

Playing pool on curved surfaces and the wrong way to add fractions

William M. Goldman

Department of Mathematics University of Maryland
Distinguished Scholar-Teacher Lecture Series 8 October 2007

Mathematics: a MOST exact science

- Natural phenomena understood through quantitative measurements
- For example:

Mathematics: a MOST exact science

- Natural phenomena understood through quantitative measurements
- Which are abstracted into mathematics.
- These abstract ideas can be manipulated rigorously to make predictions.
- Mathematical statements form a language in which measurements can be processed.
- Mathematics represents an ideal situation which approximates the everyday world.
- For example:

Mathematics: a MOST exact science

- Natural phenomena understood through quantitative measurements
- Which are abstracted into mathematics.
- These abstract ideas can be manipulated rigorously to make
predictions.
- Mathematical statements form a language in which measurements can
be processed.
- Mathematics represents an ideal situation which approximates the
everyday world.
- For example:

Mathematics: a MOST exact science

- Natural phenomena understood through quantitative measurements
- Which are abstracted into mathematics.
- These abstract ideas can be manipulated rigorously to make predictions.
- Mathematical statements form a language in which measurements can
be processed.
- Mathematics represents an ideal situation which approximates the
everyday world.
- For example:

Mathematics: a MOST exact science

- Natural phenomena understood through quantitative measurements
- Which are abstracted into mathematics.
- These abstract ideas can be manipulated rigorously to make predictions.
- Mathematical statements form a language in which measurements can be processed.
- Mathematics represents an ideal situation which approximates the everyday world.
- For example:

Mathematics: a MOST exact science

- Natural phenomena understood through quantitative measurements
- Which are abstracted into mathematics.
- These abstract ideas can be manipulated rigorously to make predictions.
- Mathematical statements form a language in which measurements can be processed.
- Mathematics represents an ideal situation which approximates the everyday world.
- For example:

Mathematics: a MOST exact science

- Natural phenomena understood through quantitative measurements
- Which are abstracted into mathematics.
- These abstract ideas can be manipulated rigorously to make predictions.
- Mathematical statements form a language in which measurements can be processed.
- Mathematics represents an ideal situation which approximates the everyday world.
- For example:
- Rates of change governed by laws of calculus.
- Force $=$ Mass \cdot Acceleration.

Mathematics: a MOST exact science

- Natural phenomena understood through quantitative measurements
- Which are abstracted into mathematics.
- These abstract ideas can be manipulated rigorously to make predictions.
- Mathematical statements form a language in which measurements can be processed.
- Mathematics represents an ideal situation which approximates the everyday world.
- For example:
- Rates of change governed by laws of calculus.
- Force $=$ Mass \cdot Acceleration.

Mathematics: a MOST exact science

- Natural phenomena understood through quantitative measurements
- Which are abstracted into mathematics.
- These abstract ideas can be manipulated rigorously to make predictions.
- Mathematical statements form a language in which measurements can be processed.
- Mathematics represents an ideal situation which approximates the everyday world.
- For example:
- Rates of change governed by laws of calculus.
- Force $=$ Mass \cdot Acceleration.

Billiards on a square

- A billiard ball starts moving once it is subjected to the initial force, and changes direction when it bounces off the side of a billiard table.
- Example of the inter-relationship between seemingly different subjects of mathematics: arithmetic (number theory), and differential equations (mechanics).

Billiards on a square

- A billiard ball starts moving once it is subjected to the initial force, and changes direction when it bounces off the side of a billiard table.
- Here is an example of a billiard ball on a square billiard table, which follows a periodic path.
- Here is a longer periodic path. When the slope is rational (a fraction of two whole numbers), the path is periodic.
- When the slope is irrational, the path never closes up, and eventually fills the whole square.
- Example of the inter-relationship between seemingly different subjects of mathematics: arithmetic (number theory), and differential equations (mechanics)

Billiards on a square

- A billiard ball starts moving once it is subjected to the initial force, and changes direction when it bounces off the side of a billiard table.
- Here is an example of a billiard ball on a square billiard table, which follows a periodic path.
- Here is a longer periodic path. When the slope is rational (a fraction of two whole numbers), the path is periodic.
- When the slope is irrational, the path never closes up, and eventually fills the whole square.
- Example of the inter-relationship between seemingly different subjects of mathematics: arithmetic (number theory), and differential equations (mechanics)

Billiards on a square

- A billiard ball starts moving once it is subjected to the initial force, and changes direction when it bounces off the side of a billiard table.
- Here is an example of a billiard ball on a square billiard table, which follows a periodic path.
- Here is a longer periodic path. When the slope is rational (a fraction of two whole numbers), the path is periodic.
- When the slope is irrational, the path never closes up, and eventually fills the whole square.
- Example of the inter-relationship between seemingly different subjects of mathematics: arithmetic (number theory), and differential equations (mechanics)

Billiards on a square

- A billiard ball starts moving once it is subjected to the initial force, and changes direction when it bounces off the side of a billiard table.
- Here is an example of a billiard ball on a square billiard table, which follows a periodic path.
- Here is a longer periodic path. When the slope is rational (a fraction of two whole numbers), the path is periodic.
- When the slope is irrational, the path never closes up, and eventually fills the whole square.
- Example of the inter-relationship between seemingly different subjects of mathematics: arithmetic (number theory), and differential equations (mechanics)

Billiards on a square

- A billiard ball starts moving once it is subjected to the initial force, and changes direction when it bounces off the side of a billiard table.
- Here is an example of a billiard ball on a square billiard table, which follows a periodic path.
- Here is a longer periodic path. When the slope is rational (a fraction of two whole numbers), the path is periodic.
- When the slope is irrational, the path never closes up, and eventually fills the whole square.
- Example of the inter-relationship between seemingly different subjects of mathematics: arithmetic (number theory), and differential equations (mechanics).

Looking for universal patterns

- The same kind of differential equations that govern the motion of a moving ball can govern population growth, financial markets, chemical reactions...
- Mathematics is scalable:
- Mathematics is reproducible:

Looking for universal patterns

- The same kind of differential equations that govern the motion of a moving ball can govern population growth, financial markets, chemical reactions...
- Because they exhibit similar patterns.
- Mathematics is scalable:
- Mathematics is reproducible:

Looking for universal patterns

- The same kind of differential equations that govern the motion of a moving ball can govern population growth, financial markets, chemical reactions...
- Because they exhibit similar patterns.
- Mathematics is scalable:
- Mathematics is reproducible:

Looking for universal patterns

- The same kind of differential equations that govern the motion of a moving ball can govern population growth, financial markets, chemical reactions...
- Because they exhibit similar patterns.
- Mathematics is scalable:
- What's true in the small is true in the large
- Mathematics is reproducible:

Looking for universal patterns

- The same kind of differential equations that govern the motion of a moving ball can govern population growth, financial markets, chemical reactions...
- Because they exhibit similar patterns.
- Mathematics is scalable:
- What's true in the small is true in the large.
- Mathematics is reproducible:

Looking for universal patterns

- The same kind of differential equations that govern the motion of a moving ball can govern population growth, financial markets, chemical reactions...
- Because they exhibit similar patterns.
- Mathematics is scalable:
- What's true in the small is true in the large.
- Mathematics is reproducible:
- Governed only by abstract logic,
- And does not need special equipment, just working conditions conducive for clear thinking.

Looking for universal patterns

- The same kind of differential equations that govern the motion of a moving ball can govern population growth, financial markets, chemical reactions...
- Because they exhibit similar patterns.
- Mathematics is scalable:
- What's true in the small is true in the large.
- Mathematics is reproducible:
- Governed only by abstract logic,
- And does not need special equipment, just working conditions conducive for clear thinking.

Looking for universal patterns

- The same kind of differential equations that govern the motion of a moving ball can govern population growth, financial markets, chemical reactions...
- Because they exhibit similar patterns.
- Mathematics is scalable:
- What's true in the small is true in the large.
- Mathematics is reproducible:
- Governed only by abstract logic,
- And does not need special equipment, just working conditions conducive for clear thinking.

Language: striving for intellectual conciseness

- Promote recurring patterns into primitive concepts.
- Sometimes finding the right question is just as important as finding the right answer!
- Asking and answering questions about the simpler concepts creates new mathematics.
- More mathematics created in the last 50 years than before.
- Challenge: How can you learn enough of what has already been done to create new mathematics?

Language: striving for intellectual conciseness

- Promote recurring patterns into primitive concepts.
- Break complicated relationships into simpler ones.
- Consolidating definitions creates new concepts.
- Sometimes finding the right question is just as important as finding the right answer!
- Asking and answering questions about the simpler concepts creates new mathematics.
- More mathematics created in the last 50 years than before.
- Challenge: How can you learn enough of what has already been done to create new mathematics?

Language: striving for intellectual conciseness

- Promote recurring patterns into primitive concepts.
- Break complicated relationships into simpler ones.
- Consolidating definitions creates new concepts.
- Sometimes finding the right question is just as important as finding the right answer!
- Asking and answering questions about the simpler concepts creates new mathematics.
- More mathematics created in the last 50 years than before.
- Challenge: How can you learn enough of what has already been done to create new mathematics?

Language: striving for intellectual conciseness

- Promote recurring patterns into primitive concepts.
- Break complicated relationships into simpler ones.
- Consolidating definitions creates new concepts.
- Sometimes finding the right question is just as important as finding the right answer!
- Asking and answering questions about the simpler concepts creates new mathematics.
- More mathematics created in the last 50 years than before.
- Challenge: How can you learn enough of what has already been done to create new mathematics?

Language: striving for intellectual conciseness

- Promote recurring patterns into primitive concepts.
- Break complicated relationships into simpler ones.
- Consolidating definitions creates new concepts.
- Sometimes finding the right question is just as important as finding the right answer!
- Asking and answering questions about the simpler concepts creates new mathematics.
- More mathematics created in the last 50 years than before.
- Challenge: How can you learn enough of what has already been done to create new mathematics?

Language: striving for intellectual conciseness

- Promote recurring patterns into primitive concepts.
- Break complicated relationships into simpler ones.
- Consolidating definitions creates new concepts.
- Sometimes finding the right question is just as important as finding the right answer!
- Asking and answering questions about the simpler concepts creates new mathematics.
- And it keeps on going.
- And growing.
- More mathematics created in the last 50 years than before.
- Challenge: How can you learn enough of what has already been done to create new mathematics?

Language: striving for intellectual conciseness

- Promote recurring patterns into primitive concepts.
- Break complicated relationships into simpler ones.
- Consolidating definitions creates new concepts.
- Sometimes finding the right question is just as important as finding the right answer!
- Asking and answering questions about the simpler concepts creates new mathematics.
- And it keeps on going...
- And growing.
- More mathematics created in the last 50 years than before.
- Challenge: How can you learn enough of what has already been done to create new mathematics?

Language: striving for intellectual conciseness

- Promote recurring patterns into primitive concepts.
- Break complicated relationships into simpler ones.
- Consolidating definitions creates new concepts.
- Sometimes finding the right question is just as important as finding the right answer!
- Asking and answering questions about the simpler concepts creates new mathematics.
- And it keeps on going...
- And growing.
- More mathematics created in the last 50 years than before.
- Challenge: How can you learn enough of what has already been done to create new mathematics?

Language: striving for intellectual conciseness

- Promote recurring patterns into primitive concepts.
- Break complicated relationships into simpler ones.
- Consolidating definitions creates new concepts.
- Sometimes finding the right question is just as important as finding the right answer!
- Asking and answering questions about the simpler concepts creates new mathematics.
- And it keeps on going...
- And growing.
- More mathematics created in the last 50 years than before.
- Challenge: How can you learn enough of what has already been done to create new mathematics?

Language: striving for intellectual conciseness

- Promote recurring patterns into primitive concepts.
- Break complicated relationships into simpler ones.
- Consolidating definitions creates new concepts.
- Sometimes finding the right question is just as important as finding the right answer!
- Asking and answering questions about the simpler concepts creates new mathematics.
- And it keeps on going...
- And growing.
- More mathematics created in the last 50 years than before.
- Challenge: How can you learn enough of what has already been done to create new mathematics?

Art: beauty in the simplicity of ideas

- Sensing a familiar pattern in an unexpected setting;
- Familiarity is not only reassuring but empowering
- The patterns into which old patterns are broken lead to new patterns.

Art: beauty in the simplicity of ideas

- Sensing a familiar pattern in an unexpected setting;
- Familiarity is not only reassuring but empowering
- The patterns into which old patterns are broken lead to new patterns.

Art: beauty in the simplicity of ideas

- Sensing a familiar pattern in an unexpected setting;
- Familiarity is not only reassuring but empowering.
- The patterns into which old patterns are broken lead to new patterns.

Art: beauty in the simplicity of ideas

- Sensing a familiar pattern in an unexpected setting;
- Familiarity is not only reassuring but empowering.
- The patterns into which old patterns are broken lead to new patterns.

The Golden Ratio

- The Parthenon is in the proportion of the Golden Ratio:
$\phi=\frac{1+\sqrt{5}}{2} \approx 1.6180339887498948482045868343656381177203091798$
- which also appears in the geometry of a seashell

The Golden Ratio

- The Parthenon is in the proportion of the Golden Ratio:

$$
\phi=\frac{1+\sqrt{5}}{2} \approx 1.6180339887498948482045868343656381177203091798
$$

- which also appears in the geometry of a seashell

The Golden Ratio

- The Parthenon is in the proportion of the Golden Ratio:

$$
\phi=\frac{1+\sqrt{5}}{2} \approx 1.6180339887498948482045868343656381177203091798
$$

- which also appears in the geometry of a seashell.

A fraction which continues...

- $\phi \approx 1.618 \ldots$ satisfies the algebraic equation

 $\phi=1+\frac{1}{\phi}$
- Replacing ϕ by $1+\frac{1}{\phi}$ in this expression:

A fraction which continues...

- $\phi \approx 1.618 \ldots$ satisfies the algebraic equation

$$
\phi=1+\frac{1}{\phi}
$$

- Replacing ϕ by $1+\frac{1}{\phi}$ in this expression:

A fraction which continues...

- $\phi \approx 1.618 \ldots$ satisfies the algebraic equation

$$
\phi=1+\frac{1}{\phi}
$$

- Replacing ϕ by $1+\frac{1}{\phi}$ in this expression:

$$
\phi=1+\frac{1}{\phi}=1+\frac{1}{1+\frac{1}{\phi}}=1+\frac{1}{1+\frac{1}{1+\frac{1}{\phi}}}
$$

A fraction which continues...

- $\phi \approx 1.618 \ldots$ satisfies the algebraic equation

$$
\phi=1+\frac{1}{\phi}
$$

- Replacing ϕ by $1+\frac{1}{\phi}$ in this expression:

$$
\phi=1+\frac{1}{\phi}=1+\frac{1}{1+\frac{1}{\phi}}=1+\frac{1}{1+\frac{1}{1+\frac{1}{\phi}}}
$$

A fraction which continues...

- $\phi \approx 1.618 \ldots$ satisfies the algebraic equation

$$
\phi=1+\frac{1}{\phi}
$$

- Replacing ϕ by $1+\frac{1}{\phi}$ in this expression:

$$
\begin{gathered}
\phi=1+\frac{1}{\phi}=1+\frac{1}{1+\frac{1}{\phi}}=1+\frac{1}{1+\frac{1}{1+\frac{1}{\phi}}} \\
\phi=1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\ldots}}}
\end{gathered}
$$

What does this infinite fraction mean?

- This infinite expression is meaningless until we give it meaning!
- For example, define it to be the limit of the sequence $1,1+\frac{1}{1}=2,1+\frac{1}{2}=\frac{3}{2}, 1+\frac{1}{3 / 2}=\frac{5}{3}, 1+\frac{1}{5 / 3}=\frac{8}{5}, 1+\frac{1}{8 / 5}=\frac{13}{8}$,
- Numerators and denominators are Fibonacci numbers:

Approximate ϕ with billiards!

What does this infinite fraction mean?

- This infinite expression is meaningless until we give it meaning!
- Mathematicians change the questions to fit the answers!
- For example, define it to be the limit of the sequence $1,1+\frac{1}{1}=2,1+\frac{1}{2}=\frac{3}{2}, 1+\frac{1}{3 / 2}=\frac{5}{3}, 1+\frac{1}{5 / 3}=\frac{8}{5}, 1+\frac{1}{8 / 5}=\frac{13}{8}$
- Numerators and denominators are Fibonacci numbers:

Approximate ϕ with billiards!

What does this infinite fraction mean?

- This infinite expression is meaningless until we give it meaning!
- Mathematicians change the questions to fit the answers!
- For example, define it to be the limit of the sequence $1,1+\frac{1}{1}=2,1+\frac{1}{2}=\frac{3}{2}, 1+\frac{1}{3 / 2}=\frac{5}{3}, 1+\frac{1}{5 / 3}=\frac{8}{5}, 1+\frac{1}{8 / 5}=\frac{13}{8}$,
- Numerators and denominators are Fibonacci numbers:

Approximate ϕ with billiards!

What does this infinite fraction mean?

- This infinite expression is meaningless until we give it meaning!
- Mathematicians change the questions to fit the answers!
- For example, define it to be the limit of the sequence

$$
1,1+\frac{1}{1}=2,1+\frac{1}{2}=\frac{3}{2}, 1+\frac{1}{3 / 2}=\frac{5}{3}, 1+\frac{1}{5 / 3}=\frac{8}{5}, 1+\frac{1}{8 / 5}=\frac{13}{8}, \ldots
$$

- Numerators and denominators are Fibonacci numbers:

Approximate ϕ with billiards!

What does this infinite fraction mean?

- This infinite expression is meaningless until we give it meaning!
- Mathematicians change the questions to fit the answers!
- For example, define it to be the limit of the sequence $1,1+\frac{1}{1}=2,1+\frac{1}{2}=\frac{3}{2}, 1+\frac{1}{3 / 2}=\frac{5}{3}, 1+\frac{1}{5 / 3}=\frac{8}{5}, 1+\frac{1}{8 / 5}=\frac{13}{8}, \ldots$
- Numerators and denominators are Fibonacci numbers: $1+1=2,3,5,8,13,21,34, \ldots$, obtained by successively adding the two previous numbers in the sequence.
Approximate ϕ with billiards!

What does this infinite fraction mean?

- This infinite expression is meaningless until we give it meaning!
- Mathematicians change the questions to fit the answers!
- For example, define it to be the limit of the sequence $1,1+\frac{1}{1}=2,1+\frac{1}{2}=\frac{3}{2}, 1+\frac{1}{3 / 2}=\frac{5}{3}, 1+\frac{1}{5 / 3}=\frac{8}{5}, 1+\frac{1}{8 / 5}=\frac{13}{8}, \ldots$
- Numerators and denominators are Fibonacci numbers: $1,1+2=3,5,8,13,21,34, \ldots$, obtained by successively adding the two previous numbers in the sequence.
Approximate ϕ with billiards!

What does this infinite fraction mean?

- This infinite expression is meaningless until we give it meaning!
- Mathematicians change the questions to fit the answers!
- For example, define it to be the limit of the sequence $1,1+\frac{1}{1}=2,1+\frac{1}{2}=\frac{3}{2}, 1+\frac{1}{3 / 2}=\frac{5}{3}, 1+\frac{1}{5 / 3}=\frac{8}{5}, 1+\frac{1}{8 / 5}=\frac{13}{8}, \ldots$
- Numerators and denominators are Fibonacci numbers: $1,1,2+3=5,8,13,21,34, \ldots$, obtained by successively adding the two previous numbers in the sequence.
Approximate ϕ with billiards!

What does this infinite fraction mean?

- This infinite expression is meaningless until we give it meaning!
- Mathematicians change the questions to fit the answers!
- For example, define it to be the limit of the sequence $1,1+\frac{1}{1}=2,1+\frac{1}{2}=\frac{3}{2}, 1+\frac{1}{3 / 2}=\frac{5}{3}, 1+\frac{1}{5 / 3}=\frac{8}{5}, 1+\frac{1}{8 / 5}=\frac{13}{8}, \ldots$
- Numerators and denominators are Fibonacci numbers: $1,1,2,3+5=8,13,21,34, \ldots$, obtained by successively adding the two previous numbers in the sequence.
Approximate ϕ with billiards!

What does this infinite fraction mean?

- This infinite expression is meaningless until we give it meaning!
- Mathematicians change the questions to fit the answers!
- For example, define it to be the limit of the sequence $1,1+\frac{1}{1}=2,1+\frac{1}{2}=\frac{3}{2}, 1+\frac{1}{3 / 2}=\frac{5}{3}, 1+\frac{1}{5 / 3}=\frac{8}{5}, 1+\frac{1}{8 / 5}=\frac{13}{8}, \ldots$
- Numerators and denominators are Fibonacci numbers: $1,1,2,3,5+8=13,21,34, \ldots$, obtained by successively adding the two previous numbers in the sequence.
Approximate ϕ with billiards!

What does this infinite fraction mean?

- This infinite expression is meaningless until we give it meaning!
- Mathematicians change the questions to fit the answers!
- For example, define it to be the limit of the sequence $1,1+\frac{1}{1}=2,1+\frac{1}{2}=\frac{3}{2}, 1+\frac{1}{3 / 2}=\frac{5}{3}, 1+\frac{1}{5 / 3}=\frac{8}{5}, 1+\frac{1}{8 / 5}=\frac{13}{8}, \ldots$
- Numerators and denominators are Fibonacci numbers: $1,1,2,3,5,8+13=21,34, \ldots$, obtained by successively adding the two previous numbers in the sequence.
Approximate ϕ with billiards!

What does this infinite fraction mean?

- This infinite expression is meaningless until we give it meaning!
- Mathematicians change the questions to fit the answers!
- For example, define it to be the limit of the sequence $1,1+\frac{1}{1}=2,1+\frac{1}{2}=\frac{3}{2}, 1+\frac{1}{3 / 2}=\frac{5}{3}, 1+\frac{1}{5 / 3}=\frac{8}{5}, 1+\frac{1}{8 / 5}=\frac{13}{8}, \ldots$
- Numerators and denominators are Fibonacci numbers: $1,1,2,3,5,8,13+21=34, \ldots$, obtained by successively adding the two previous numbers in the sequence.
Approximate ϕ with billiards!

The wrong way to add fractions

- Notice a pattern in the sequence of fractions approximating ϕ :

$$
\frac{1}{1}, \frac{2}{1}, \frac{3}{2}, \frac{5}{3}, \frac{8}{5}, \frac{13}{8}, \frac{21}{13}, \frac{31}{21}, \frac{55}{34}, \frac{89}{55},
$$

- Each fraction is obtained from the preceding pair by adding numerators and denominators:

$$
\frac{a}{b} \oplus \frac{c}{d}=\frac{a+c}{b+d} .
$$

The wrong way to add fractions

- Notice a pattern in the sequence of fractions approximating ϕ :

$$
\frac{1}{1}, \frac{2}{1}, \frac{3}{2}, \frac{5}{3}, \frac{8}{5}, \frac{13}{8}, \frac{21}{13}, \frac{34}{21}, \frac{55}{34}, \frac{89}{55}, \ldots
$$

- Each fraction is obtained from the preceding pair by adding numerators and denominators:

The wrong way to add fractions

- Notice a pattern in the sequence of fractions approximating ϕ :

$$
\frac{1}{1}, \frac{2}{1}, \frac{3}{2}, \frac{5}{3}, \frac{8}{5}, \frac{13}{8}, \frac{21}{13}, \frac{34}{21}, \frac{55}{34}, \frac{89}{55}, \ldots
$$

- Each fraction is obtained from the preceding pair by adding numerators and denominators:

$$
\frac{a}{b} \oplus \frac{c}{d}=\frac{a+c}{b+d}
$$

The wrong way to add fractions

- Notice a pattern in the sequence of fractions approximating ϕ :

$$
\frac{1}{1}, \frac{2}{1}, \frac{3}{2}, \frac{5}{3}, \frac{8}{5}, \frac{13}{8}, \frac{21}{13}, \frac{34}{21}, \frac{55}{34}, \frac{89}{55}, \ldots
$$

- Each fraction is obtained from the preceding pair by adding numerators and denominators:

$$
\begin{gathered}
\frac{a}{b} \oplus \frac{c}{d}=\frac{a+c}{b+d} . \\
\frac{1}{1} \oplus \frac{2}{1}=\frac{3}{2}, \frac{5}{3}, \frac{8}{5}, \frac{13}{8}, \frac{21}{13}, \frac{34}{21}, \frac{55}{34}, \frac{89}{55}, \ldots
\end{gathered}
$$

The wrong way to add fractions

- Notice a pattern in the sequence of fractions approximating ϕ :

$$
\frac{1}{1}, \frac{2}{1}, \frac{3}{2}, \frac{5}{3}, \frac{8}{5}, \frac{13}{8}, \frac{21}{13}, \frac{34}{21}, \frac{55}{34}, \frac{89}{55}, \ldots
$$

- Each fraction is obtained from the preceding pair by adding numerators and denominators:

$$
\begin{gathered}
\frac{a}{b} \oplus \frac{c}{d}=\frac{a+c}{b+d} . \\
\frac{1}{1}, \frac{2}{1} \oplus \frac{3}{2}=\frac{5}{3}, \frac{8}{5}, \frac{13}{8}, \frac{21}{13}, \frac{34}{21}, \frac{55}{34}, \frac{89}{55}, \ldots
\end{gathered}
$$

The wrong way to add fractions

- Notice a pattern in the sequence of fractions approximating ϕ :

$$
\frac{1}{1}, \frac{2}{1}, \frac{3}{2}, \frac{5}{3}, \frac{8}{5}, \frac{13}{8}, \frac{21}{13}, \frac{34}{21}, \frac{55}{34}, \frac{89}{55}, \ldots
$$

- Each fraction is obtained from the preceding pair by adding numerators and denominators:

$$
\begin{gathered}
\frac{a}{b} \oplus \frac{c}{d}=\frac{a+c}{b+d} . \\
\frac{1}{1}, \frac{2}{1}, \frac{3}{2} \oplus \frac{5}{3}=\frac{8}{5}, \frac{13}{8}, \frac{21}{13}, \frac{34}{21}, \frac{55}{34}, \frac{89}{55}, \ldots
\end{gathered}
$$

The wrong way to add fractions

- Notice a pattern in the sequence of fractions approximating ϕ :

$$
\frac{1}{1}, \frac{2}{1}, \frac{3}{2}, \frac{5}{3}, \frac{8}{5}, \frac{13}{8}, \frac{21}{13}, \frac{34}{21}, \frac{55}{34}, \frac{89}{55}, \ldots
$$

- Each fraction is obtained from the preceding pair by adding numerators and denominators:

$$
\begin{gathered}
\frac{a}{b} \oplus \frac{c}{d}=\frac{a+c}{b+d} . \\
\frac{1}{1}, \frac{2}{1}, \frac{3}{2}, \frac{5}{3} \oplus \frac{8}{5}=\frac{13}{8}, \frac{21}{13}, \frac{34}{21}, \frac{55}{34}, \frac{89}{55}, \ldots
\end{gathered}
$$

The wrong way to add fractions

- Notice a pattern in the sequence of fractions approximating ϕ :

$$
\frac{1}{1}, \frac{2}{1}, \frac{3}{2}, \frac{5}{3}, \frac{8}{5}, \frac{13}{8}, \frac{21}{13}, \frac{34}{21}, \frac{55}{34}, \frac{89}{55}, \ldots
$$

- Each fraction is obtained from the preceding pair by adding numerators and denominators:

$$
\begin{gathered}
\frac{a}{b} \oplus \frac{c}{d}=\frac{a+c}{b+d} . \\
\frac{1}{1}, \frac{2}{1}, \frac{3}{2}, \frac{5}{3}, \frac{8}{5} \oplus \frac{13}{8}=\frac{21}{13}, \frac{34}{21}, \frac{55}{34}, \frac{89}{55}, \ldots
\end{gathered}
$$

The wrong way to add fractions

- Notice a pattern in the sequence of fractions approximating ϕ :

$$
\frac{1}{1}, \frac{2}{1}, \frac{3}{2}, \frac{5}{3}, \frac{8}{5}, \frac{13}{8}, \frac{21}{13}, \frac{34}{21}, \frac{55}{34}, \frac{89}{55}, \ldots
$$

- Each fraction is obtained from the preceding pair by adding numerators and denominators:

$$
\begin{gathered}
\frac{a}{b} \oplus \frac{c}{d}=\frac{a+c}{b+d} . \\
\frac{1}{1}, \frac{2}{1}, \frac{3}{2}, \frac{5}{3}, \frac{8}{5}, \frac{13}{8} \oplus \frac{21}{13}=\frac{34}{21}, \frac{55}{34}, \frac{89}{55}, \ldots
\end{gathered}
$$

The wrong way to add fractions

- Notice a pattern in the sequence of fractions approximating ϕ :

$$
\frac{1}{1}, \frac{2}{1}, \frac{3}{2}, \frac{5}{3}, \frac{8}{5}, \frac{13}{8}, \frac{21}{13}, \frac{34}{21}, \frac{55}{34}, \frac{89}{55}, \ldots
$$

- Each fraction is obtained from the preceding pair by adding numerators and denominators:

$$
\begin{gathered}
\frac{a}{b} \oplus \frac{c}{d}=\frac{a+c}{b+d} . \\
\frac{1}{1}, \frac{2}{1}, \frac{3}{2}, \frac{5}{3}, \frac{8}{5}, \frac{13}{8}, \frac{21}{13} \oplus \frac{34}{21}=\frac{55}{34}, \frac{89}{55}, \ldots
\end{gathered}
$$

The wrong way to add fractions

- Notice a pattern in the sequence of fractions approximating ϕ :

$$
\frac{1}{1}, \frac{2}{1}, \frac{3}{2}, \frac{5}{3}, \frac{8}{5}, \frac{13}{8}, \frac{21}{13}, \frac{34}{21}, \frac{55}{34}, \frac{89}{55}, \ldots
$$

- Each fraction is obtained from the preceding pair by adding numerators and denominators:

$$
\begin{gathered}
\frac{a}{b} \oplus \frac{c}{d}=\frac{a+c}{b+d} . \\
\frac{1}{1}, \frac{2}{1}, \frac{3}{2}, \frac{5}{3}, \frac{8}{5}, \frac{13}{8}, \frac{21}{13}, \frac{34}{21} \oplus \frac{55}{34}=\frac{89}{55}, \ldots
\end{gathered}
$$

Farey series

- List the fractions (in order) with denominator $\leq n$:
- Each fraction is obtained from the two closest ones above by adding numerators and denominators: $\frac{a}{b} \oplus \frac{c}{d}=\frac{a+c}{b+d}$.
- $n=6$:

$$
\frac{0}{1}, \frac{1}{5}, \frac{1}{6}, \frac{1}{4}, \frac{1}{3}, \frac{2}{5}, \frac{1}{2}, \frac{3}{5}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{1}{1}, \frac{7}{6}, \frac{6}{5}, \frac{5}{4}, \frac{4}{3}, \frac{7}{5}, \frac{3}{2}, \frac{8}{5}, \frac{5}{3}, \frac{7}{4}, \frac{9}{5}, \frac{11}{6}, \frac{2}{1}
$$

- John Farey, Sr. (1766-1826), a British geologist, was led to these discoveries through his interest in the mathematics of sound. (Philosophical Magazine 1816).

Farey series

- List the fractions (in order) with denominator $\leq n$:
- Each fraction is obtained from the two closest ones above by adding numerators and denominators: $\frac{a}{b} \oplus \frac{c}{d}=\frac{a+c}{b+d}$.
- $n=6$ $\frac{0}{1}, \frac{1}{5}, \frac{1}{6}, \frac{1}{4}, \frac{1}{3}, \frac{2}{5}, \frac{1}{2}, \frac{3}{5}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{1}{1}, \frac{7}{6}, \frac{6}{5}, \frac{5}{4}, \frac{4}{3}, \frac{7}{5}, \frac{3}{2}, \frac{8}{5}, \frac{5}{3}, \frac{7}{4}, \frac{9}{5}, \frac{11}{6}, \frac{2}{1}$
- John Farey, Sr. (1766-1826), a British geologist, was led to these discoveries through his interest in the mathematics of sound. (Philosophical Magazine 1816).

Farey series

- List the fractions (in order) with denominator $\leq n$:
- Each fraction is obtained from the two closest ones above by adding numerators and denominators: $\quad \frac{a}{b} \oplus \frac{c}{d}=\frac{a+c}{b+d}$.
- $n=6$ $\frac{0}{1}, \frac{1}{5}, \frac{1}{6}, \frac{1}{4}, \frac{1}{3}, \frac{2}{5}, \frac{1}{2}, \frac{3}{5}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{1}{1}, \frac{7}{6}, \frac{6}{5}, \frac{5}{4}, \frac{4}{3}, \frac{7}{5}, \frac{3}{2}, \frac{8}{5}, \frac{5}{3}, \frac{7}{4}, \frac{9}{5}, \frac{11}{6}, \frac{2}{1}$
- John Farey, Sr. (1766-1826), a British geologist, was led to these discoveries through his interest in the mathematics of sound. (Philosophical Magazine 1816)

Farey series

- List the fractions (in order) with denominator $\leq n$:
- Each fraction is obtained from the two closest ones above by adding numerators and denominators: $\quad \frac{a}{b} \oplus \frac{c}{d}=\frac{a+c}{b+d}$.
- $n=1$:

$$
\frac{0}{1}, \frac{1}{1}, \frac{2}{1}
$$

- $n=6$

- John Farey, Sr. (1766-1826), a British geologist, was led to these discoveries through his interest in the mathematics of sound. (Philosophical Magazine 1816)

Farey series

- List the fractions (in order) with denominator $\leq n$:
- Each fraction is obtained from the two closest ones above by adding numerators and denominators: $\quad \frac{a}{b} \oplus \frac{c}{d}=\frac{a+c}{b+d}$.
- $n=2$:

$$
\frac{0}{1}, \frac{1}{2}, \frac{1}{1}, \frac{3}{2}, \frac{2}{1}
$$

- $n=6$
$\frac{0}{1}, \frac{1}{5}, \frac{1}{6}, \frac{1}{4}, \frac{1}{3}, \frac{2}{5}, \frac{1}{2}, \frac{3}{5}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{1}{1}, \frac{7}{6}, \frac{6}{5}, \frac{5}{4}, \frac{4}{3}, \frac{7}{5}, \frac{3}{2}, \frac{8}{5}, \frac{5}{3}, \frac{7}{4}, \frac{9}{5}, \frac{11}{6}, \frac{2}{1}$
- John Farey, Sr. (1766-1826), a British geologist, was led to these discoveries through his interest in the mathematics of sound. (Philosophical Magazine 1816)

Farey series

- List the fractions (in order) with denominator $\leq n$:
- Each fraction is obtained from the two closest ones above by adding numerators and denominators: $\frac{a}{b} \oplus \frac{c}{d}=\frac{a+c}{b+d}$.
- $n=3$:

$$
\frac{0}{1}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{1}{1}, \frac{4}{3}, \frac{3}{2}, \frac{5}{3}, \frac{2}{1}
$$

- $n=6$
> - John Farey, Sr. (1766-1826), a British geologist, was led to these discoveries through his interest in the mathematics of sound (Philosophical Magazine 1816)

Farey series

- List the fractions (in order) with denominator $\leq n$:
- Each fraction is obtained from the two closest ones above by adding numerators and denominators: $\frac{a}{b} \oplus \frac{c}{d}=\frac{a+c}{b+d}$.
- $n=4$:

$$
\frac{0}{1}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{1}{1}, \frac{5}{4}, \frac{4}{3}, \frac{3}{2}, \frac{5}{3}, \frac{7}{4}, \frac{2}{1}
$$

- $n=6$
- John Farey, Sr. (1766-1826), a British geologist, was led to these discoveries through his interest in the mathematics of sound. (Philosophical Magazine 1816)

Farey series

- List the fractions (in order) with denominator $\leq n$:
- Each fraction is obtained from the two closest ones above by adding numerators and denominators: $\frac{a}{b} \oplus \frac{c}{d}=\frac{a+c}{b+d}$.
- $n=5$:

$$
\frac{0}{1}, \frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{2}{5}, \frac{1}{2}, \frac{3}{5}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{1}{1}, \frac{6}{5}, \frac{5}{4}, \frac{4}{3}, \frac{7}{5}, \frac{3}{2}, \frac{8}{5}, \frac{5}{3}, \frac{7}{4}, \frac{9}{5}, \frac{2}{1}
$$

- $n=6$
- John Farey, Sr. (1766-1826), a British geologist, was led to these discoveries through his interest in the mathematics of sound (Philosophical Magazine 1816)

Farey series

- List the fractions (in order) with denominator $\leq n$:
- Each fraction is obtained from the two closest ones above by adding numerators and denominators: $\quad \frac{a}{b} \oplus \frac{c}{d}=\frac{a+c}{b+d}$.
- $n=6$:
$\frac{0}{1}, \frac{1}{5}, \frac{1}{6}, \frac{1}{4}, \frac{1}{3}, \frac{2}{5}, \frac{1}{2}, \frac{3}{5}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{1}{1}, \frac{7}{6}, \frac{6}{5}, \frac{5}{4}, \frac{4}{3}, \frac{7}{5}, \frac{3}{2}, \frac{8}{5}, \frac{5}{3}, \frac{7}{4}, \frac{9}{5}, \frac{11}{6}, \frac{2}{1}$
- John Farey, Sr. (1766-1826), a British geologist, was led to these
discoveries through his interest in the mathematics of sound (Philosophical Magazine 1816)

Farey series

- List the fractions (in order) with denominator $\leq n$:
- Each fraction is obtained from the two closest ones above by adding numerators and denominators: $\quad \frac{a}{b} \oplus \frac{c}{d}=\frac{a+c}{b+d}$.
- $n=6$:

$$
\frac{0}{1}, \frac{1}{5}, \frac{1}{6}, \frac{1}{4}, \frac{1}{3}, \frac{2}{5}, \frac{1}{2}, \frac{3}{5}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{1}{1}, \frac{7}{6}, \frac{6}{5}, \frac{5}{4}, \frac{4}{3}, \frac{7}{5}, \frac{3}{2}, \frac{8}{5}, \frac{5}{3}, \frac{7}{4}, \frac{9}{5}, \frac{11}{6}, \frac{2}{1}
$$

- John Farey, Sr. (1766-1826), a British geologist, was led to these discoveries through his interest in the mathematics of sound. (Philosophical Magazine 1816).

How a mathematical concept is created

- A pattern is isolated.
- Promote it to a new concept
- Relate it to already defined concepts through theorems,
- Similar to art: a human representation of an abstract pattern.

How a mathematical concept is created

- A pattern is isolated.
- Focus on its essential qualitites.
- Promote it to a new concept
- Relate it to already defined concepts through theorems,
- Similar to art: a human representation of an abstract pattern.

How a mathematical concept is created

- A pattern is isolated.
- Focus on its essential qualitites.
- Promote it to a new concept
- Relate it to already defined concepts through theorems,
- Similar to art: a human representation of an abstract pattern.

How a mathematical concept is created

- A pattern is isolated.
- Focus on its essential qualitites.
- Promote it to a new concept
- Give it a definition.
- Relate it to already defined concepts through theorems,
- Similar to art: a human representation of an abstract pattern.

How a mathematical concept is created

- A pattern is isolated.
- Focus on its essential qualitites.
- Promote it to a new concept
- Give it a definition.
- Relate it to already defined concepts through theorems,
- Similar to art: a human representation of an abstract pattern.

How a mathematical concept is created

- A pattern is isolated.
- Focus on its essential qualitites.
- Promote it to a new concept
- Give it a definition.
- Relate it to already defined concepts through theorems,
- which must be rigorously proved!
- Similar to art: a human representation of an abstract pattern.

How a mathematical concept is created

- A pattern is isolated.
- Focus on its essential qualitites.
- Promote it to a new concept
- Give it a definition.
- Relate it to already defined concepts through theorems,
- which must be rigorously proved!
- The right definitions may make the theorems much easier to prove.
- Similar to art: a human representation of an abstract pattern.

How a mathematical concept is created

- A pattern is isolated.
- Focus on its essential qualitites.
- Promote it to a new concept
- Give it a definition.
- Relate it to already defined concepts through theorems,
- which must be rigorously proved!
- The right definitions may make the theorems much easier to prove.
- Similar to art: a human representation of an abstract pattern.

How a mathematical concept is created

- A pattern is isolated.
- Focus on its essential qualitites.
- Promote it to a new concept
- Give it a definition.
- Relate it to already defined concepts through theorems,
- which must be rigorously proved!
- The right definitions may make the theorems much easier to prove.
- Similar to art: a human representation of an abstract pattern.

Challenges to doing mathematics

Its unique nature leads to basic challenges in its teaching, communication, and dissemination, unlike any other intellectual discipline.

A remarkably successful discipline

- Mathematics goes back thousands of years, and ...
- Old mathematics is not discarded ...
- Leading to challenges in disseminating, organizing, teaching
- As more common relationships are discovered, ideas generalize

A remarkably successful discipline

- Mathematics goes back thousands of years, and ...
- continues to grow.
- Old mathematics is not discarded
- Leading to challenges in disseminating, organizing, teaching
- As more common relationships are discovered, ideas generalize

A remarkably successful discipline

- Mathematics goes back thousands of years, and ...
- continues to grow.
- Old mathematics is not discarded
- Leading to challenges in disseminating, organizing, teaching
- As more common relationships are discovered, ideas generalize

A remarkably successful discipline

- Mathematics goes back thousands of years, and ...
- continues to grow.
- Old mathematics is not discarded ...
- but condensed.
- Leading to challenges in disseminating, organizing, teaching
- As more common relationships are discovered, ideas generalize

A remarkably successful discipline

- Mathematics goes back thousands of years, and ...
- continues to grow.
- Old mathematics is not discarded ...
- but condensed.
- Leading to challenges in disseminating, organizing, teaching
- As more common relationships are discovered, ideas generalize

A remarkably successful discipline

- Mathematics goes back thousands of years, and ...
- continues to grow.
- Old mathematics is not discarded ...
- but condensed.
- Leading to challenges in disseminating, organizing, teaching ...
- As more common relationships are discovered, ideas generalize

A remarkably successful discipline

- Mathematics goes back thousands of years, and ...
- continues to grow.
- Old mathematics is not discarded ...
- but condensed.
- Leading to challenges in disseminating, organizing, teaching ...
- As more common relationships are discovered, ideas generalize ...
- and the subject becomes more and more abstract

A remarkably successful discipline

- Mathematics goes back thousands of years, and ...
- continues to grow.
- Old mathematics is not discarded ...
- but condensed.
- Leading to challenges in disseminating, organizing, teaching ...
- As more common relationships are discovered, ideas generalize ...
- and the subject becomes more and more abstract ...
- And specialized.

A remarkably successful discipline

- Mathematics goes back thousands of years, and ...
- continues to grow.
- Old mathematics is not discarded ...
- but condensed.
- Leading to challenges in disseminating, organizing, teaching ...
- As more common relationships are discovered, ideas generalize ...
- and the subject becomes more and more abstract ...
- And specialized.

Going out of control?

- Too many subdivisions..
- Specialization must be controlled and resisted as the subject develops.
- Last 30 years: remarkable confluence of mathematical ideas.

The Tower of Babel

Going out of control?

- Too many subdivisions...
- Despite basic unity, a natural tendency to splinter.
- Specialization must be controlled and resisted as the subject develops.
- Last 30 years: remarkable confluence of mathematical ideas.

The Tower of Babel

Going out of control?

- Too many subdivisions...
- Despite basic unity, a natural tendency to splinter.
- Specialization must be controlled and resisted as the subject develops.
- Last 30 years: remarkable confluence of mathematical ideas.

The Tower of Babel

Going out of control?

- Too many subdivisions...
- Despite basic unity, a natural tendency to splinter.
- Specialization must be controlled and resisted as the subject develops.
- Last 30 years: remarkable confluence of mathematical ideas.

The Tower of Babel

Going out of control?

- Too many subdivisions...
- Despite basic unity, a natural tendency to splinter.
- Specialization must be controlled and resisted as the subject develops.
- Last 30 years: remarkable confluence of mathematical ideas.
- Making it even harder to learn!

The Tower of Babel

Going out of control?

- Too many subdivisions...
- Despite basic unity, a natural tendency to splinter.
- Specialization must be controlled and resisted as the subject develops.
- Last 30 years: remarkable confluence of mathematical ideas.
- Making it even harder to learn!

The Tower of Babel

Investing in mathematics is investing in people!

- The speakers of a specialized language...
- Build a community of technically literate and creative people.

Investing in mathematics is investing in people!

- The speakers of a specialized language...
- Are the audience
- And the practitioners
- And the developers
- And the first users
- Build a community of technically literate and creative people.

Pool on curved surfaces

Investing in mathematics is investing in people!

- The speakers of a specialized language...
- Are the audience ...
- And the practitioners
- And the developers
- And the first users
- Build a community of technically literate and creative people.

Pool on curved surfaces

Investing in mathematics is investing in people!

- The speakers of a specialized language...
- Are the audience ...
- And the practitioners...
- And the developers
- And the first users
- Build a community of technically literate and creative people.

Pool on curved surfaces

Investing in mathematics is investing in people!

- The speakers of a specialized language...
- Are the audience ...
- And the practitioners...
- And the developers ...
- And the first users
- Build a community of technically literate and creative people.

Pool on curved surfaces

Investing in mathematics is investing in people!

- The speakers of a specialized language...
- Are the audience ...
- And the practitioners...
- And the developers ...
- And the first users.
- Build a community of technically literate and creative people.

Pool on curved surfaces

Investing in mathematics is investing in people!

- The speakers of a specialized language...
- Are the audience ...
- And the practitioners...
- And the developers ...
- And the first users.
- Build a community of technically literate and creative people.

Pool on curved surfaces

Mathematics:A fundamentally human activity.

Terrapins work out the equations of straight lines on curved surfaces.

Building communities to promote mathematics

Potomac High School students visit the Experimental Geometry Lab.

Why support mathematics?

- A rapidly changing society needs people who can:

Why support mathematics?

- A rapidly changing society needs people who can:
- Learn and work with abstract ideas,
- Communicate them effectively

Why support mathematics?

- A rapidly changing society needs people who can:
- Learn and work with abstract ideas,
- Communicate them effectively

Why support mathematics?

- A rapidly changing society needs people who can:
- Learn and work with abstract ideas,
- Communicate them effectively

Why support mathematics?

- A rapidly changing society needs people who can:
- Learn and work with abstract ideas,
- Communicate them effectively
- ... all in a short period of time...

A community activity

Summary

Mathematics:

- A Science: a rigorous exact discipline which formulates statements modeling natural phenomena.
- A I anguage: a collection of ideas, represented symbolically and organized into units of communication.
- An art: an esthetic activity, characterized by elegance and simplicity, despite its innate complexity.

Summary

Mathematics:

- A Science: a rigorous exact discipline which formulates statements modeling natural phenomena.
- A Language: a collection of ideas, represented symbolically and organized into units of communication.
- An art: an esthetic activity, characterized by elegance and simplicity, despite its innate complexity.

Summary

Mathematics:

- A Science: a rigorous exact discipline which formulates statements modeling natural phenomena.
- A Language: a collection of ideas, represented symbolically and organized into units of communication.
- An art: an esthetic activity, characterized by elegance and simplicity, despite its innate complexity.

Summary

Mathematics:

- A Science: a rigorous exact discipline which formulates statements modeling natural phenomena.
- A Language: a collection of ideas, represented symbolically and organized into units of communication.
- An art: an esthetic activity, characterized by elegance and simplicity, despite its innate complexity.

Summary

- These three roles complement each other in a unique way.
- And the growth of mathematics leads to serious challenges in
- Mathematics: A fundamentally human activity.
- Let's enrich our society with communities of literate, knowledgeable and creative mathematicians

Summary

- These three roles complement each other in a unique way.
- And the growth of mathematics leads to serious challenges in
- Mathematics: A fundamentally human activity.
- Let's enrich our society with communities of literate, knowledgeable and creative mathematicians

Summary

- These three roles complement each other in a unique way.
- And the growth of mathematics leads to serious challenges in
- Training,
- Disseminating,
- Communicating
- Mathematics: A fundamentally human activity.
- Let's enrich our society with communities of literate, knowledgeable and creative mathematicians

Summary

- These three roles complement each other in a unique way.
- And the growth of mathematics leads to serious challenges in
- Training,
- Disseminating,
- Communicating.
- Mathematics: A fundamentally human activity.
- Let's enrich our society with communities of literate, knowledgeable and creative mathematicians

Summary

- These three roles complement each other in a unique way.
- And the growth of mathematics leads to serious challenges in
- Training,
- Disseminating,
- Communicating
- Mathematics: A fundamentally human activity.
- Let's enrich our society with communities of literate, knowledgeable and creative mathematicians

Summary

- These three roles complement each other in a unique way.
- And the growth of mathematics leads to serious challenges in
- Training,
- Disseminating,
- Communicating.
- Mathematics: A fundamentally human activity.
- Let's enrich our society with communities of literate, knowledgeable and creative mathematicians

Summary

- These three roles complement each other in a unique way.
- And the growth of mathematics leads to serious challenges in
- Training,
- Disseminating,
- Communicating.
- Mathematics: A fundamentally human activity.
- Let's enrich our society with communities of literate, knowledgeable and creative mathematicians

Summary

- These three roles complement each other in a unique way.
- And the growth of mathematics leads to serious challenges in
- Training,
- Disseminating,
- Communicating.
- Mathematics: A fundamentally human activity.
- Let's enrich our society with communities of literate, knowledgeable and creative mathematicians

Summary

- These three roles complement each other in a unique way.
- And the growth of mathematics leads to serious challenges in
- Training,
- Disseminating,
- Communicating.
- Mathematics: A fundamentally human activity.
- Let's enrich our society with communities of literate, knowledgeable and creative mathematicians
- At All Levels!

Playing pool on curved surfaces...

