$\mathsf{e}(
ho) = 2 - 2g + \sum k_i.$$

▲日▼▲□▼▲□▼▲□▼ □ のので

A hyperbolic surface of genus two



A hyperbolic surface of genus two

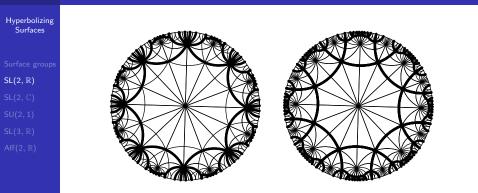


Identifying a regular octagon with angles π/4 yields a nonsingular hyperbolic surface with e(ρ) = χ(Σ) = −2.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

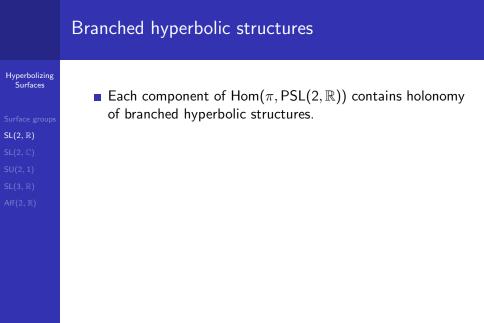
= ∽Q (~

A hyperbolic surface of genus two



- Identifying a regular octagon with angles π/4 yields a nonsingular hyperbolic surface with e(ρ) = χ(Σ) = −2.
- But when the angles are π/2, the surface has one singularity with cone angle 4π and

$$e(
ho) = 1 + \chi(\Sigma) = -1.$$



- ▲ロト ▲園ト ▲ヨト ▲ヨト - ヨ - のへで

Branched hyperbolic structures

SL(2, ℝ)

- Each component of Hom(π, PSL(2, ℝ)) contains holonomy of branched hyperbolic structures.
 - The Euler class 2 2g + k component deformation retracts onto k-fold symmetric product. (Hitchin 1987)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Branched hyperbolic structures

Hyperbolizing Surfaces

- Surface group
- SL(2, ℝ)
- $SL(2, \mathbb{C}$
- SU(2, 1)
- SL(3, ℝ)
- $Aff(2, \mathbb{R})$

- Each component of Hom(π, PSL(2, ℝ)) contains holonomy of branched hyperbolic structures.
- The Euler class 2 2g + k component deformation retracts onto k-fold symmetric product. (Hitchin 1987)
- If Σ ^f→ Σ₁ is a degree one map not homotopic to a homeomorphism, and Σ₁ is a hyperbolic structure with holonomy φ₁, then the composition

$$\pi_1(\Sigma) \xrightarrow{f_*} \pi_1(\Sigma_1) \xrightarrow{\phi_1} \mathsf{PSL}(2,\mathbb{R})$$

is not the holonomy of a branched hyperbolic structure.

Branched hyperbolic structures

Hyperbolizing Surfaces

- Surface group
- $SL(2,\mathbb{R})$
- $SL(2, \mathbb{C})$
- SU(2,1)
- SL(3, ℝ)
- $Aff(2, \mathbb{R})$

- Each component of Hom(π, PSL(2, ℝ)) contains holonomy of branched hyperbolic structures.
- The Euler class 2 2g + k component deformation retracts onto k-fold symmetric product. (Hitchin 1987)
- If Σ ^f→ Σ₁ is a degree one map not homotopic to a homeomorphism, and Σ₁ is a hyperbolic structure with holonomy φ₁, then the composition

$$\pi_1(\Sigma) \xrightarrow{f_*} \pi_1(\Sigma_1) \xrightarrow{\phi_1} \mathsf{PSL}(2,\mathbb{R})$$

is *not* the holonomy of a branched hyperbolic structure.

• *Conjecture:* every representation with dense image occurs as the holonomy of a branched hyperbolic structure.

Dynamic/homotopic triviality Hyperbolizing Surfaces Surface groups SL(2, R) Equivalence classes of discrete embeddings form a

connected component of $Hom(\pi, PSL(2, \mathbb{R}))/PGL(2, \mathbb{R})$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Hyperbolizing Surfaces

Surface groups

- SL(2, ℝ)
- $SL(2, \mathbb{C})$
- SU(2, 1)
- SL(3, ℝ)
- $Aff(2, \mathbb{R})$

- Equivalence classes of discrete embeddings form a connected component of Hom(π, PSL(2, ℝ))/PGL(2, ℝ).
- $\mathfrak{F}(\Sigma)$ is homeomorphic to a cell of dimension $-3\chi(\Sigma)$.

▲日▼▲□▼▲□▼▲□▼ □ のので

Hyperbolizing Surfaces

Surface groups

- $SL(2,\mathbb{R})$
- $SL(2, \mathbb{C})$
- SU(2, 1)
- SL(3, ℝ)
- Aff(2, \mathbb{R})

- Equivalence classes of discrete embeddings form a connected component of Hom(π, PSL(2, ℝ))/PGL(2, ℝ).
- $\mathfrak{F}(\Sigma)$ is homeomorphic to a cell of dimension $-3\chi(\Sigma)$.

▲日▼▲□▼▲□▼▲□▼ □ のので

• $Mod(\Sigma)$ acts properly discretely on $\mathfrak{F}(\Sigma)$.

Hyperbolizing Surfaces

Surface groups

- $SL(2,\mathbb{R})$
- $SL(2, \mathbb{C})$
- SU(2, 1)
- SL(3, ℝ)
- $Aff(2, \mathbb{R})$

- Equivalence classes of discrete embeddings form a connected component of Hom(π, PSL(2, ℝ))/PGL(2, ℝ).
- $\mathfrak{F}(\Sigma)$ is homeomorphic to a cell of dimension $-3\chi(\Sigma)$.
- $Mod(\Sigma)$ acts properly discretely on $\mathfrak{F}(\Sigma)$.
- The uniformization theorem identifies
 ³
 ³(Σ) with the Teichmüller space of marked conformal structures on Σ.

▲日▼▲□▼▲□▼▲□▼ □ のので

Hyperbolizing Surfaces

Surface groups

- $SL(2,\mathbb{R})$
- $SL(2, \mathbb{C})$
- SU(2, 1)
- SL(3, ℝ)
- $Aff(2, \mathbb{R})$

- Equivalence classes of discrete embeddings form a connected component of Hom(π, PSL(2, ℝ))/PGL(2, ℝ).
- $\mathfrak{F}(\Sigma)$ is homeomorphic to a cell of dimension $-3\chi(\Sigma)$.
- $Mod(\Sigma)$ acts properly discretely on $\mathfrak{F}(\Sigma)$.
- The uniformization theorem identifies
 ³
 ⁵
 (Σ) with the
 Teichmüller space of marked conformal structures on Σ.

▲日▼▲□▼▲□▼▲□▼ □ ののの

Complete integrability

Hyperbolizing Surfaces

- Surface group
- $SL(2,\mathbb{R})$
- SL(2, ℂ)
- SU(2, 1)
- $SL(3, \mathbb{R})$
- $\mathsf{Aff}(2,\mathbb{R})$

■ For G = PSL(2, ℝ), the general symplectic structure and the complex structure from Teichmüller space are part of the Weil-Petersson Kähler geometry on 𝔅(Σ).

▲日▼▲□▼▲□▼▲□▼ □ ののの

Complete integrability

Hyperbolizing Surfaces

- Surface group
- $SL(2,\mathbb{R})$
- SL(2, ℂ)
- SU(2,1)
- SL(3, ℝ)
- $Aff(2, \mathbb{R})$

- For G = PSL(2, ℝ), the general symplectic structure and the complex structure from Teichmüller space are part of the Weil-Petersson Kähler geometry on 𝔅(Σ).
- Decomposing Σ into pants along curves $\Gamma = \{\gamma_1, \dots, \gamma_N\}$ where N = 3g - 3, the Fenchel-Nielsen mapping

$$\mathfrak{F}(\Sigma) \xrightarrow{\ell_{\Gamma}} (\mathbb{R}_{+})^{N} \ \langle M \rangle \longmapsto (\ell_{1}(M), \dots \ell_{N}(M))$$

is a principal \mathbb{R}^N -bundle.

Complete integrability

Hyperbolizing Surfaces

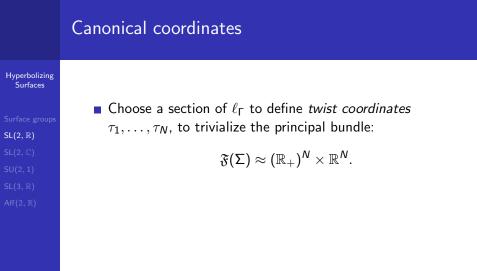
- Surface group
- $SL(2,\mathbb{R})$
- SL(2, ℂ
- SU(2, 1)
- SL(3, ℝ)
- $Aff(2, \mathbb{R})$

- For G = PSL(2, ℝ), the general symplectic structure and the complex structure from Teichmüller space are part of the Weil-Petersson Kähler geometry on 𝔅(Σ).
- Decomposing Σ into pants along curves $\Gamma = \{\gamma_1, \dots, \gamma_N\}$ where N = 3g - 3, the Fenchel-Nielsen mapping

$$\begin{split} \mathfrak{F}(\Sigma) &\xrightarrow{\ell_{\Gamma}} (\mathbb{R}_{+})^{N} \\ \langle M \rangle &\longmapsto \left(\ell_{1}(M), \dots \ell_{N}(M) \right) \end{split}$$

is a principal \mathbb{R}^N -bundle.

*ℓ*_Γ moment map for *completely integrable Hamiltonian* system. (Wolpert 1983)



Canonical coordinates

- Surface grou $SL(2, \mathbb{R})$
- $SL(2, \mathbb{C})$
- SU(2, 1)
- $SL(3, \mathbb{R})$
- $Aff(2, \mathbb{R})$

Choose a section of ℓ_{Γ} to define *twist coordinates* τ_1, \ldots, τ_N , to trivialize the principal bundle:

 $\mathfrak{F}(\Sigma) \approx (\mathbb{R}_+)^N \times \mathbb{R}^N.$

The symplectic form equals

$$\sum_{i=1}^N d\ell_i \wedge d\tau_i.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

(Wolpert 1985)

Quasi-Fuchsian groups

Hyperbolizing Surfaces

Surface groups

- SL(2, ℝ)
- SL(2, ℂ)
- SU(2, 1
- SL(3, ℝ)
- $Aff(2, \mathbb{R})$

The group of orientation-preserving isometries of $H^3_{\mathbb{R}}$ equals $\mathsf{PSL}(2,\mathbb{C}).$ Close to Fuchsian representations in $\mathsf{PSL}(2,\mathbb{R})$ are quasi-Fuchsian representations.

- Quasi-fuchsian representations are discrete embeddings.
- Quasi-fuchsian representations comprise a cell \mathcal{QF} upon which $Mod(\Sigma)$ acts properly.
- Hom(π, SL(2, ℂ)) is connected, and the closure of *QF* consists of all discrete embeddings.
- The discrete embeddings are *not open* and do not comprise a component of Hom(*π*, *G*)/*G*.

Complex hyperbolic geometry

Hyperbolizing Surfaces

Surface group $SL(2, \mathbb{R})$

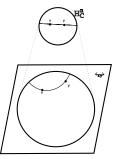
 $SL(2,\mathbb{C})$

SU(2,1)

SL(3, ℝ)

 $Aff(2, \mathbb{R})$

■ Complex hyperbolic space Hⁿ_C is the unit ball in Cⁿ with the Bergman metric invariant under the projective transformations in CPⁿ.



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Complex hyperbolic geometry

Hyperbolizing Surfaces

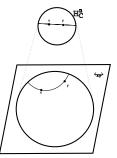
Surface group $SL(2, \mathbb{R})$

SL(2, ℂ)

SU(2, 1)

SL(3, ℝ)

■ Complex hyperbolic space Hⁿ_C is the unit ball in Cⁿ with the Bergman metric invariant under the projective transformations in CPⁿ.



• \mathbb{C} - linear subspaces meet $H^n_{\mathbb{C}}$ in totally geodesic subspaces.

Hyperbolizing Surfaces

- Surface group
- SL(2, ℝ)
- $SL(2, \mathbb{C})$
- SU(2,1)
- SL(3, ℝ)

Start with a Fuchsian representation π → U(1, 1) acting on a complex geodesic H¹_C ⊂ Hⁿ_C.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Hyperbolizing Surfaces

- Surface group
- $SL(2,\mathbb{R})$
- SL(2, ℂ]
- SU(2, 1)
- SL(3, ℝ)
- $Aff(2, \mathbb{R})$

- Start with a Fuchsian representation $\pi \xrightarrow{\rho_0} U(1,1)$ acting on a complex geodesic $H^1_{\mathbb{C}} \subset H^n_{\mathbb{C}}$.
- Every nearby deformation π → U(n, 1) stabilizes a complex geodesic, and is conjugate to a Fuchsian representation

$$\pi \xrightarrow{
ho} \mathsf{U}(1,1) imes \mathsf{U}(n-1) \subset \mathsf{U}(n,1).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

Hyperbolizing Surfaces

- Surface group $SL(2, \mathbb{R})$
- SL(2, ℂ)
- SU(2, 1)
- $SL(3, \mathbb{R})$
- $Aff(2, \mathbb{R})$

- Start with a Fuchsian representation $\pi \xrightarrow{\rho_0} U(1,1)$ acting on a complex geodesic $H^1_{\mathbb{C}} \subset H^n_{\mathbb{C}}$.
- Every nearby deformation π → U(n, 1) stabilizes a complex geodesic, and is conjugate to a Fuchsian representation

$$\pi \xrightarrow{
ho} \mathsf{U}(1,1) imes \mathsf{U}(n-1) \subset \mathsf{U}(n,1).$$

▲日▼▲□▼▲□▼▲□▼ □ ののの

■ These are detected by a Z-valued *characteristic* class generalizing the Euler class. (Toledo 1986)

Hyperbolizing Surfaces

- Surface grouµ SL(2, ℝ)
- SL(2, ℂ)
- SU(2, 1)
- $SL(3, \mathbb{R})$
- $Aff(2, \mathbb{R})$

- Start with a Fuchsian representation $\pi \xrightarrow{\rho_0} U(1,1)$ acting on a complex geodesic $H^1_{\mathbb{C}} \subset H^n_{\mathbb{C}}$.
- Every nearby deformation $\pi \xrightarrow{\rho} U(n, 1)$ stabilizes a complex geodesic, and is conjugate to a Fuchsian representation

$$\pi \xrightarrow{
ho} \mathsf{U}(1,1) imes \mathsf{U}(n-1) \subset \mathsf{U}(n,1).$$

- These are detected by a Z-valued *characteristic* class generalizing the Euler class. (Toledo 1986)
- Generalized to maximal representations by Burger-lozzi-Wienhard and Bradlow-Garcia-Prada-Gothen-Mundet. (Mod(Σ) acts properly of maximal components, well-displacing property, determination of topological type...)

	Singularities in the deformation space
Hyperbolizing Surfaces	Singular points in Hom (π, G) !
Surface groups	
SL(2, ℝ)	
SL(2, ℂ)	
SU(2, 1)	
SL(3, ℝ)	
$\operatorname{Aff}(2,\mathbb{R})$	

◆□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶

Singularities in the deformation space

- Surface group
- SL(2, ℝ)
- $SL(2,\mathbb{C})$
- SU(2, 1)
- $SL(3, \mathbb{R})$
- $\operatorname{Aff}(2,\mathbb{R})$

- Singular points in Hom (π, G) !
- In general the analytic germ of a reductive representation of the fundamental group of a compact Kähler manifold is defined by a system of homogeneous quadratic equations. (G Millson 1988)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Singularities in the deformation space

Hyperbolizing Surfaces

SU(2,1)

- Singular points in Hom (π, G) !
- In general the analytic germ of a reductive representation of the fundamental group of a compact Kähler manifold is defined by a system of homogeneous quadratic equations. (G Millson 1988)
- For an SU(1, 1)-representation ρ_0 , the neighborhood of

$$\pi \xrightarrow{\rho} \mathsf{SU}(1,1) \subset \mathsf{SU}(2,1)$$

in Hom $(\pi, SU(2, 1))$ looks like the product of $Hom(\pi, U(1, 1) \times U(1))$ and a cone defined by a quadratic form of signature $e(\rho_0)$ on \mathbb{R}^{4g-4} .

For all even e with $|e| \leq 2g - 2$, the corresponding component of Hom $(\pi, SU(2, 1))$ contains *discrete* embeddings. (G Kapovich Leeb 2001)

- Surface group
- $SL(2, \mathbb{R})$
- SL(2, ℂ)
- SU(2, 1)
- SL(3, ℝ)
- $Aff(2, \mathbb{R})$

■ (Mostow 1980, Deligne-Mostow) Nonarithmetic lattices in SU(n,1) for n = 1,2,3. Only remaining cases (n > 3) where lattices not known to be arithmetic.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Hyperbolizing Surfaces

- Surface group
- SL(2, ℂ)
- SU(2, 1)
- SL(3, ℝ)
- Aff(2, \mathbb{R})

- (Mostow 1980, Deligne-Mostow) Nonarithmetic lattices in SU(n,1) for n = 1, 2, 3. Only remaining cases (n > 3) where lattices not known to be arithmetic.
- In general, discrete embeddings fail to be open. Necessary and sufficient conditions for discreteness quite difficult. (Parker, Schwartz, Falbel, Koseleff, Paupert, Gusevskii, Will, Platis, ...)

Hyperbolizing Surfaces

- Surface group $SI(2, \mathbb{P})$
- SL(2, ℂ)
- SU(2, 1)
- $SL(3, \mathbb{R})$
- $\operatorname{Aff}(2,\mathbb{R})$

- (Mostow 1980, Deligne-Mostow) Nonarithmetic lattices in SU(n, 1) for n = 1, 2, 3. Only remaining cases (n > 3) where lattices not known to be arithmetic.
- In general, discrete embeddings fail to be open. Necessary and sufficient conditions for discreteness quite difficult. (Parker, Schwartz, Falbel, Koseleff, Paupert, Gusevskii, Will, Platis, ...)
- Finitely generated geometrically infinite discrete groups exist (Kapovich). Examples are not finitely presentable. Are they rigid?

Hyperbolizing Surfaces

- Surface group $SL(2, \mathbb{R})$
- SL(2, ℂ)
- SU(2, 1)
- $SL(3, \mathbb{R})$
- Aff(2, \mathbb{R})

- (Mostow 1980, Deligne-Mostow) Nonarithmetic lattices in SU(n, 1) for n = 1, 2, 3. Only remaining cases (n > 3) where lattices not known to be arithmetic.
- In general, discrete embeddings fail to be open. Necessary and sufficient conditions for discreteness quite difficult. (Parker, Schwartz, Falbel, Koseleff, Paupert, Gusevskii, Will, Platis, ...)
- Finitely generated geometrically infinite discrete groups exist (Kapovich). Examples are not finitely presentable. Are they rigid?
- Are all algebraic limits strong?

Hyperbolizing Surfaces

- Surface group $SL(2, \mathbb{R})$
- $SL(2, \mathbb{C})$
- SU(2, 1)
- $SL(3, \mathbb{R})$
- $\mathsf{Aff}(2,\mathbb{R})$

- (Mostow 1980, Deligne-Mostow) Nonarithmetic lattices in SU(n, 1) for n = 1, 2, 3. Only remaining cases (n > 3) where lattices not known to be arithmetic.
- In general, discrete embeddings fail to be open. Necessary and sufficient conditions for discreteness quite difficult. (Parker, Schwartz, Falbel, Koseleff, Paupert, Gusevskii, Will, Platis, ...)
- Finitely generated geometrically infinite discrete groups exist (Kapovich). Examples are not finitely presentable. Are they rigid?
- Are all algebraic limits strong?
- Do degenerate surface groups exist?

Hyperbolizing Surfaces

Surface groups $SL(2, \mathbb{R})$ $SL(2, \mathbb{C})$ SU(2, 1)

SL(3, ℝ)

• A marked convex \mathbb{RP}^2 -structures is a diffeomorphism

$$\Sigma \xrightarrow{\approx} \Omega/\Gamma$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

where $\Omega \subset \mathbb{RP}^2$ is a convex domain and $\Gamma \subset Aut(\Omega)$ discrete, acting properly and freely on Ω .

Hyperbolizing Surfaces

Surface group $SL(2, \mathbb{R})$

SL(2, ℂ)

SU(2, 1)

 $SL(3, \mathbb{R})$

 $\operatorname{Aff}(2,\mathbb{R})$

• A marked convex \mathbb{RP}^2 -structures is a diffeomorphism

$$\Sigma \xrightarrow{\approx} \Omega/\Gamma$$

where $\Omega \subset \mathbb{RP}^2$ is a convex domain and $\Gamma \subset Aut(\Omega)$ discrete, acting properly and freely on Ω .

• $\chi(\Sigma) < 0$ and $\partial \Sigma = \emptyset \implies \partial \Omega$ is C^1 strictly convex curve. (Benzecri 1960)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Hyperbolizing Surfaces

Surface group

SL(2. C)

SU(2, 1)

SL(3, ℝ)

 $\operatorname{Aff}(2,\mathbb{R})$

• A marked convex \mathbb{RP}^2 -structures is a diffeomorphism

$$\Sigma \xrightarrow{\approx} \Omega/\Gamma$$

where $\Omega \subset \mathbb{RP}^2$ is a convex domain and $\Gamma \subset Aut(\Omega)$ discrete, acting properly and freely on Ω .

• $\chi(\Sigma) < 0$ and $\partial \Sigma = \emptyset \implies \partial \Omega$ is C^1 strictly convex curve. (Benzecri 1960)

▲日▼▲□▼▲□▼▲□▼ □ のので

• $\partial \Omega$ is $C^2 \iff \partial \Omega$ is a conic. (Kuiper 1956)

Hyperbolizing Surfaces

Surface group

02(2, 24)

SU(2.1)

 $SL(3, \mathbb{R})$

 $\mathsf{Aff}(2,\mathbb{R})$

• A marked convex \mathbb{RP}^2 -structures is a diffeomorphism

$$\Sigma \xrightarrow{\approx} \Omega/\Gamma$$

where $\Omega \subset \mathbb{RP}^2$ is a convex domain and $\Gamma \subset Aut(\Omega)$ discrete, acting properly and freely on Ω .

• $\chi(\Sigma) < 0$ and $\partial \Sigma = \emptyset \implies \partial \Omega$ is C^1 strictly convex curve. (Benzecri 1960)

▲日▼▲□▼▲□▼▲□▼ □ のので

■ $\partial\Omega$ is $C^2 \iff \partial\Omega$ is a conic. (Kuiper 1956) $\iff \mathbb{RP}^2$ -structure is *hyperbolic*.

Hyperbolizing Surfaces

- Surface group
- SL(2, ℝ)
- $SL(2, \mathbb{C})$
- SU(2,1)
- $SL(3, \mathbb{R})$
- $Aff(2, \mathbb{R})$

• A marked convex \mathbb{RP}^2 -structures is a diffeomorphism

$$\Sigma \xrightarrow{\approx} \Omega/\Gamma$$

where $\Omega \subset \mathbb{RP}^2$ is a convex domain and $\Gamma \subset Aut(\Omega)$ discrete, acting properly and freely on Ω .

- $\chi(\Sigma) < 0$ and $\partial \Sigma = \emptyset \implies \partial \Omega$ is C^1 strictly convex curve. (Benzecri 1960)
- $\partial\Omega$ is $C^2 \iff \partial\Omega$ is a conic. (Kuiper 1956) $\iff \mathbb{RP}^2$ -structure is *hyperbolic*.
- Geodesic flow of *Hilbert metric* is Anosov. (Benoist 2000)

Hyperbolizing Surfaces

- Surface group
- SL(2, ℝ)
- SL(2, ℂ)
- SU(2, 1)
- SL(3, ℝ)
- $\mathsf{Aff}(2,\mathbb{R})$

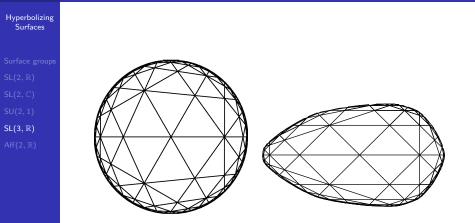
• A marked convex \mathbb{RP}^2 -structures is a diffeomorphism

$$\Sigma \xrightarrow{\approx} \Omega/\Gamma$$

where $\Omega \subset \mathbb{RP}^2$ is a convex domain and $\Gamma \subset Aut(\Omega)$ discrete, acting properly and freely on Ω .

- $\chi(\Sigma) < 0$ and $\partial \Sigma = \emptyset \implies \partial \Omega$ is C^1 strictly convex curve. (Benzecri 1960)
- $\partial \Omega$ is $C^2 \iff \partial \Omega$ is a conic. (Kuiper 1956) $\iff \mathbb{RP}^2$ -structure is *hyperbolic*.
- Geodesic flow of *Hilbert metric* is Anosov. (Benoist 2000)
- Every ℝP²-structure canonically decomposes as a union of convex structures (Choi 1988).

Deformations of triangle groups



◆ロト ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ○ の Q @

Domains in \mathbb{RP}^2 tiled by (3, 3, 4)-triangles.

The deformation space of convex \mathbb{RP}^2 -structures

Surface group SL(2, \mathbb{R}) SL(2, \mathbb{C})

SL(3, ℝ)

• The deformation space $\mathfrak{C}(\Sigma) \approx \mathbb{R}^{16g-16}$ upon which $Mod(\Sigma)$ acts properly. (1988)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Hyperbolizing Surfaces

- Surface grou
- SI (2 C)
- SU(2, 1)
- $SL(3, \mathbb{R})$
- $Aff(2, \mathbb{R})$

• The deformation space $\mathfrak{C}(\Sigma) \approx \mathbb{R}^{16g-16}$ upon which $Mod(\Sigma)$ acts properly. (1988)

▲日▼▲□▼▲□▼▲□▼ □ のので

 C(Σ) is a connected component of Hom(π, SL(3, ℝ))/SL(3, ℝ). (Choi G 1993)

Hyperbolizing Surfaces

- Surface grou
- JL(2, I∖)
- SL(2, 0)
- 30(2,1)
- SL(3, ℝ)
- $\operatorname{Aff}(2,\mathbb{R})$

- The deformation space $\mathfrak{C}(\Sigma) \approx \mathbb{R}^{16g-16}$ upon which $Mod(\Sigma)$ acts properly. (1988)
- 𝔅(Σ) is a connected component of Hom(π, SL(3, ℝ))/SL(3, ℝ). (Choi G 1993)
- The symplectic structure admits canonical coordinates. (Zocca 1995, Hong Chan Kim 1996)

▲日▼▲□▼▲□▼▲□▼ □ のので

Hyperbolizing Surfaces

- Surface group
- SL(2, ℝ)
- $SL(2, \mathbb{C})$
- SU(2, 1)
- SL(3, ℝ)
- $\mathsf{Aff}(2,\mathbb{R})$

- The deformation space $\mathfrak{C}(\Sigma) \approx \mathbb{R}^{16g-16}$ upon which $Mod(\Sigma)$ acts properly. (1988)
- $\mathfrak{C}(\Sigma)$ is a connected component of Hom $(\pi, SL(3, \mathbb{R}))/SL(3, \mathbb{R})$. (Choi G 1993)
- The symplectic structure admits canonical coordinates. (Zocca 1995, Hong Chan Kim 1996)

▲日▼▲□▼▲□▼▲□▼ □ ののの

... complete integrability?

- Surface group
- SL(2, ℝ)
- $SL(2, \mathbb{C})$
- SU(2, 1)
- $SL(3, \mathbb{R})$
- $\operatorname{Aff}(2,\mathbb{R})$

- The deformation space $\mathfrak{C}(\Sigma) \approx \mathbb{R}^{16g-16}$ upon which $Mod(\Sigma)$ acts properly. (1988)
- C(Σ) is a connected component of Hom(π, SL(3, ℝ))/SL(3, ℝ). (Choi G 1993)
- The symplectic structure admits canonical coordinates. (Zocca 1995, Hong Chan Kim 1996)
- ... complete integrability?
- C(Σ) identifies with the holomorphic vector bundle over Teich(Σ) whose fiber over a marked Riemann surface X equals the vector space H⁰(X, (κ_X)²) of holomorphic cubic differentials (Labourie 1997, Loftin 2001).

Hyperbolizing Surfaces

Surface group

 $SL(2, \mathbb{R})$

 $SL(2, \mathbb{C}$

SU(2, 1)

SL(3, ℝ)

Aff $(2, \mathbb{R})$

■ Hitchin (1990): \exists contractible component $H \subset \operatorname{Hom}(\pi, G)/G$ containing $\mathfrak{F}(\Sigma)$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Hyperbolizing Surfaces

- Surface group
- SL(2, ℝ)
- SL(2, C)
- SU(2, 1)
- SL(3, ℝ)
- $Aff(2, \mathbb{R})$

- Hitchin (1990): \exists contractible component $H \subset \operatorname{Hom}(\pi, G)/G$ containing $\mathfrak{F}(\Sigma)$.
- Dynamical characterization (Labourie 2004, Guichard):

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Hyperbolizing Surfaces

- Surface group
- SL(2, ℝ)
- SL(2, ℂ)
- SU(2, 1)
- $SL(3,\mathbb{R})$
- $Aff(2, \mathbb{R})$

- Hitchin (1990): \exists contractible component $H \subset \operatorname{Hom}(\pi, G)/G$ containing $\mathfrak{F}(\Sigma)$.
- Dynamical characterization (Labourie 2004, Guichard): ρ preserves *convex curve* $S^1 \xrightarrow{f} P(\mathbb{R}^n)$:

Hyperbolizing Surfaces

- Surface group $SL(2, \mathbb{R})$
- SL(2, ℂ)
- SU(2, 1)
- $SL(3, \mathbb{R})$
- $\operatorname{Aff}(2,\mathbb{R})$

- Hitchin (1990): \exists contractible component $H \subset \operatorname{Hom}(\pi, G)/G$ containing $\mathfrak{F}(\Sigma)$.
- Dynamical characterization (Labourie 2004, Guichard):
 ρ preserves convex curve S¹ ^f→ P(ℝⁿ):
 For all distinct x₁,..., x_n ∈ S¹,

$$f(x_1)+\cdots+f(x_n)=\mathbb{R}^n.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Hyperbolizing Surfaces

- Surface group SL(2, ℝ)
- SU(2, 1)
- $SL(3, \mathbb{R})$
- $\operatorname{Aff}(2,\mathbb{R})$

- Hitchin (1990): \exists contractible component $H \subset \operatorname{Hom}(\pi, G)/G$ containing $\mathfrak{F}(\Sigma)$.
- Dynamical characterization (Labourie 2004, Guichard):
 ρ preserves convex curve S¹ ^f→ P(ℝⁿ):
 For all distinct x₁,..., x_n ∈ S¹,

$$f(x_1) + \cdots + f(x_n) = \mathbb{R}^n$$
.

▲日▼▲□▼▲□▼▲□▼ □ ののの

Quasi-isometric embedding $\pi_1(\Sigma) \stackrel{
ho}{\hookrightarrow} G$

Hyperbolizing Surfaces

Surface group SL(2, \mathbb{R}) SL(2, \mathbb{C})

SU(2, 1)

SL(3, ℝ)

- Hitchin (1990): ∃ contractible component H ⊂ Hom(π, G)/G containing 𝔅(Σ).
- Dynamical characterization (Labourie 2004, Guichard):
 ρ preserves convex curve S¹ ^f→ P(ℝⁿ):
 For all distinct x₁,..., x_n ∈ S¹,

$$f(x_1) + \cdots + f(x_n) = \mathbb{R}^n$$
.

▲日▼▲□▼▲□▼▲□▼ □ ののの

Quasi-isometric embedding π₁(Σ) ^ρ → G
 Mod(Σ) acts properly on H.

- Surface group SL(2, \mathbb{R}) SL(2, \mathbb{C})
- SU(2, 1)
- SL(3, ℝ)

- Hitchin (1990): \exists contractible component $H \subset \operatorname{Hom}(\pi, G)/G$ containing $\mathfrak{F}(\Sigma)$.
- Dynamical characterization (Labourie 2004, Guichard):
 ρ preserves convex curve S¹ ^f→ P(ℝⁿ):
 For all distinct x₁,..., x_n ∈ S¹,

$$f(x_1) + \cdots + f(x_n) = \mathbb{R}^n$$
.

- Quasi-isometric embedding $\pi_1(\Sigma) \stackrel{
 ho}{\hookrightarrow} G$
- $Mod(\Sigma)$ acts properly on H.
- (Fock-Goncharov 2002): Positive algebraic structure on H, \implies new quantum representations of $Mod(\Sigma)$.

Hyperbolizing Surfaces

- Surface group SL(2, \mathbb{R}) SL(2, \mathbb{C})
- SU(2, 1)
- SL(3, ℝ)

- Hitchin (1990): \exists contractible component $H \subset \operatorname{Hom}(\pi, G)/G$ containing $\mathfrak{F}(\Sigma)$.
- Dynamical characterization (Labourie 2004, Guichard):
 ρ preserves convex curve S¹ ^f→ P(ℝⁿ):
 For all distinct x₁,..., x_n ∈ S¹,

$$f(x_1) + \cdots + f(x_n) = \mathbb{R}^n$$
.

- Quasi-isometric embedding $\pi_1(\Sigma) \stackrel{
 ho}{\hookrightarrow} G$
- $Mod(\Sigma)$ acts properly on H.
- (Fock-Goncharov 2002): Positive algebraic structure on H, \implies new quantum representations of $Mod(\Sigma)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

Generalizes *shearing coordinates*. (Penner 1987)

Complete affine structures on the 2-torus Hyperbolizing Surfaces A complete affine manifold is a quotient \mathbb{R}^n/Γ where $\Gamma \subset \operatorname{Aff}(n, \mathbb{R})$ is a discrete group acting properly on \mathbb{R}^n . Aff $(2, \mathbb{R})$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Hyperbolizing Surfaces

Surface group

- $SL(2, \mathbb{R})$
- SL(2, ℂ)
- SU(2, 1)
- SL(3, ℝ)
- $\mathsf{Aff}(2,\mathbb{R})$

- A complete affine manifold is a quotient \mathbb{R}^n/Γ where
- $\Gamma \subset \operatorname{Aff}(n,\mathbb{R})$ is a discrete group acting properly on \mathbb{R}^n .
 - Kuiper (1954): Every complete affine closed orientable
 2-manifold is homeomorphic to T² and equivalent to:

▲日▼▲□▼▲□▼▲□▼ □ ののの

Hyperbolizing Surfaces

Surface group

 $SL(2, \mathbb{R})$

SL(2, ℂ)

SU(2, 1)

SL(3, ℝ)

 $\mathsf{Aff}(2,\mathbb{R})$

A complete affine manifold is a quotient \mathbb{R}^n/Γ where

- $\Gamma \subset \operatorname{Aff}(n,\mathbb{R})$ is a discrete group acting properly on \mathbb{R}^n .
 - Kuiper (1954): Every complete affine closed orientable 2-manifold is homeomorphic to T² and equivalent to:

• Euclidean: \mathbb{R}^2/Λ , where Λ is a lattice of translations

Hyperbolizing Surfaces

Surface group

SL(2, ℝ)

SL(2, ℂ)

SU(2, 1)

SL(3, ℝ)

 $Aff(2,\mathbb{R})$

A complete affine manifold is a quotient \mathbb{R}^n/Γ where

- $\Gamma \subset \operatorname{Aff}(n,\mathbb{R})$ is a discrete group acting properly on \mathbb{R}^n .
 - Kuiper (1954): Every complete affine closed orientable 2-manifold is homeomorphic to T² and equivalent to:
 - Euclidean: R²/Λ, where Λ is a lattice of translations (all are affinely equivalent);

Hyperbolizing Surfaces

Surface group

SL(2, ℝ)

SL(2, ℂ)

SU(2, 1)

SL(3, ℝ)

 $\mathsf{Aff}(2,\mathbb{R})$

A complete affine manifold is a quotient \mathbb{R}^n/Γ where

- $\Gamma \subset \operatorname{Aff}(n,\mathbb{R})$ is a discrete group acting properly on \mathbb{R}^n .
 - Kuiper (1954): Every complete affine closed orientable
 2-manifold is homeomorphic to T² and equivalent to:
 - Euclidean: ℝ²/Λ, where Λ is a lattice of translations (all are affinely equivalent);
 - Polynomial deformation $\mathbb{R}^2/(f \circ \Lambda \circ f^{-1})$, where

$$(x,y) \xrightarrow{f} (x+y^2,y).$$

Hyperbolizing Surfaces

Surface group

SL(2, ℝ)

SL(2, ℂ

SU(2, 1)

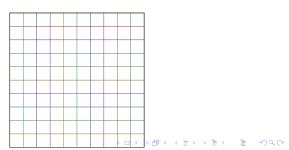
SL(3, ℝ)

 $\mathsf{Aff}(2,\mathbb{R})$

A complete affine manifold is a quotient ℝⁿ/Γ where
Γ ⊂ Aff(n, ℝ) is a discrete group acting properly on ℝⁿ.
■ Kuiper (1954): Every complete affine closed orientable 2-manifold is homeomorphic to T² and equivalent to:
■ Euclidean: ℝ²/Λ, where Λ is a lattice of translations

- (all are affinely equivalent);
- Polynomial deformation $\mathbb{R}^2/(f \circ \Lambda \circ f^{-1})$, where

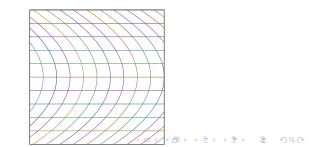
$$(x,y) \xrightarrow{f} (x+y^2,y).$$



- Surface group
- SL(2, ℝ)
- SL(2, ℂ
- SU(2, 1)
- SL(3, ℝ)
- $Aff(2, \mathbb{R})$

- A complete affine manifold is a quotient ℝⁿ/Γ where
 Γ ⊂ Aff(n, ℝ) is a discrete group acting properly on ℝⁿ.
 Kuiper (1954): Every complete affine closed orientable
 - 2-manifold is homeomorphic to T^2 and equivalent to:
 - Euclidean: R²/Λ, where Λ is a lattice of translations (all are affinely equivalent);
 - Polynomial deformation $\mathbb{R}^2/(f \circ \Lambda \circ f^{-1})$, where

$$(x,y) \xrightarrow{f} (x+y^2,y).$$



Hyperbolizing Surfaces

Surface group

SL(2, ℝ)

SL(2, ℂ

SU(2, 1)

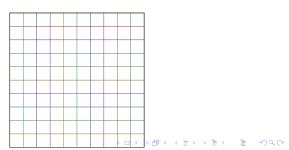
SL(3, ℝ)

 $\mathsf{Aff}(2,\mathbb{R})$

A complete affine manifold is a quotient ℝⁿ/Γ where
Γ ⊂ Aff(n, ℝ) is a discrete group acting properly on ℝⁿ.
■ Kuiper (1954): Every complete affine closed orientable 2-manifold is homeomorphic to T² and equivalent to:
■ Euclidean: ℝ²/Λ, where Λ is a lattice of translations

- (all are affinely equivalent);
- Polynomial deformation $\mathbb{R}^2/(f \circ \Lambda \circ f^{-1})$, where

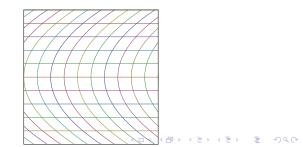
$$(x,y) \xrightarrow{f} (x+y^2,y).$$



- Surface group
- SL(2, ℝ)
- SL(2, ℂ
- SU(2, 1)
- SL(3, ℝ)
- $Aff(2, \mathbb{R})$

- A complete affine manifold is a quotient ℝⁿ/Γ where
 Γ ⊂ Aff(n, ℝ) is a discrete group acting properly on ℝⁿ.
 Kuiper (1954): Every complete affine closed orientable
 - 2-manifold is homeomorphic to T^2 and equivalent to:
 - Euclidean: R²/Λ, where Λ is a lattice of translations (all are affinely equivalent);
 - Polynomial deformation $\mathbb{R}^2/(f \circ \Lambda \circ f^{-1})$, where

$$(x,y) \xrightarrow{f} (x+y^2,y).$$



Hyperbolizing Surfaces

Surface group

SL(2, ℝ)

SL(2, ℂ

SU(2, 1)

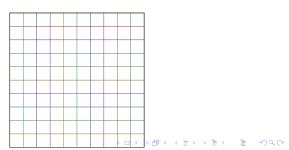
SL(3, ℝ)

 $\mathsf{Aff}(2,\mathbb{R})$

A complete affine manifold is a quotient ℝⁿ/Γ where
Γ ⊂ Aff(n, ℝ) is a discrete group acting properly on ℝⁿ.
■ Kuiper (1954): Every complete affine closed orientable 2-manifold is homeomorphic to T² and equivalent to:
■ Euclidean: ℝ²/Λ, where Λ is a lattice of translations

- (all are affinely equivalent);
- Polynomial deformation $\mathbb{R}^2/(f \circ \Lambda \circ f^{-1})$, where

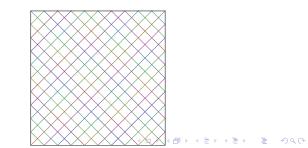
$$(x,y) \xrightarrow{f} (x+y^2,y).$$



- Surface group
- SL(2, ℝ)
- SL(2, ℂ
- SU(2, 1)
- SL(3, ℝ)
- $Aff(2, \mathbb{R})$

- A complete affine manifold is a quotient ℝⁿ/Γ where
 Γ ⊂ Aff(n, ℝ) is a discrete group acting properly on ℝⁿ.
 Kuiper (1954): Every complete affine closed orientable
 - 2-manifold is homeomorphic to T^2 and equivalent to:
 - Euclidean: R²/Λ, where Λ is a lattice of translations (all are affinely equivalent);
 - Polynomial deformation $\mathbb{R}^2/(f \circ \Lambda \circ f^{-1})$, where

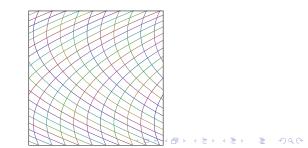
$$(x,y) \xrightarrow{f} (x+y^2,y).$$



- Surface group
- SL(2, ℝ)
- SL(2, ℂ
- SU(2, 1)
- SL(3, ℝ)
- $Aff(2, \mathbb{R})$

- A complete affine manifold is a quotient ℝⁿ/Γ where
 Γ ⊂ Aff(n, ℝ) is a discrete group acting properly on ℝⁿ.
 Kuiper (1954): Every complete affine closed orientable 2-manifold is homeomorphic to T² and equivalent to:
 - Euclidean: R²/Λ, where Λ is a lattice of translations (all are affinely equivalent);
 - Polynomial deformation $\mathbb{R}^2/(f \circ \Lambda \circ f^{-1})$, where

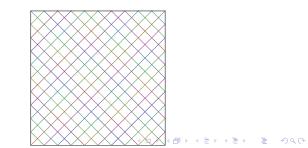
$$(x,y) \xrightarrow{f} (x+y^2,y).$$



- Surface group
- SL(2, ℝ)
- SL(2, ℂ
- SU(2, 1)
- SL(3, ℝ)
- $Aff(2, \mathbb{R})$

- A complete affine manifold is a quotient ℝⁿ/Γ where
 Γ ⊂ Aff(n, ℝ) is a discrete group acting properly on ℝⁿ.
 Kuiper (1954): Every complete affine closed orientable
 - 2-manifold is homeomorphic to T^2 and equivalent to:
 - Euclidean: R²/Λ, where Λ is a lattice of translations (all are affinely equivalent);
 - Polynomial deformation $\mathbb{R}^2/(f \circ \Lambda \circ f^{-1})$, where

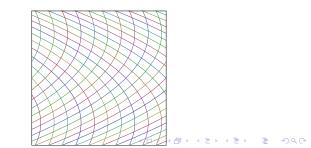
$$(x,y) \xrightarrow{f} (x+y^2,y).$$



- Surface group
- SL(2, ℝ)
- SL(2, ℂ
- SU(2, 1)
- SL(3, ℝ)
- $Aff(2, \mathbb{R})$

- A complete affine manifold is a quotient ℝⁿ/Γ where
 Γ ⊂ Aff(n, ℝ) is a discrete group acting properly on ℝⁿ.
 Kuiper (1954): Every complete affine closed orientable 2-manifold is homeomorphic to T² and equivalent to:
 - Euclidean: R²/Λ, where Λ is a lattice of translations (all are affinely equivalent);
 - Polynomial deformation $\mathbb{R}^2/(f \circ \Lambda \circ f^{-1})$, where

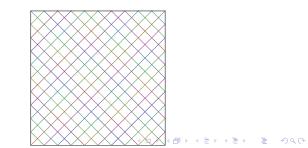
$$(x,y) \xrightarrow{f} (x+y^2,y).$$



- Surface group
- SL(2, ℝ)
- SL(2, ℂ
- SU(2, 1)
- SL(3, ℝ)
- $Aff(2, \mathbb{R})$

- A complete affine manifold is a quotient ℝⁿ/Γ where
 Γ ⊂ Aff(n, ℝ) is a discrete group acting properly on ℝⁿ.
 Kuiper (1954): Every complete affine closed orientable
 - 2-manifold is homeomorphic to T^2 and equivalent to:
 - Euclidean: R²/Λ, where Λ is a lattice of translations (all are affinely equivalent);
 - Polynomial deformation $\mathbb{R}^2/(f \circ \Lambda \circ f^{-1})$, where

$$(x,y) \xrightarrow{f} (x+y^2,y).$$



• (Baues 2000) Deformation space $\approx \mathbb{R}^2$.

◆ロ > ◆母 > ◆臣 > ◆臣 > ○日 ○ ○ ○ ○

Hyperbolizing Surfaces

Surface group SL(2, ℝ)

SU(2, 1)

SL(3, ℝ)

 $\mathsf{Aff}(2,\mathbb{R})$

- (Baues 2000) Deformation space $\approx \mathbb{R}^2$.
- Origin $\{(0,0\} \longleftrightarrow$ Euclidean structure.

Hyperbolizing Surfaces

Surface group

SL(2, ℝ)

SL(2, ℂ

SU(2, 1)

SL(3, ℝ)

 $\mathsf{Aff}(2,\mathbb{R})$

- (Baues 2000) Deformation space $\approx \mathbb{R}^2$.
- Origin $\{(0,0\} \leftrightarrow$ Euclidean structure.
- Mod(Σ)-action is *linear* GL(2, \mathbb{Z})-action on \mathbb{R}^2 .

Hyperbolizing Surfaces

- Surface group
- $SL(2, \mathbb{R})$
- SL(2, ℂ]
- SU(2, 1)
- SL(3, ℝ)
- $Aff(2,\mathbb{R})$

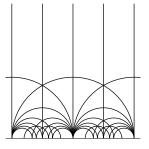
- (Baues 2000) Deformation space $\approx \mathbb{R}^2$.
- Origin $\{(0,0\} \longleftrightarrow$ Euclidean structure.
- $Mod(\Sigma)$ -action is *linear* $GL(2, \mathbb{Z})$ -action on \mathbb{R}^2 .
- The orbit space the *moduli space* of complete affine

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

compact orientable 2-manifolds is non-Hausdorff.

- Surface group
- $SL(2, \mathbb{R})$
- SL(2, C)
- SU(2, 1)
- SL(3, ℝ)
- Aff(2, ℝ)

- (Baues 2000) Deformation space $\approx \mathbb{R}^2$.
- Origin $\{(0,0\} \longleftrightarrow$ Euclidean structure.
- $Mod(\Sigma)$ -action is *linear* $GL(2, \mathbb{Z})$ -action on \mathbb{R}^2 .
- The orbit space the moduli space of complete affine compact orientable 2-manifolds is non-Hausdorff.
- Contrast to the proper action of Mod(Σ) ≃ PGL(2, Z) on 𝔅(Σ) by projective transformations.



Hyperbolizing
Hyperbolizing Surfaces
Aff(2, \mathbb{R})