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Representations of surface groups

Let Σ be a compact surface of χ(Σ) < 0 with fundamental
group π = π1(Σ).



Hyperbolizing
Surfaces

Surface groups

SL(2, R)

SL(2, C)

SU(2, 1)

SL(3, R)

Aff(2, R)
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Let Σ be a compact surface of χ(Σ) < 0 with fundamental
group π = π1(Σ).

Since π is finitely generated, Hom(π,G ) is an algebraic
set, for any algebraic Lie group G .
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Representations of surface groups

Let Σ be a compact surface of χ(Σ) < 0 with fundamental
group π = π1(Σ).

Since π is finitely generated, Hom(π,G ) is an algebraic
set, for any algebraic Lie group G .

This algebraic structure is invariant under the natural
action of Aut(π)× Aut(G ).
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Representations of surface groups

Let Σ be a compact surface of χ(Σ) < 0 with fundamental
group π = π1(Σ).

Since π is finitely generated, Hom(π,G ) is an algebraic
set, for any algebraic Lie group G .

This algebraic structure is invariant under the natural
action of Aut(π)× Aut(G ).

The mapping class group Mod(Σ) ∼= Aut(π)/Inn(π) acts
on Hom(π,G )/G .
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Representations of surface groups

Let Σ be a compact surface of χ(Σ) < 0 with fundamental
group π = π1(Σ).

Since π is finitely generated, Hom(π,G ) is an algebraic
set, for any algebraic Lie group G .

This algebraic structure is invariant under the natural
action of Aut(π)× Aut(G ).

The mapping class group Mod(Σ) ∼= Aut(π)/Inn(π) acts
on Hom(π,G )/G .

Representations π −→ G arise from locally homogeneous

geometric structures on Σ, modelled on homogeneous
spaces of G .
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Navigating the deformation space

The fundamental group π = π1(Σ) is the fundamental
group of a closed orientable surface admits a presentation

π = 〈A1, . . . ,Bg | A1B1A
−1
1 B−1

1 . . . AgBgA−1
g B−1

g = 1〉
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Navigating the deformation space

The fundamental group π = π1(Σ) is the fundamental
group of a closed orientable surface admits a presentation

π = 〈A1, . . . ,Bg | A1B1A
−1
1 B−1

1 . . . AgBgA−1
g B−1

g = 1〉

Associated to simple closed curves α ⊂ Σ are generalized

twist deformations, paths in Hom(π,G ) supported on α.
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Navigating the deformation space

The fundamental group π = π1(Σ) is the fundamental
group of a closed orientable surface admits a presentation

π = 〈A1, . . . ,Bg | A1B1A
−1
1 B−1

1 . . . AgBgA−1
g B−1

g = 1〉

Associated to simple closed curves α ⊂ Σ are generalized

twist deformations, paths in Hom(π,G ) supported on α.

For example, if α is the nonseparating simple loop A1:

ρt :











Ai 7−→ ρ(Ai ) if i ≥ 1

Bj 7−→ ρ(Bj) if j > 1

B1 7−→ ρ(B1)ζ(t)

where ζ(t) is a path in the centralizer of ρ(A1).
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Generalized twist flows

Similarly if C = [A1,B1] . . . [Ak ,Bk ] corresponds to a
separating simple loop on Σ, then

ρt :























Ai 7−→ ρ(Ai ) if i ≤ k

Bi 7−→ ρ(Bi ) if i ≤ k

Ai 7−→ ζ(t)ρ(Ai)ζ(t)−1 if i > k

Bi 7−→ ζ(t)ρ(Bi)ζ(t)−1 if i > k

where ζ(t) is a path in the centralizer of ρ(C ).
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Generalized twist flows

Similarly if C = [A1,B1] . . . [Ak ,Bk ] corresponds to a
separating simple loop on Σ, then

ρt :























Ai 7−→ ρ(Ai ) if i ≤ k

Bi 7−→ ρ(Bi ) if i ≤ k

Ai 7−→ ζ(t)ρ(Ai)ζ(t)−1 if i > k

Bi 7−→ ζ(t)ρ(Bi)ζ(t)−1 if i > k

where ζ(t) is a path in the centralizer of ρ(C ).

Example for G = SL(2, R): When ρ(A1) leaves invariant a
geodesic l ⊂ H2, then ζ(t) is a group of transvections

along l .
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Observing the deformation space

A natural class of functions on Hom(π,G )/G arise from

functions G
f
−→ R invariant under conjugation and α ∈ π:

Hom(π,G )/G
fα−→ R

[ρ] 7−→ f
(

ρ(γ)
)
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A natural class of functions on Hom(π,G )/G arise from

functions G
f
−→ R invariant under conjugation and α ∈ π:

Hom(π,G )/G
fα−→ R

[ρ] 7−→ f
(

ρ(γ)
)

The trace of any linear representation G −→ GL(N, R)
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Observing the deformation space

A natural class of functions on Hom(π,G )/G arise from

functions G
f
−→ R invariant under conjugation and α ∈ π:

Hom(π,G )/G
fα−→ R

[ρ] 7−→ f
(

ρ(γ)
)

The trace of any linear representation G −→ GL(N, R)

The geodesic displacement function (only defined for
hyperbolic elements)

tr(γ) = ±2 cosh
(

ℓ(γ)/2
)

if γ ∈ SL(2, R) is hyperbolic.
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Symplectic structure

When G possesses a nondegenerate bi-invariant

pseudo-Riemannian metric, Hom(π,G )/G inherits a
Mod(Σ)-invariant symplectic structure.



Hyperbolizing
Surfaces

Surface groups

SL(2, R)

SL(2, C)

SU(2, 1)

SL(3, R)

Aff(2, R)

Symplectic structure

When G possesses a nondegenerate bi-invariant

pseudo-Riemannian metric, Hom(π,G )/G inherits a
Mod(Σ)-invariant symplectic structure.

When G = R or C, then Hom(π,G ) is a real (or complex)
symplectic vector space H1(Σ).
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Symplectic structure

When G possesses a nondegenerate bi-invariant

pseudo-Riemannian metric, Hom(π,G )/G inherits a
Mod(Σ)-invariant symplectic structure.

When G = R or C, then Hom(π,G ) is a real (or complex)
symplectic vector space H1(Σ).

The Mod(Σ)-action is the symplectic representation

Mod(Σ) −→ Sp(2g , Z).
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Symplectic structure

When G possesses a nondegenerate bi-invariant

pseudo-Riemannian metric, Hom(π,G )/G inherits a
Mod(Σ)-invariant symplectic structure.

When G = R or C, then Hom(π,G ) is a real (or complex)
symplectic vector space H1(Σ).

The Mod(Σ)-action is the symplectic representation

Mod(Σ) −→ Sp(2g , Z).

When α is represented by a simple closed curve, and

G
f
−→ R is an invariant function, then the Hamiltonian flow

of fα is covered by a generalized twist flow on Hom(π,G ).
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Fricke space

The deformation space F(Σ) of marked hyperbolic
structures Σ identifies with the space of embeddings

π := π1(Σ)
ρ
→֒ PSL(2, R)

onto discrete subgroups.
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Fricke space

The deformation space F(Σ) of marked hyperbolic
structures Σ identifies with the space of embeddings

π := π1(Σ)
ρ
→֒ PSL(2, R)

onto discrete subgroups.

Furthermore if γ 6= 1, then ρ(γ) is hyperbolic.
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Fricke space

The deformation space F(Σ) of marked hyperbolic
structures Σ identifies with the space of embeddings

π := π1(Σ)
ρ
→֒ PSL(2, R)

onto discrete subgroups.

Furthermore if γ 6= 1, then ρ(γ) is hyperbolic.

Components of Hom(π,PSL(2, R)) are detected by the
Euler class of the associated oriented RP

1-bundle over Σ:

Hom(π,PSL(2, R))
e
−→ Z.
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Fricke space

The deformation space F(Σ) of marked hyperbolic
structures Σ identifies with the space of embeddings

π := π1(Σ)
ρ
→֒ PSL(2, R)

onto discrete subgroups.

Furthermore if γ 6= 1, then ρ(γ) is hyperbolic.

Components of Hom(π,PSL(2, R)) are detected by the
Euler class of the associated oriented RP

1-bundle over Σ:

Hom(π,PSL(2, R))
e
−→ Z.

|e(ρ)| ≤ |χ(Σ)| (Milnor 1958, Wood 1971)
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Fricke space

The deformation space F(Σ) of marked hyperbolic
structures Σ identifies with the space of embeddings

π := π1(Σ)
ρ
→֒ PSL(2, R)

onto discrete subgroups.

Furthermore if γ 6= 1, then ρ(γ) is hyperbolic.

Components of Hom(π,PSL(2, R)) are detected by the
Euler class of the associated oriented RP

1-bundle over Σ:

Hom(π,PSL(2, R))
e
−→ Z.

|e(ρ)| ≤ |χ(Σ)| (Milnor 1958, Wood 1971)

Equality ⇐⇒ ρ is a discrete embedding. (1980)
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Branched hyperbolic structures

Obtain a genus g surface from a 4g -gon.

 
a1

b1

a2

b2
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Branched hyperbolic structures

Obtain a genus g surface from a 4g -gon.

 
a1

b1

a2

b2

If the sum of the interior angles is 2πk, where k ∈ Z, then
quotient space is a hyperbolic surface with one singularity
(the image of the vertex) with cone angle 2πk.
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Branched hyperbolic structures

Obtain a genus g surface from a 4g -gon.

 
a1

b1

a2

b2

If the sum of the interior angles is 2πk, where k ∈ Z, then
quotient space is a hyperbolic surface with one singularity
(the image of the vertex) with cone angle 2πk.

The holonomy representation of a hyperbolic surface with
cone angles 2πki extends to π1(Σ) with Euler number

e(ρ) = 2− 2g +
∑

ki .
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A hyperbolic surface of genus two
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A hyperbolic surface of genus two

Identifying a regular octagon with angles π/4 yields a
nonsingular hyperbolic surface with e(ρ) = χ(Σ) = −2.
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A hyperbolic surface of genus two

Identifying a regular octagon with angles π/4 yields a
nonsingular hyperbolic surface with e(ρ) = χ(Σ) = −2.
But when the angles are π/2, the surface has one
singularity with cone angle 4π and

e(ρ) = 1 + χ(Σ) = −1.
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Branched hyperbolic structures

Each component of Hom(π,PSL(2, R)) contains holonomy
of branched hyperbolic structures.
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Branched hyperbolic structures

Each component of Hom(π,PSL(2, R)) contains holonomy
of branched hyperbolic structures.

The Euler class 2− 2g + k component deformation
retracts onto k-fold symmetric product. (Hitchin 1987)
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Branched hyperbolic structures

Each component of Hom(π,PSL(2, R)) contains holonomy
of branched hyperbolic structures.

The Euler class 2− 2g + k component deformation
retracts onto k-fold symmetric product. (Hitchin 1987)

If Σ
f
−→ Σ1 is a degree one map not homotopic to a

homeomorphism, and Σ1 is a hyperbolic structure with
holonomy φ1, then the composition

π1(Σ)
f∗−→ π1(Σ1)

φ1−→ PSL(2, R)

is not the holonomy of a branched hyperbolic structure.
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Branched hyperbolic structures

Each component of Hom(π,PSL(2, R)) contains holonomy
of branched hyperbolic structures.

The Euler class 2− 2g + k component deformation
retracts onto k-fold symmetric product. (Hitchin 1987)

If Σ
f
−→ Σ1 is a degree one map not homotopic to a

homeomorphism, and Σ1 is a hyperbolic structure with
holonomy φ1, then the composition

π1(Σ)
f∗−→ π1(Σ1)

φ1−→ PSL(2, R)

is not the holonomy of a branched hyperbolic structure.

Conjecture: every representation with dense image occurs
as the holonomy of a branched hyperbolic structure.
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Dynamic/homotopic triviality

Equivalence classes of discrete embeddings form a
connected component of Hom(π,PSL(2, R))/PGL(2, R).
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Dynamic/homotopic triviality

Equivalence classes of discrete embeddings form a
connected component of Hom(π,PSL(2, R))/PGL(2, R).

F(Σ) is homeomorphic to a cell of dimension −3χ(Σ).
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Dynamic/homotopic triviality

Equivalence classes of discrete embeddings form a
connected component of Hom(π,PSL(2, R))/PGL(2, R).

F(Σ) is homeomorphic to a cell of dimension −3χ(Σ).

Mod(Σ) acts properly discretely on F(Σ).
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Dynamic/homotopic triviality

Equivalence classes of discrete embeddings form a
connected component of Hom(π,PSL(2, R))/PGL(2, R).

F(Σ) is homeomorphic to a cell of dimension −3χ(Σ).

Mod(Σ) acts properly discretely on F(Σ).

The uniformization theorem identifies F(Σ) with the
Teichmüller space of marked conformal structures on Σ.
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Dynamic/homotopic triviality

Equivalence classes of discrete embeddings form a
connected component of Hom(π,PSL(2, R))/PGL(2, R).

F(Σ) is homeomorphic to a cell of dimension −3χ(Σ).

Mod(Σ) acts properly discretely on F(Σ).

The uniformization theorem identifies F(Σ) with the
Teichmüller space of marked conformal structures on Σ.

F(Σ) inherits a Mod(Σ)-invariant complex structure.
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Complete integrability

For G = PSL(2, R), the general symplectic structure and
the complex structure from Teichmüller space are part of
the Weil-Petersson Kähler geometry on F(Σ).
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Complete integrability

For G = PSL(2, R), the general symplectic structure and
the complex structure from Teichmüller space are part of
the Weil-Petersson Kähler geometry on F(Σ).

Decomposing Σ into pants along curves Γ = {γ1, . . . , γN}
where N = 3g − 3, the Fenchel-Nielsen mapping

F(Σ)
ℓΓ−→ (R+)N

〈M〉 7−→
(

ℓ1(M), . . . ℓN(M)
)

is a principal R
N -bundle.
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Complete integrability

For G = PSL(2, R), the general symplectic structure and
the complex structure from Teichmüller space are part of
the Weil-Petersson Kähler geometry on F(Σ).

Decomposing Σ into pants along curves Γ = {γ1, . . . , γN}
where N = 3g − 3, the Fenchel-Nielsen mapping

F(Σ)
ℓΓ−→ (R+)N

〈M〉 7−→
(

ℓ1(M), . . . ℓN(M)
)

is a principal R
N -bundle.

ℓΓ moment map for completely integrable Hamiltonian

system. (Wolpert 1983)
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Canonical coordinates

Choose a section of ℓΓ to define twist coordinates

τ1, . . . , τN , to trivialize the principal bundle:

F(Σ) ≈ (R+)N × R
N .
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Canonical coordinates

Choose a section of ℓΓ to define twist coordinates

τ1, . . . , τN , to trivialize the principal bundle:

F(Σ) ≈ (R+)N × R
N .

The symplectic form equals

N
∑

i=1

dℓi ∧ dτi .

(Wolpert 1985)
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Quasi-Fuchsian groups

The group of orientation-preserving isometries of H3
R

equals
PSL(2, C). Close to Fuchsian representations in PSL(2, R) are
quasi-Fuchsian representations.

Quasi-fuchsian representations are discrete embeddings.
Quasi-fuchsian representations comprise a cell QF upon
which Mod(Σ) acts properly.
Hom(π,SL(2, C)) is connected, and the closure of QF
consists of all discrete embeddings.
The discrete embeddings are not open and do not
comprise a component of Hom(π,G )/G .
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Complex hyperbolic geometry

Complex hyperbolic space Hn
C

is the unit ball in C
n with

the Bergman metric invariant under the projective
transformations in CP

n.

x             y

x                  

y
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Complex hyperbolic geometry

Complex hyperbolic space Hn
C

is the unit ball in C
n with

the Bergman metric invariant under the projective
transformations in CP

n.

x             y

x                  

y

C- linear subspaces meet Hn
C

in totally geodesic subspaces.
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Deforming discrete groups

Start with a Fuchsian representation π
ρ0
−→ U(1, 1) acting

on a complex geodesic H1
C
⊂ Hn

C
.
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Deforming discrete groups

Start with a Fuchsian representation π
ρ0
−→ U(1, 1) acting

on a complex geodesic H1
C
⊂ Hn

C
.

Every nearby deformation π
ρ
−→ U(n, 1) stabilizes a

complex geodesic, and is conjugate to a Fuchsian

representation

π
ρ
−→ U(1, 1)× U(n − 1) ⊂ U(n, 1).
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Deforming discrete groups

Start with a Fuchsian representation π
ρ0
−→ U(1, 1) acting

on a complex geodesic H1
C
⊂ Hn

C
.

Every nearby deformation π
ρ
−→ U(n, 1) stabilizes a

complex geodesic, and is conjugate to a Fuchsian

representation

π
ρ
−→ U(1, 1)× U(n − 1) ⊂ U(n, 1).

These are detected by a Z-valued characteristic class
generalizing the Euler class. (Toledo 1986)
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Deforming discrete groups

Start with a Fuchsian representation π
ρ0
−→ U(1, 1) acting

on a complex geodesic H1
C
⊂ Hn

C
.

Every nearby deformation π
ρ
−→ U(n, 1) stabilizes a

complex geodesic, and is conjugate to a Fuchsian

representation

π
ρ
−→ U(1, 1)× U(n − 1) ⊂ U(n, 1).

These are detected by a Z-valued characteristic class
generalizing the Euler class. (Toledo 1986)

Generalized to maximal representations by
Burger-Iozzi-Wienhard and
Bradlow-Garcia-Prada-Gothen-Mundet. (Mod(Σ) acts
properly of maximal components, well-displacing property,
determination of topological type...)
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Singularities in the deformation space

Singular points in Hom(π,G )!

In general the analytic germ of a reductive representation

of the fundamental group of a compact Kähler manifold is
defined by a system of homogeneous quadratic equations.
(G Millson 1988)

For an SU(1, 1)-representation ρ0, the neighborhood of

π
ρ
−→ SU(1, 1) ⊂ SU(2, 1)

in Hom(π,SU(2, 1)) looks like the product of
Hom(π,U(1, 1) × U(1)) and a cone defined by a quadratic
form of signature e(ρ0) on R

4g−4.

For all even e with |e| ≤ 2g − 2, the corresponding
component of Hom(π,SU(2, 1)) contains discrete

embeddings. (G Kapovich Leeb 2001)
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Complex hyperbolic Kleinian groups

(Mostow 1980, Deligne-Mostow) Nonarithmetic lattices in
SU(n, 1) for n = 1, 2, 3. Only remaining cases (n > 3)
where lattices not known to be arithmetic.

In general, discrete embeddings fail to be open. Necessary
and sufficient conditions for discreteness quite difficult.
(Parker, Schwartz, Falbel, Koseleff, Paupert, Gusevskii,
Will, Platis, ...)

Finitely generated geometrically infinite discrete groups
exist (Kapovich). Examples are not finitely presentable.
Are they rigid?

Are all algebraic limits strong?

Do degenerate surface groups exist?
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Real projective geometry

A marked convex RP
2-structures is a diffeomorphism

Σ
≈

−→ Ω/Γ

where Ω ⊂ RP
2 is a convex domain and Γ ⊂ Aut(Ω)

discrete, acting properly and freely on Ω.

χ(Σ) < 0 and ∂Σ = ∅ =⇒ ∂Ω is C 1 strictly convex curve.
(Benzecri 1960)

∂Ω is C 2 ⇐⇒ ∂Ω is a conic. (Kuiper 1956)
⇐⇒ RP

2-structure is hyperbolic.

Geodesic flow of Hilbert metric is Anosov. (Benoist 2000)

Every RP
2-structure canonically decomposes as a union of

convex structures (Choi 1988).
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Deformations of triangle groups

Domains in RP
2 tiled by (3, 3, 4)-triangles.
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The deformation space of convex RP
2-structures

The deformation space C(Σ) ≈ R
16g−16 upon which

Mod(Σ) acts properly. (1988)

C(Σ) is a connected component of
Hom(π,SL(3, R))/SL(3, R). (Choi G 1993)

The symplectic structure admits canonical coordinates.
(Zocca 1995, Hong Chan Kim 1996)

... complete integrability?

C(Σ) identifies with the holomorphic vector bundle over
Teich(Σ) whose fiber over a marked Riemann surface X

equals the vector space H0(X , (κX )2) of holomorphic

cubic differentials

(Labourie 1997, Loftin 2001).
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Generalization to G = SL(n, R).

Hitchin (1990): ∃ contractible component
H ⊂ Hom(π,G )/G containing F(Σ).

Dynamical characterization (Labourie 2004, Guichard):

ρ preserves convex curve S1 f
−→ P(Rn):

For all distinct x1, . . . , xn ∈ S1,

f (x1) + · · · + f (xn) = R
n.

Quasi-isometric embedding π1(Σ)
ρ
→֒ G

Mod(Σ) acts properly on H.

(Fock-Goncharov 2002): Positive algebraic structure on H,
=⇒ new quantum representations of Mod(Σ).

Generalizes shearing coordinates. (Penner 1987)
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(Baues 2000) Deformation space ≈ R
2.



Hyperbolizing
Surfaces

Surface groups

SL(2, R)

SL(2, C)

SU(2, 1)

SL(3, R)

Aff(2, R)

Chaos on the Deformation Space

(Baues 2000) Deformation space ≈ R
2.

Origin {(0, 0} ←→ Euclidean structure.



Hyperbolizing
Surfaces

Surface groups

SL(2, R)

SL(2, C)

SU(2, 1)

SL(3, R)

Aff(2, R)

Chaos on the Deformation Space

(Baues 2000) Deformation space ≈ R
2.

Origin {(0, 0} ←→ Euclidean structure.
Mod(Σ)-action is linear GL(2, Z)-action on R2.



Hyperbolizing
Surfaces

Surface groups

SL(2, R)

SL(2, C)

SU(2, 1)

SL(3, R)

Aff(2, R)

Chaos on the Deformation Space

(Baues 2000) Deformation space ≈ R
2.

Origin {(0, 0} ←→ Euclidean structure.
Mod(Σ)-action is linear GL(2, Z)-action on R2.

The orbit space — the moduli space of complete affine
compact orientable 2-manifolds is non-Hausdorff.



Hyperbolizing
Surfaces

Surface groups

SL(2, R)

SL(2, C)

SU(2, 1)

SL(3, R)

Aff(2, R)

Chaos on the Deformation Space

(Baues 2000) Deformation space ≈ R
2.

Origin {(0, 0} ←→ Euclidean structure.
Mod(Σ)-action is linear GL(2, Z)-action on R2.

The orbit space — the moduli space of complete affine
compact orientable 2-manifolds is non-Hausdorff.
Contrast to the proper action of Mod(Σ) ∼= PGL(2, Z)
on F(Σ) by projective transformations.
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