

Geometric structures

Surface groups

SL(2, ℝ

SL(2, ℂ

SU(2.1

. . . .

02(0, _..)

Hyperbolizing Surfaces

William M. Goldman

Department of Mathematics University of Maryland

Conference on Algebraic and Geometric Topology Gdańsk, Poland 10 June 2008

Hyperbolizing Surfaces

Geometric structures

Surface groups

SL(2, ℝ

 $SL(2, \mathbb{C}$

SU(2, 1)

 $SL(3, \mathbb{R})$

 $\operatorname{Aff}(2,\mathbb{R})$

1 Geometric structures

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Hyperbolizing Surfaces

Geometric structures

Surface groups

SL(2, ℝ)

SL(2, ℂ

SU(2, 1)

 $SL(3, \mathbb{R})$

 $\operatorname{Aff}(2,\mathbb{R})$

1 Geometric structures

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

2 Surface groups

Hyperbolizing Surfaces

1 Geometric structures

2 Surface groups

3 SL(2, ℝ)

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Hyperbolizing Surfaces

1 Geometric structures

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

2 Surface groups

3 SL(2, ℝ)

4 SL(2, ℂ)

Hyperbolizing Surfaces

1 Geometric structures

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

2 Surface groups

3 SL(2, ℝ)

4 SL(2, ℂ)

5 SU(2,1)

Hyperbolizing Surfaces

structures

1 Geometric structures

2 Surface groups

3 SL(2, ℝ)

4 SL(2, ℂ)

5 SU(2,1)

6 SL(3, ℝ)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Hyperbolizing Surfaces

1 Geometric structures

2 Surface groups

3 SL $(2, \mathbb{R})$

4 SL(2, ℂ)

5 SU(2,1)

6 SL(3, ℝ)

7 Aff $(2, \mathbb{R})$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Hyperbolizing Surfaces

Geometric structures

Surface groups

SL(2, ℝ]

SL(2, ℂ]

SU(2, 1)

SL(3, ℝ)

Aff(2, ℝ)

Influenced by S. Lie, in his 1872 Erlangen Program, F. Klein proposed that a geometry is the study of properties of an abstract space X which are invariant under a transitive group G of transformations of X.

Hyperbolizing Surfaces

Geometric structures

- Surface groups
- SL(2, ℝ]
- SL(2, ℂ)
- SU(2, 1)
- SL(3, ℝ)

- Influenced by S. Lie, in his 1872 Erlangen Program, F. Klein proposed that a geometry is the study of properties of an abstract space X which are invariant under a transitive group G of transformations of X.
 - Algebraicization of geometry: Many diverse geometries homogeneous spaces G/H — classified by Lie groups and Lie algebras.

Hyperbolizing Surfaces

Geometric structures

- Influenced by S. Lie, in his 1872 Erlangen Program, F. Klein proposed that a *geometry* is the study of properties of an abstract space X which are invariant under a transitive group G of transformations of X.
 - Algebraicization of geometry: Many diverse geometries homogeneous spaces G/H — classified by Lie groups and Lie algebras.

Examples: Euclidean, hyperbolic, projective, affine, conformal, constant curvature Lorentzian ...

Hyperbolizing Surfaces

Geometric structures

- Influenced by S. Lie, in his 1872 Erlangen Program, F. Klein proposed that a *geometry* is the study of properties of an abstract space X which are invariant under a transitive group G of transformations of X.
 - Algebraicization of geometry: Many diverse geometries homogeneous spaces G/H — classified by Lie groups and Lie algebras.
 - Examples: Euclidean, hyperbolic, projective, affine, conformal, constant curvature Lorentzian ...
- Group theory arises in topology through the *fundamental* group and the universal covering space.

Hyperbolizing Surfaces

Geometric structures

Surface groups

SL(2, ℝ)

.....

50(2, 1,

SL(3, ℝ)

 $Aff(2,\mathbb{R})$

• Topology: Smooth manifold M, coordinate patches U_{α} ;

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー のなべ

Hyperbolizing Surfaces

Geometric structures

Surface groups

 $SL(2, \mathbb{R})$

 $SL(2, \mathbb{C}$

SU(2, 1)

 $SL(3,\mathbb{R})$

 $Aff(2, \mathbb{R})$

Topology: Smooth manifold M, coordinate patches U_α;
 Charts — diffeomorphisms

$$U_{lpha} \xrightarrow{\psi_{lpha}} \psi_{lpha}(U_{lpha}) \subset X$$

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー のなべ

Hyperbolizing Surfaces

Geometric structures

Surface groups

 $SL(2, \mathbb{R}$

SL(2, €

SU(2, 1

SL(3, ℝ)

Topology: Smooth manifold M, coordinate patches U_α;
 Charts — diffeomorphisms

$$U_{lpha} \xrightarrow{\psi_{lpha}} \psi_{lpha}(U_{lpha}) \subset X$$

• For each component $C \subset U_{\alpha} \cap U_{\beta}$, $\exists g = g(C) \in G$:

$$g\circ\psi_{\alpha}|_{\mathcal{C}}=\psi_{\beta}|_{\mathcal{C}}.$$

Hyperbolizing Surfaces

Geometric structures

Surface groups

 $SL(2, \mathbb{R}$

3∟(∠, ⊂

SU(2, 1)

SL(3, ℝ)

Aff(2, ℝ)

Topology: Smooth manifold M, coordinate patches U_α;
 Charts — diffeomorphisms

$$U_{lpha} \xrightarrow{\psi_{lpha}} \psi_{lpha}(U_{lpha}) \subset X$$

• For each component $C \subset U_{\alpha} \cap U_{\beta}$, $\exists g = g(C) \in G$: $g \circ \psi_{\alpha}|_{C} = \psi_{\beta}|_{C}$.

• Well-defined local (G, X)-geometry defined by ψ_{α} .

Hyperbolizing Surfaces

Geometric structures

Surface groups

 $SL(2, \mathbb{R}$

JL(2, C

SU(2, 1

SL(3, ℝ)

Aff(2, ℝ)

Topology: Smooth manifold M, coordinate patches U_α;
 Charts — diffeomorphisms

$$U_{lpha} \xrightarrow{\psi_{lpha}} \psi_{lpha}(U_{lpha}) \subset X$$

For each component $C \subset U_{\alpha} \cap U_{\beta}$, $\exists g = g(C) \in G$:

$$g\circ\psi_{\alpha}|_{\mathcal{C}}=\psi_{\beta}|_{\mathcal{C}}.$$

- Well-defined local (G, X)-geometry defined by ψ_{α} .
- Σ acquires geometric structure M modeled on (G, X). (Ehresmann 1936)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Development

Hyperbolizing Surfaces

Geometric structures

Surface groups

SL(2, ℝ)

SL(2, ℂ

SU(2, 1

SL(3. ℝ)

Aff(2, ℝ)

 Globalize the G-compatible coordinate charts are to a development: a local diffeomorphism

equivariant with respect to a holonomy representation

 $\tilde{\Sigma} \longrightarrow X$

 $\pi_1(\Sigma) \xrightarrow{\rho} G$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

which is well-defined up to conjugation in G.

Development

Hyperbolizing Surfaces

Geometric structures

Surface groups

SL(2, ℝ)

 $SL(2, \mathbb{C})$

SU(2, 1

SL(3, ℝ)

Aff(2, ℝ)

 Globalize the G-compatible coordinate charts are to a development: a local diffeomorphism

 $\tilde{\Sigma} \longrightarrow X$

equivariant with respect to a holonomy representation

$$\pi_1(\Sigma) \xrightarrow{\rho} G$$

which is well-defined up to conjugation in G.

The space of marked structures on on a fixed topology Σ forms a deformation space locally modeled on Hom(π, G)/G (Thurston 1978):

$$\mathfrak{D}_{(G,X)}(\Sigma) := \left\{ \mathsf{Marked} \ (G,X) \text{-structures on } \Sigma \right\} / \mathsf{Isotopy}$$
$$\xrightarrow{\mathsf{hol}} \mathsf{Hom}(\pi_1(\Sigma),G) / G$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Hyperbolizing Surfaces

Geometric structures

Surface groups

SL(2, ℝ)

SL(2, ℂ]

SU(2, 1)

CI (0 - D)

A.55 (0 . TD)

Many cases: when M = Ω/Γ, where Ω ⊂ X is a domain and Γ ⊂ G is discrete acting properly on Ω, the restriction of hol is an embedding.

Hyperbolizing Surfaces

Geometric structures

- Surface groups
- SL(2, ℝ)
- SL(2, C)
- SU(2_1
- 00(2, 2)
- SL(3, ℝ)
- Aff $(2, \mathbb{R})$

Many cases: when M = Ω/Γ, where Ω ⊂ X is a domain and Γ ⊂ G is discrete acting properly on Ω, the restriction of hol is an embedding.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Euclidean structures;

Hyperbolizing Surfaces

Geometric structures

- Surface groups
- SL(2, ℝ)
- SL(2, C)
- SU(2_1)
- 00(2, 2
- SL(3, ℝ)
- $Aff(2, \mathbb{R})$

Many cases: when M = Ω/Γ, where Ω ⊂ X is a domain and Γ ⊂ G is discrete acting properly on Ω, the restriction of hol is an embedding.

- Euclidean structures;
- Hyperbolic structures;

Hyperbolizing Surfaces

Geometric structures

- Surface groups
- SL(2, ℝ)
- SL(2, C)
- SU(2_1
- 00(2, 2
- SL(3, ℝ)
- $Aff(2, \mathbb{R})$

- Many cases: when M = Ω/Γ, where Ω ⊂ X is a domain and Γ ⊂ G is discrete acting properly on Ω, the restriction of hol is an embedding.
- Euclidean structures;
- Hyperbolic structures;
- Complete affine structures (includes Euclidean structures);

Hyperbolizing Surfaces

Geometric structures

- Surface groups
- SL(2, ℝ)
- SL(2, ℂ)
- SU(2_1)
- 00(2, 2
- SL(3, ℝ)
- $\operatorname{Aff}(2,\mathbb{R})$

- Many cases: when M = Ω/Γ, where Ω ⊂ X is a domain and Γ ⊂ G is discrete acting properly on Ω, the restriction of hol is an embedding.
- Euclidean structures;
- Hyperbolic structures;
- Complete affine structures (includes Euclidean structures);

▲日▼▲□▼▲□▼▲□▼ □ のので

 Complex projective structures (includes hyperbolic structures via Poincaré disk, Euclidean, elliptic);

Hyperbolizing Surfaces

Geometric structures

- Surface groups
- SL(2, ℝ)
- SL(2, ℂ)
- SU(2_1)
- 50(2,1
- SL(3, ℝ)
- $\operatorname{Aff}(2,\mathbb{R})$

- Many cases: when $M = \Omega/\Gamma$, where $\Omega \subset X$ is a domain and $\Gamma \subset G$ is discrete acting properly on Ω , the restriction of hol is an embedding.
- Euclidean structures;
- Hyperbolic structures;
- Complete affine structures (includes Euclidean structures);
- Complex projective structures (includes hyperbolic structures via Poincaré disk, Euclidean, elliptic);
- Real projective structures (hyperbolic structures via Klein model, Euclidean, elliptic).

▲日▼▲□▼▲□▼▲□▼ □ のので

Hyperbolizing Surfaces

Geometric structures

Surface groups

SL(2, ℝ)

 $SL(2, \mathbb{C})$

SU(2, 1

 $SL(3, \mathbb{R})$

$Aff(2, \mathbb{R})$

Σ closed oriented surface, $\chi(\Sigma) < 0$, fundamental group $\pi = \pi_1(\Sigma)$; *G* algebraic Lie group.

Hyperbolizing Surfaces

Geometric structures

Surface groups

 Σ closed oriented surface, $\chi(\Sigma) < 0$, fundamental group $\pi = \pi_1(\Sigma)$; *G* algebraic Lie group.

• π is finitely generated \implies Hom (π, G) algebraic set.

 $\pi = \pi_1(\Sigma)$; G algebraic Lie group.

Hyperbolizing Surfaces

Geometric structures

Surface groups

• π is finitely generated \Longrightarrow Hom (π, G) algebraic set.

 Σ closed oriented surface, $\chi(\Sigma) < 0$, fundamental group

Algebraic structure on Hom(π, G) invariant under the natural action of Aut(π) × Aut(G):

$$\pi \longrightarrow \pi \xrightarrow{\rho} G \longrightarrow G.$$

▲日▼▲□▼▲□▼▲□▼ □ のので

Hyperbolizing Surfaces

Geometric structures

Surface groups

- SL(2, ℝ)
- SL(2, ℂ]
- SU(2,1)
- SL(3, ℝ)
- $Aff(2, \mathbb{R})$

 Σ closed oriented surface, $\chi(\Sigma) < 0$, fundamental group $\pi = \pi_1(\Sigma)$; *G* algebraic Lie group.

• π is finitely generated \Longrightarrow Hom (π, G) algebraic set.

Algebraic structure on Hom(π, G) invariant under the natural action of Aut(π) × Aut(G):

$$\pi \longrightarrow \pi \xrightarrow{\rho} G \longrightarrow G.$$

Mapping class group

 $\mathsf{Mod}(\Sigma) = \pi_0(\mathsf{Diff}(\Sigma)) \cong \mathsf{Out}(\pi) = \mathsf{Aut}(\pi)/\mathsf{Inn}(\pi)$ acts on $\mathsf{Hom}(\pi, G)/G$.

The fundamental group of a closed surface

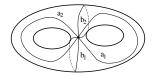
Hyperbolizing Surfaces

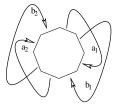
Geometric structures

Surface groups

- SL(2, ℝ
- 3∟(2, €,
- 50(2, 1)
- SL(3, ℝ)
- $\operatorname{Aff}(2,\mathbb{R})$

Obtain a genus g surface from a 4g-gon.





◆ロ > ◆母 > ◆臣 > ◆臣 > 善臣 - のへで

A presentation for the fundamental group

Hyperbolizing Surfaces

Geometric structures

Surface groups

SL(2, ℝ)

SL(2, €

SU(2, 1

 $SL(3,\mathbb{R})$

 $\operatorname{Aff}(2,\mathbb{R})$

The fundamental group π = π₁(Σ) is the fundamental group of a closed orientable surface admits a presentation

$$\pi = \langle A_1, \dots, B_g \mid A_1 B_1 A_1^{-1} B_1^{-1} \dots A_g B_g A_g^{-1} B_g^{-1} = 1 \rangle$$

A presentation for the fundamental group

Hyperbolizing Surfaces

Geometric structures

Surface groups

 $SL(2, \mathbb{R})$

SL(2, ℂ)

SU(2, 1

SL(3, ℝ)

 $Aff(2, \mathbb{R})$

The fundamental group π = π₁(Σ) is the fundamental group of a closed orientable surface admits a presentation

$$\pi = \langle A_1, \dots, B_g \mid A_1 B_1 A_1^{-1} B_1^{-1} \dots A_g B_g A_g^{-1} B_g^{-1} = 1 \rangle$$

• A representation $\pi_1(\Sigma)$ in a group G is just

$$(\alpha_1,\ldots,\beta_g)\in G^{2g}$$

satisfying the defining relation

$$\alpha_1\beta_1\alpha_1^{-1}\beta_1^{-1}\ldots\alpha_g\beta_g\alpha_g^{-1}\beta_g^{-1}=1.$$

▲日▼▲□▼▲□▼▲□▼ □ のので

Navigating the deformation space

Hyperbolizing Surfaces

Geometric structures

Surface groups

SL(2, ℝ)

SU(2_1

SI (3 D)

Aff(2, ℝ)

Associated to simple closed curves $\alpha \subset \Sigma$ are generalized twist deformations, paths in Hom (π, G) supported on α .

Navigating the deformation space

Hyperbolizing Surfaces

Geometric structures

Surface groups

SL(2, C

SU(2_1

SL(3, ℝ)

 $\operatorname{Aff}(2,\mathbb{R})$

Associated to simple closed curves $\alpha \subset \Sigma$ are generalized twist deformations, paths in Hom (π, G) supported on α .

• Example: if α is the nonseparating simple loop A_1 ,

$$\rho_t : \begin{cases} A_i & \longmapsto \rho(A_i) \text{ if } i \ge 1\\ B_j & \longmapsto \rho(B_j) \text{ if } j > 1\\ B_1 & \longmapsto \rho(B_1)\zeta(t) \end{cases}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

where $\zeta(t)$ path in the centralizer of $\rho(A_1)$.

Navigating the deformation space

f

Hyperbolizing Surfaces

Geometric structures

Surface groups

 $SL(2, \mathbb{C}$

SU(2, 1

SL(3, ℝ)

 $\operatorname{Aff}(2,\mathbb{R})$

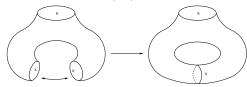
Associated to simple closed curves $\alpha \subset \Sigma$ are generalized twist deformations, paths in Hom (π, G) supported on α .

Example: if α is the nonseparating simple loop A_1 ,

$$ho_t: egin{cases} \mathsf{A}_i &\longmapsto
ho(\mathsf{A}_i) ext{ if } i\geq 1 \ \mathsf{B}_j &\longmapsto
ho(\mathsf{B}_j) ext{ if } j>1 \ \mathsf{B}_1 &\longmapsto
ho(\mathsf{B}_1) \zeta(t) \end{cases}$$

where ζ(t) path in the centralizer of ρ(A₁).
Fenchel-Nielsen twist flow: (G = SL(2, ℝ)): ζ(t) group of transvections along ρ(A₁)-invariant geodesic in H² —

▲日▼▲□▼▲□▼▲□▼ □ のので



Observing the deformation space

Hyperbolizing Surfaces

Geometric structures

Surface groups

SL(2, ℝ

CU(0, 1)

30(2, 1)

SL(3, ℝ)

 $\operatorname{Aff}(2,\mathbb{R})$

A natural class of functions on Hom(π, G)/G arise from functions G ^f→ ℝ invariant under conjugation and α ∈ π:

$$\mathsf{Hom}(\pi, G)/G \xrightarrow{f_{\alpha}} \mathbb{R}$$
$$[\rho] \longmapsto f(\rho(\gamma))$$

A D M 4 目 M 4 日 M 4 1 H 4

Observing the deformation space

Hyperbolizing Surfaces

Geometric structures

Surface groups

SL(2, ℝ

--(-, -

50(2, 1

 $SL(3, \mathbb{R})$

Aff(2, ℝ)

• A natural class of functions on Hom $(\pi, G)/G$ arise from functions $G \xrightarrow{f} \mathbb{R}$ invariant under conjugation and $\alpha \in \pi$:

$$\mathsf{Hom}(\pi, \mathcal{G})/\mathcal{G} \xrightarrow{f_{lpha}} \mathbb{R} \ [
ho] \longmapsto f(
ho(\gamma))$$

• The *trace* of any linear representation $G \longrightarrow GL(N, \mathbb{R})$

Observing the deformation space

Hyperbolizing Surfaces

Geometric structures

Surface groups

SL(2, ℝ SL(2, ℂ

SU(2 1

3∟(3, ℝ)

A natural class of functions on Hom(π, G)/G arise from functions G ^f→ ℝ invariant under conjugation and α ∈ π:

$$\mathsf{Hom}(\pi, G)/G \xrightarrow{f_{\alpha}} \mathbb{R}$$
$$[\rho] \longmapsto f(\rho(\gamma))$$

- The *trace* of any linear representation $G \longrightarrow GL(N, \mathbb{R})$
- The geodesic displacement function (only defined for hyperbolic elements)

$$\operatorname{tr}(\gamma) = \pm 2 \cosh\left(\ell(\gamma)/2\right)$$

if $\gamma \in SL(2, \mathbb{R})$ is hyperbolic.

Symplectic structure

Hyperbolizing Surfaces

Geometric structures

Surface groups

- $SL(2,\mathbb{R})$
- SL(2, ℂ)
- SU(2_1)
- --(-, -)
- SL(3, ℝ)
- $\operatorname{Aff}(2,\mathbb{R})$

Ad-invariant inner product on $\mathfrak{g} \Longrightarrow Mod(\Sigma)$ -invariant symplectic structure on $Hom(\pi, G)/G$.

Symplectic structure

Hyperbolizing Surfaces

Geometric structures

- Surface groups
- SL(2, ℝ)
- SL(2, C)
- SU(2, 1)
- SL(3, ℝ)
- $\operatorname{Aff}(2,\mathbb{R})$

• Ad-invariant inner product on $\mathfrak{g} \Longrightarrow \operatorname{Mod}(\Sigma)$ -invariant symplectic structure on $\operatorname{Hom}(\pi, G)/G$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

G = ℝ or ℂ ⇒ Hom(π, G) is a real (or complex) symplectic vector space H¹(Σ).

Symplectic structure

Hyperbolizing Surfaces

Geometric structures

Surface groups

- SL(2, ℝ)
- SL(2, C)
- SU(2, 1
- SI (3 D)
- JE(3, 14)

- Ad-invariant inner product on $\mathfrak{g} \Longrightarrow Mod(\Sigma)$ -invariant symplectic structure on $Hom(\pi, G)/G$.
 - $G = \mathbb{R}$ or $\mathbb{C} \Longrightarrow \text{Hom}(\pi, G)$ is a real (or complex) symplectic vector space $H^1(\Sigma)$.
 - α represented by a simple closed curve on Σ , Inn(G)-invariant function $G \xrightarrow{f} \mathbb{R}$

 \implies Hamiltonian flow of f_{α} covered by generalized twist flow on Hom (π, G) .

Hyperbolizing Surfaces

Geometric structures

Surface groups

 $SL(2,\mathbb{R})$

 $SL(2, \mathbb{C}$

SU(2, 1

 $SL(3, \mathbb{R})$

 $\operatorname{Aff}(2,\mathbb{R})$

$$\pi := \pi_1(\Sigma) \stackrel{
ho}{\hookrightarrow} \mathsf{PSL}(2,\mathbb{R})$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Hyperbolizing Surfaces

- Geometric structures
- Surface groups
- $SL(2,\mathbb{R})$
- SL(2, C)
- SU(2_1
- --(-, -
- SL(3, ℝ)
- $Aff(2, \mathbb{R})$

 Deformation space
 <i>ξ(Σ) of marked hyperbolic structures
 Σ corresponds to discrete embeddings:

$$\pi := \pi_1(\Sigma) \stackrel{
ho}{\hookrightarrow} \mathsf{PSL}(2,\mathbb{R})$$

Components of Hom(π, PSL(2, R)) detected by the Euler class of the associated oriented RP¹-bundle over Σ:

$$\mathsf{Hom}(\pi,\mathsf{PSL}(2,\mathbb{R}))\stackrel{e}{ o} H^2(\Sigma,\mathbb{Z})\cong\mathbb{Z}.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Hyperbolizing Surfaces

- Geometric structures
- Surface groups
- $SL(2,\mathbb{R})$
- SL(2, ℂ]
- SU(2, 1
- SL(3, ℝ)
- Aff(2 ₪)

$$\pi := \pi_1(\Sigma) \stackrel{
ho}{\hookrightarrow} \mathsf{PSL}(2,\mathbb{R})$$

Components of Hom(π, PSL(2, R)) detected by the Euler class of the associated oriented RP¹-bundle over Σ:

$$\mathsf{Hom}(\pi,\mathsf{PSL}(2,\mathbb{R}))\stackrel{e}{ o} H^2(\Sigma,\mathbb{Z})\cong\mathbb{Z}.$$

▲日▼▲□▼▲□▼▲□▼ □ ののの

■ $|e(\rho)| \le |\chi(\Sigma)|$ (Milnor 1958, Wood 1971)

Hyperbolizing Surfaces

- Geometric structures
- Surface groups
- $SL(2,\mathbb{R})$
- SL(2, ℂ]
- SU(2, 1
- SL(3, ℝ)
- ∧.ff() ₪)

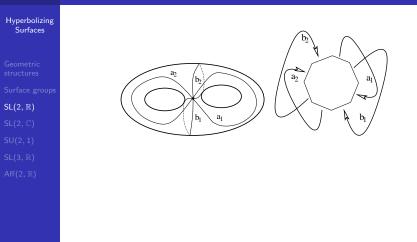
 Deformation space
 <i>ξ(Σ) of marked hyperbolic structures
 Σ corresponds to discrete embeddings:

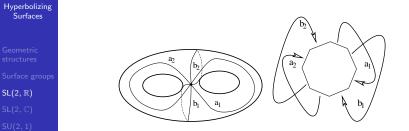
$$\pi := \pi_1(\Sigma) \stackrel{
ho}{\hookrightarrow} \mathsf{PSL}(2,\mathbb{R})$$

Components of Hom(π, PSL(2, R)) detected by the Euler class of the associated oriented RP¹-bundle over Σ:

$$\mathsf{Hom}(\pi,\mathsf{PSL}(2,\mathbb{R}))\stackrel{e}{ o} H^2(\Sigma,\mathbb{Z})\cong\mathbb{Z}.$$

■ $|e(\rho)| \le |\chi(\Sigma)|$ (Milnor 1958, Wood 1971) ■ Equality $\iff \rho$ is a discrete embedding. (1980)



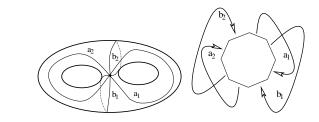


Interior angles sum to 2πk, (k ∈ Z) ⇒ quotient space is hyperbolic surface with one singularity (the image of the vertex) with cone angle 2πk.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへぐ

Hyperbolizing Surfaces

SL(2, ℝ)

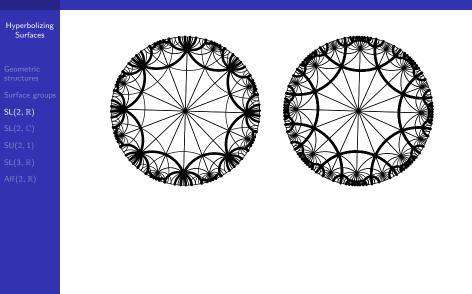


- Interior angles sum to 2πk, (k ∈ Z) ⇒ quotient space is hyperbolic surface with one singularity (the image of the vertex) with cone angle 2πk.
- Holonomy representation of a hyperbolic surface with cone angles 2πk_i extends to π₁(Σ) with Euler number

$$e(\rho)=2-2g+\sum k_i.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 • • • • • •

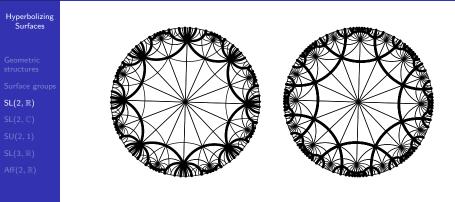
A hyperbolic surface of genus two



・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

э

A hyperbolic surface of genus two

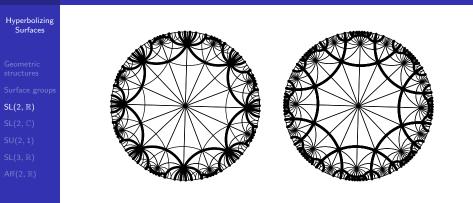


Identifying a regular octagon with angles π/4 yields a nonsingular hyperbolic surface with e(ρ) = χ(Σ) = −2.

(日)

3

A hyperbolic surface of genus two



- Identifying a regular octagon with angles π/4 yields a nonsingular hyperbolic surface with e(ρ) = χ(Σ) = −2.
- But when the angles are π/2, the surface has one singularity with cone angle 4π and

$$e(
ho)=1+\chi(\Sigma)=-1.$$

■ Each component of Hom(π , PSL(2, \mathbb{R})) contains holonomy of branched hyperbolic structures.

Hyperbolizing Surfaces

Geometric structures

Surface groups

 $SL(2,\mathbb{R})$

SL(2, ℂ

SU(2.1

CI (2 D)

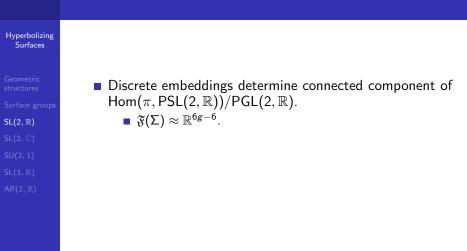
Aff(2. ℝ)

■ Each component of Hom(π , PSL(2, \mathbb{R})) contains holonomy of branched hyperbolic structures.

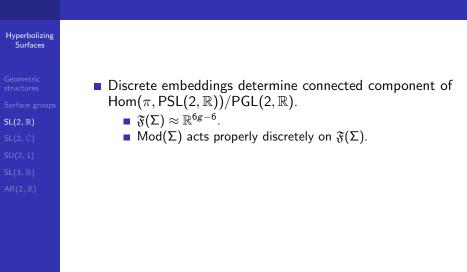
The Euler class 2 – 2g + k component deformation retracts onto k-fold symmetric product. (Hitchin 1987)

Dynamic/homotopic triviality Hyperbolizing Surfaces Discrete embeddings determine connected component of Hom $(\pi, \mathsf{PSL}(2, \mathbb{R}))/\mathsf{PGL}(2, \mathbb{R}).$ SL(2, ℝ)

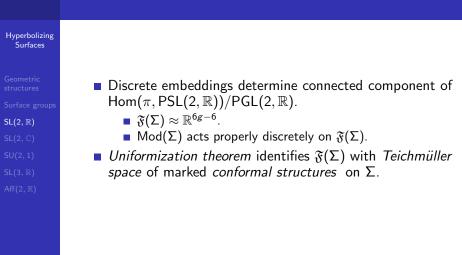
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @



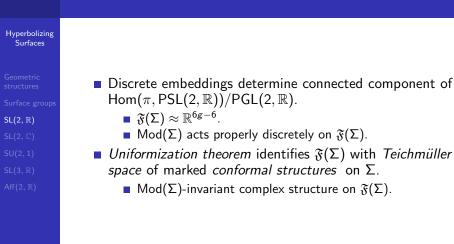
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙



▲日▼▲□▼▲□▼▲□▼ □ ののの



▲日▼▲□▼▲□▼▲□▼ □ ののの

Hyperbolizing Surfaces

- Geometric structures
- Surface groups
- $SL(2,\mathbb{R})$
- $SL(2, \mathbb{C})$
- SU(2, 1
- SL(3, ℝ)
- Aff(2, ℝ)

- Discrete embeddings determine connected component of Hom(π, PSL(2, ℝ))/PGL(2, ℝ).
 - $\mathfrak{F}(\Sigma) \approx \mathbb{R}^{6g-6}$.
 - $Mod(\Sigma)$ acts properly discretely on $\mathfrak{F}(\Sigma)$.
- Uniformization theorem identifies
 ³
 ⁵
 (Σ) with Teichmüller space of marked conformal structures on Σ.
 - $Mod(\Sigma)$ -invariant complex structure on $\mathfrak{F}(\Sigma)$.
 - For G = PSL(2, ℝ), the general symplectic structure and the complex structure from Teichmüller space are part of the Weil-Petersson Kähler geometry on 𝔅(Σ).

Geometric structures Surface group SL(2, \mathbb{R}) SL(2, C) SU(2, 1) SL(3, \mathbb{R})

The group of orientation-preserving isometries of $H^3_{\mathbb{R}}$ equals $PSL(2,\mathbb{C})$. Close to Fuchsian representations in $PSL(2,\mathbb{R})$ are *quasi-Fuchsian representations* \mathcal{QF} :

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

Geometric structures Surface group $SL(2, \mathbb{R})$ $SL(2, \mathbb{C})$ SU(2, 1) $SU(3, \mathbb{R})$

The group of orientation-preserving isometries of $H^3_{\mathbb{R}}$ equals $PSL(2,\mathbb{C})$. Close to Fuchsian representations in $PSL(2,\mathbb{R})$ are *quasi-Fuchsian representations* \mathcal{QF} :

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Discrete embeddings;

Hyperbolizing Surfaces

Geometric structures Surface grou SL $(2, \mathbb{R})$

SL(2, ℂ)

SU(2, 1

SL(3, ℝ)

 $\operatorname{Aff}(2,\mathbb{R})$

The group of orientation-preserving isometries of $H^3_{\mathbb{R}}$ equals PSL(2, \mathbb{C}). Close to Fuchsian representations in PSL(2, \mathbb{R}) are *quasi-Fuchsian representations* $Q\mathcal{F}$:

▲日▼▲□▼▲□▼▲□▼ □ ののの

Discrete embeddings;

■ Topologically conjugate action on S²;

Hyperbolizing Surfaces

Geometric structures Surface grou $SL(2, \mathbb{R})$ $SL(2, \mathbb{C})$

SU(2, 1

 $SL(3, \mathbb{R})$

Aff(2, \mathbb{R})

The group of orientation-preserving isometries of $H^3_{\mathbb{R}}$ equals PSL(2, \mathbb{C}). Close to Fuchsian representations in PSL(2, \mathbb{R}) are *quasi-Fuchsian representations* \mathcal{QF} :

▲日▼▲□▼▲□▼▲□▼ □ ののの

Discrete embeddings;

■ Topologically conjugate action on S²;

• $\mathcal{QF} \approx \mathbb{R}^{12g-12}$,

Hyperbolizing Surfaces

Geometric structures Surface grou $SL(2, \mathbb{R})$

 $\mathsf{SL}(2,\mathbb{C})$

SU(2, 1

SL(3, ℝ)

 $Aff(2, \mathbb{R})$

The group of orientation-preserving isometries of $H^3_{\mathbb{R}}$ equals PSL(2, \mathbb{C}). Close to Fuchsian representations in PSL(2, \mathbb{R}) are *quasi-Fuchsian representations* \mathcal{QF} :

▲日▼▲□▼▲□▼▲□▼ □ ののの

- Discrete embeddings;
- Topologically conjugate action on S²;
- $\mathcal{QF} \approx \mathbb{R}^{12g-12}$,
- $Mod(\Sigma)$ acts properly on $Q\mathcal{F}$.

Discrete embeddings in $PSL(2, \mathbb{C})$

Hyperbolizing Surfaces

Geometric structures

Surface groups

 $SL(2, \mathbb{R})$

 $\mathsf{SL}(2,\mathbb{C})$

SU(2, 1)

 $SL(3,\mathbb{R})$

 $Aff(2 \mathbb{R})$

■ Hom(π, SL(2, ℂ)) is connected, closure of *QF* consists of all discrete embeddings.

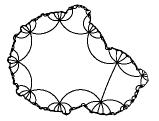
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Discrete embeddings in $PSL(2, \mathbb{C})$

Hyperbolizing Surfaces

- Geometric structures
- Surface groups
- SL(2, ℝ)
- $SL(2,\mathbb{C})$
- SU(2, 1)
- SL(3, ℝ)
- $\operatorname{Aff}(2,\mathbb{R})$

- Hom(π, SL(2, ℂ)) is connected, closure of *QF* consists of all discrete embeddings.
- Discrete embeddings not open; not comprise a component of Hom(π, G).



Complex hyperbolic geometry

Hyperbolizing Surfaces

Geometric structures

Surface groups

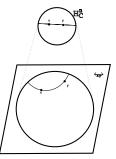
SL(2, ℝ

 $SL(2, \mathbb{C}$

SU(2, 1)

 $SL(3,\mathbb{R})$

■ Complex hyperbolic space Hⁿ_C is the unit ball in Cⁿ with the Bergman metric invariant under the projective transformations in CPⁿ.



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Complex hyperbolic geometry

Hyperbolizing Surfaces

Geometric structures

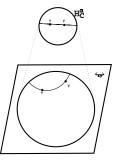
Surface groups

SL(2, ℝ

SL(2, ℃

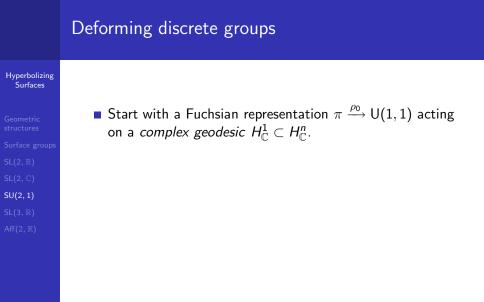
SU(2, 1)

■ Complex hyperbolic space Hⁿ_C is the unit ball in Cⁿ with the Bergman metric invariant under the projective transformations in CPⁿ.



• \mathbb{C} - linear subspaces meet $H^n_{\mathbb{C}}$ in totally geodesic subspaces.

A D M 4 目 M 4 日 M 4 1 H 4



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Deforming discrete groups

τ

Hyperbolizing Surfaces

- SU(2,1)

- Start with a Fuchsian representation $\pi \xrightarrow{\mu_0} U(1,1)$ acting on a complex geodesic $H^1_{\mathbb{C}} \subset H^n_{\mathbb{C}}$.
- Every *nearby* deformation $\pi \xrightarrow{\rho} U(n, 1)$ stabilizes a complex geodesic, conjugate to a Fuchsian representation

$$\mathsf{T} \xrightarrow{
ho} \mathsf{U}(1,1) imes \mathsf{U}(n-1) \subset \mathsf{U}(n,1).$$

▲日▼▲□▼▲□▼▲□▼ □ ののの

Deforming discrete groups

τ

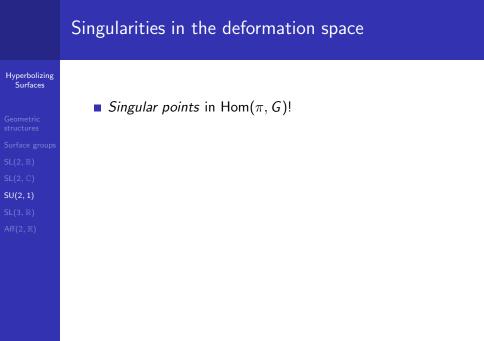
Hyperbolizing Surfaces

- Geometric structures
- Surface groups
- SL(2, ℝ)
- $SL(2, \mathbb{C})$
- SU(2, 1)
- SL(3, ℝ)
- $\operatorname{Aff}(2,\mathbb{R})$

- Start with a Fuchsian representation π → U(1,1) acting on a complex geodesic H¹_C ⊂ Hⁿ_C.
- Every *nearby* deformation $\pi \xrightarrow{\rho} U(n, 1)$ stabilizes a complex geodesic, conjugate to a *Fuchsian* representation

$$\mathsf{T} \xrightarrow{
ho} \mathsf{U}(1,1) imes \mathsf{U}(n-1) \subset \mathsf{U}(n,1).$$

■ Components detected by a Z-valued *characteristic* class generalizing the Euler class. (Toledo 1986, Xia 1997, Gothen 1997)



◆ロ > ◆母 > ◆臣 > ◆臣 > ○日 ○ ○ ○ ○

Singularities in the deformation space

Hyperbolizing Surfaces

- Geometric structures
- Surface groups
- SL(2, ℝ)
- SL(2, ℂ)
- SU(2, 1)
- SL(3, ℝ)

- Singular points in Hom(π, G)!
- In general the analytic germ of a *reductive representation* of the fundamental group of a compact Kähler manifold is defined by a system of homogeneous quadratic equations. (G Millson 1988)

Singularities in the deformation space

Hyperbolizing Surfaces

- Geometric structures
- Surface groups
- SL(2, ℝ)
- SL(2, ℂ)
- SU(2, 1)
- SL(3, ℝ)
- $\operatorname{Aff}(2,\mathbb{R})$

- Singular points in Hom (π, G) !
- In general the analytic germ of a reductive representation of the fundamental group of a compact Kähler manifold is defined by a system of homogeneous quadratic equations. (G Millson 1988)
- For an SU(1,1)-representation ρ_0 , the neighborhood of

$$\pi \xrightarrow{\rho} \mathsf{SU}(1,1) \subset \mathsf{SU}(2,1)$$

in Hom $(\pi, SU(2, 1))$ looks like the product of Hom $(\pi, U(1, 1) \times U(1))$ and a cone defined by a quadratic form of signature $e(\rho_0)$ on \mathbb{R}^{4g-4} .

Geometric structures

- Surface groups
- SL(2, ℝ)
- SL(2, ℂ]
- SU(2, 1)
- SL(3, ℝ)
- Aff(2, ℝ)

• A convex \mathbb{RP}^2 -surface is a quotient $M = \Omega/\Gamma$ where $\Omega \subset \mathbb{RP}^2$ is a convex domain and $\Gamma \subset \operatorname{Aut}(\Omega)$ discrete, acting properly and freely on Ω .

Hyperbolizing Surfaces

- Geometric structures
- Surface groups
- SL(2, ℝ)
- SL(2, ℂ)
- SU(2, 1
- SL(3, ℝ)
- Aff $(2, \mathbb{R})$

- A convex ℝP²-surface is a quotient M = Ω/Γ where Ω ⊂ ℝP² is a convex domain and Γ ⊂ Aut(Ω) discrete, acting properly and freely on Ω.
- χ(M) < 0 and ∂M = Ø ⇒ ∂Ω is C¹ strictly convex curve. (Benzecri 1960)

Hyperbolizing Surfaces

- Geometric structures
- Surface groups
- $SL(2, \mathbb{R})$
- $SL(2, \mathbb{C})$
- SU(2, 1)
- $SL(3,\mathbb{R})$
- $\operatorname{Aff}(2,\mathbb{R})$

- A convex \mathbb{RP}^2 -surface is a quotient $M = \Omega/\Gamma$ where $\Omega \subset \mathbb{RP}^2$ is a convex domain and $\Gamma \subset \operatorname{Aut}(\Omega)$ discrete, acting properly and freely on Ω .
- χ(M) < 0 and ∂M = Ø ⇒ ∂Ω is C¹ strictly convex curve. (Benzecri 1960)

▲日▼▲□▼▲□▼▲□▼ □ ののの

• $\partial \Omega$ is $C^2 \iff \partial \Omega$ is a conic. (Kuiper 1956)

Hyperbolizing Surfaces

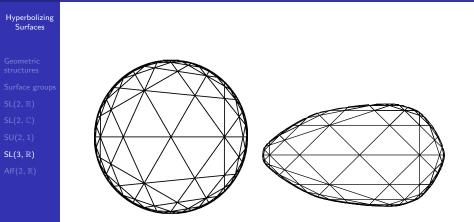
- Geometric structures
- Surface groups
- $SL(2,\mathbb{R})$
- $SL(2, \mathbb{C})$
- SU(2, 1)
- $SL(3,\mathbb{R})$
- $\operatorname{Aff}(2,\mathbb{R})$

- A convex ℝP²-surface is a quotient M = Ω/Γ where Ω ⊂ ℝP² is a convex domain and Γ ⊂ Aut(Ω) discrete, acting properly and freely on Ω.
- χ(M) < 0 and ∂M = Ø ⇒ ∂Ω is C¹ strictly convex curve. (Benzecri 1960)

▲日▼▲□▼▲□▼▲□▼ □ ののの

■ $\partial \Omega$ is $C^2 \iff \partial \Omega$ is a conic. (Kuiper 1956) $\iff \mathbb{RP}^2$ -structure is *hyperbolic*.

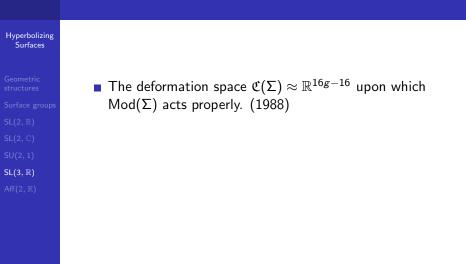
Deformations of triangle groups



◆ロ > ◆母 > ◆臣 > ◆臣 > ○日 ○ ○ ○ ○

Domains in \mathbb{RP}^2 tiled by (3, 3, 4)-triangles.

The deformation space of convex \mathbb{RP}^2 -structures



The deformation space of convex \mathbb{RP}^2 -structures

▲日▼▲□▼▲□▼▲□▼ □ ののの

Hyperbolizing Surfaces • The deformation space $\mathfrak{C}(\Sigma) \approx \mathbb{R}^{16g-16}$ upon which $Mod(\Sigma)$ acts properly. (1988) • $\mathfrak{C}(\Sigma)$ is a connected component of $Hom(\pi, SL(3, \mathbb{R}))/SL(3, \mathbb{R})$. (Choi G 1993) SL(3, ℝ)

The deformation space of convex \mathbb{RP}^2 -structures

Hyperbolizing Surfaces

Geometric structures

- Surface groups
- SL(2, ℝ)
- SL(2, ℂ)
- SU(2, 1
- $SL(3, \mathbb{R})$
- $\operatorname{Aff}(2,\mathbb{R})$

- The deformation space $\mathfrak{C}(\Sigma) \approx \mathbb{R}^{16g-16}$ upon which $Mod(\Sigma)$ acts properly. (1988)
- 𝔅(Σ) is a connected component of Hom(π, SL(3, ℝ))/SL(3, ℝ). (Choi G 1993)
- C(Σ) identifies with the holomorphic vector bundle over Teich(Σ) whose fiber over a marked Riemann surface X equals the vector space H⁰(X, (κ_X)³) of holomorphic cubic differentials (Labourie 1997, Loftin 2001).

Hyperbolizing Surfaces

Geometric structures

Surface groups

SL(2, ℝ)

SL(2, C

SU(2, 1)

SL(3, ℝ)

 $Aff(2, \mathbb{R})$

A complete affine manifold is a quotient \mathbb{R}^n/Γ where $\Gamma \subset \operatorname{Aff}(n, \mathbb{R})$ is a discrete group acting properly on \mathbb{R}^n .

Hyperbolizing Surfaces

Geometric structures

Surface groups

SL(2, ℝ)

 $SL(2, \mathbb{C})$

SU(2, 1)

SL(3, ℝ)

 $Aff(2, \mathbb{R})$

A complete affine manifold is a quotient \mathbb{R}^n/Γ where $\Gamma \subset Aff(n, \mathbb{R})$ is a discust a group optimal property of \mathbb{R}^n

 $\Gamma \subset \operatorname{Aff}(n,\mathbb{R})$ is a discrete group acting properly on \mathbb{R}^n .

Kuiper (1954): Every complete affine closed orientable
 2-manifold is homeomorphic to T² and equivalent to:

▲日▼▲□▼▲□▼▲□▼ □ ののの

Hyperbolizing Surfaces

Geometric structures

Surface groups

SL(2, ℝ)

 $SL(2, \mathbb{C})$

SU(2, 1)

SL(3, ℝ) Aff(2, ℝ) A complete affine manifold is a quotient \mathbb{R}^n/Γ where $\Gamma \subset \operatorname{Aff}(n, \mathbb{R})$ is a discrete group acting properly on \mathbb{R}^n .

 Kuiper (1954): Every complete affine closed orientable 2-manifold is homeomorphic to T² and equivalent to:

• Euclidean: \mathbb{R}^2/Λ , where Λ is a lattice of translations

Hyperbolizing Surfaces

Geometric structures

Surface groups

SL(2, ℝ)

 $SL(2, \mathbb{C})$

SU(2, 1)

SL(3, ℝ)

Aff(2, ℝ)

A complete affine manifold is a quotient \mathbb{R}^n/Γ where

 $\Gamma \subset \operatorname{Aff}(n,\mathbb{R})$ is a discrete group acting properly on \mathbb{R}^n .

- Kuiper (1954): Every complete affine closed orientable
 2-manifold is homeomorphic to T² and equivalent to:
 - Euclidean: ℝ²/Λ, where Λ is a lattice of translations (all are affinely equivalent);

Hyperbolizing Surfaces

Geometric structures

Surface groups

SL(2, ℝ)

 $SL(2, \mathbb{C})$

SU(2, 1)

SL(3, ℝ)

 $Aff(2, \mathbb{R})$

A complete affine manifold is a quotient \mathbb{R}^n/Γ where $\Gamma \in A^{m}(\mathbb{R}^n)$ is a discussion of \mathbb{R}^n

 $\Gamma \subset \operatorname{Aff}(n, \mathbb{R})$ is a discrete group acting properly on \mathbb{R}^n .

- Kuiper (1954): Every complete affine closed orientable
 2-manifold is homeomorphic to T² and equivalent to:
 - Euclidean: ℝ²/Λ, where Λ is a lattice of translations (all are affinely equivalent);

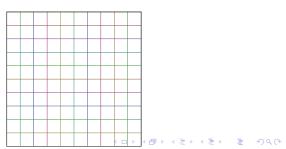
Polynomial deformation $\mathbb{R}^2/(f \circ \Lambda \circ f^{-1})$, where

$$(x,y) \xrightarrow{f} (x+y^2,y).$$

- Geometric structures
- Surface groups
- $SL(2, \mathbb{R})$
- SL(2, ℂ)
- SU(2, 1)
- SL(3, ℝ)
- $Aff(2, \mathbb{R})$

- A complete affine manifold is a quotient ℝⁿ/Γ where
 Γ ⊂ Aff(n, ℝ) is a discrete group acting properly on ℝⁿ.
 Kuiper (1954): Every complete affine closed orientable
 2-manifold is homeomorphic to T² and equivalent to:
 Euclidean: ℝ²/Λ, where Λ is a lattice of translations
 - (all are affinely equivalent);
 - Polynomial deformation $\mathbb{R}^2/(f \circ \Lambda \circ f^{-1})$, where

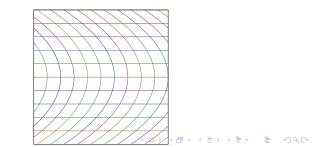
$$(x,y) \xrightarrow{f} (x+y^2,y).$$



- Geometric structures
- Surface groups
- SL(2, ℝ]
- SL(2, ℂ)
- SU(2, 1)
- SL(3, ℝ)
- $Aff(2, \mathbb{R})$

- A complete affine manifold is a quotient ℝⁿ/Γ where
 Γ ⊂ Aff(n, ℝ) is a discrete group acting properly on ℝⁿ.
 Kuiper (1954): Every complete affine closed orientable
 2-manifold is homeomorphic to T² and equivalent to:
 Euclidean: ℝ²/Λ, where Λ is a lattice of translations
 - (all are affinely equivalent);
 - Polynomial deformation $\mathbb{R}^2/(f \circ \Lambda \circ f^{-1})$, where

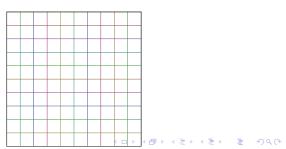
$$(x,y) \xrightarrow{f} (x+y^2,y).$$



- Geometric structures
- Surface groups
- $SL(2, \mathbb{R})$
- SL(2, ℂ)
- SU(2, 1)
- SL(3, ℝ)
- $Aff(2, \mathbb{R})$

- A complete affine manifold is a quotient ℝⁿ/Γ where
 Γ ⊂ Aff(n, ℝ) is a discrete group acting properly on ℝⁿ.
 Kuiper (1954): Every complete affine closed orientable
 2-manifold is homeomorphic to T² and equivalent to:
 Euclidean: ℝ²/Λ, where Λ is a lattice of translations
 - (all are affinely equivalent);
 - Polynomial deformation $\mathbb{R}^2/(f \circ \Lambda \circ f^{-1})$, where

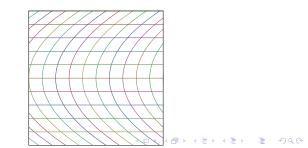
$$(x,y) \xrightarrow{f} (x+y^2,y).$$



- Geometric structures
- Surface groups
- $SL(2, \mathbb{R})$
- $SL(2, \mathbb{C})$
- SU(2, 1)
- SL(3, ℝ)
- $Aff(2, \mathbb{R})$

- A complete affine manifold is a quotient ℝⁿ/Γ where
 Γ ⊂ Aff(n, ℝ) is a discrete group acting properly on ℝⁿ.
 Kuiper (1954): Every complete affine closed orientable
 2-manifold is homeomorphic to T² and equivalent to:
 Euclidean: ℝ²/Λ, where Λ is a lattice of translations
 - **Euclidean:** \mathbb{R}^2/Λ , where Λ is a lattice of translat (all are affinely equivalent);
 - Polynomial deformation $\mathbb{R}^2/(f \circ \Lambda \circ f^{-1})$, where

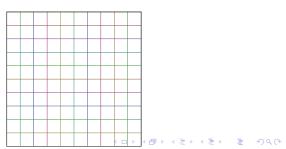
$$(x,y) \xrightarrow{f} (x+y^2,y).$$



- Geometric structures
- Surface groups
- $SL(2, \mathbb{R})$
- SL(2, ℂ)
- SU(2, 1)
- SL(3, ℝ)
- $Aff(2, \mathbb{R})$

- A complete affine manifold is a quotient ℝⁿ/Γ where
 Γ ⊂ Aff(n, ℝ) is a discrete group acting properly on ℝⁿ.
 Kuiper (1954): Every complete affine closed orientable
 2-manifold is homeomorphic to T² and equivalent to:
 Euclidean: ℝ²/Λ, where Λ is a lattice of translations
 - (all are affinely equivalent);
 - Polynomial deformation $\mathbb{R}^2/(f \circ \Lambda \circ f^{-1})$, where

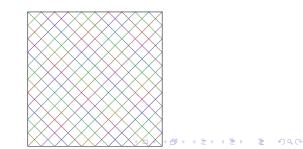
$$(x,y) \xrightarrow{f} (x+y^2,y).$$



- Geometric structures
- Surface groups
- $SL(2, \mathbb{R})$
- $SL(2, \mathbb{C})$
- SU(2, 1)
- $SL(3, \mathbb{R})$
- Aff(2, \mathbb{R})

- A complete affine manifold is a quotient ℝⁿ/Γ where
 Γ ⊂ Aff(n, ℝ) is a discrete group acting properly on ℝⁿ.
 Kuiper (1954): Every complete affine closed orientable
 2-manifold is homeomorphic to T² and equivalent to:
 Euclidean: ℝ²/Λ, where Λ is a lattice of translations
 - (all are affinely equivalent);
 - Polynomial deformation $\mathbb{R}^2/(f \circ \Lambda \circ f^{-1})$, where

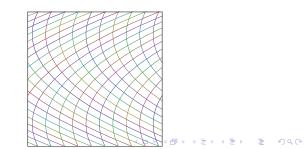
$$(x,y) \xrightarrow{f} (x+y^2,y).$$



- Geometric structures
- Surface groups
- $SL(2, \mathbb{R})$
- SL(2, ℂ)
- SU(2, 1)
- $SL(3, \mathbb{R})$
- Aff(2, \mathbb{R})

- A complete affine manifold is a quotient ℝⁿ/Γ where
 Γ ⊂ Aff(n, ℝ) is a discrete group acting properly on ℝⁿ.
 Kuiper (1954): Every complete affine closed orientable
 2-manifold is homeomorphic to T² and equivalent to:
 Euclidean: ℝ²/Λ, where Λ is a lattice of translations
 - (all are affinely equivalent);
 - Polynomial deformation $\mathbb{R}^2/(f \circ \Lambda \circ f^{-1})$, where

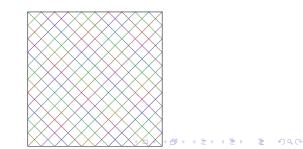
$$(x,y) \xrightarrow{f} (x+y^2,y).$$



- Geometric structures
- Surface groups
- $SL(2, \mathbb{R})$
- $SL(2, \mathbb{C})$
- SU(2, 1)
- $SL(3, \mathbb{R})$
- Aff(2, \mathbb{R})

- A complete affine manifold is a quotient ℝⁿ/Γ where
 Γ ⊂ Aff(n, ℝ) is a discrete group acting properly on ℝⁿ.
 Kuiper (1954): Every complete affine closed orientable
 2-manifold is homeomorphic to T² and equivalent to:
 Euclidean: ℝ²/Λ, where Λ is a lattice of translations
 - (all are affinely equivalent);
 - Polynomial deformation $\mathbb{R}^2/(f \circ \Lambda \circ f^{-1})$, where

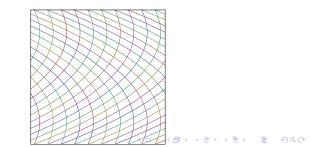
$$(x,y) \xrightarrow{f} (x+y^2,y).$$



- Geometric structures
- Surface groups
- $SL(2, \mathbb{R})$
- $SL(2, \mathbb{C})$
- SU(2, 1)
- SL(3, ℝ)
- $Aff(2, \mathbb{R})$

- A complete affine manifold is a quotient ℝⁿ/Γ where
 Γ ⊂ Aff(n, ℝ) is a discrete group acting properly on ℝⁿ.
 Kuiper (1954): Every complete affine closed orientable
 2-manifold is homeomorphic to T² and equivalent to:
 Euclidean: ℝ²/Λ, where Λ is a lattice of translations
 - *Euclidean*: \mathbb{R}^2/Λ , where Λ is a lattice of translation (all are affinely equivalent);
 - Polynomial deformation $\mathbb{R}^2/(f \circ \Lambda \circ f^{-1})$, where

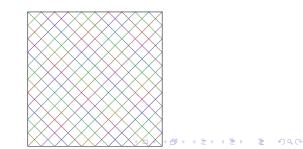
$$(x,y) \xrightarrow{f} (x+y^2,y).$$



- Geometric structures
- Surface groups
- $SL(2, \mathbb{R})$
- $SL(2, \mathbb{C})$
- SU(2, 1)
- $SL(3, \mathbb{R})$
- Aff(2, \mathbb{R})

- A complete affine manifold is a quotient ℝⁿ/Γ where
 Γ ⊂ Aff(n, ℝ) is a discrete group acting properly on ℝⁿ.
 Kuiper (1954): Every complete affine closed orientable
 2-manifold is homeomorphic to T² and equivalent to:
 Euclidean: ℝ²/Λ, where Λ is a lattice of translations
 - (all are affinely equivalent);
 - Polynomial deformation $\mathbb{R}^2/(f \circ \Lambda \circ f^{-1})$, where

$$(x,y) \xrightarrow{f} (x+y^2,y).$$



Hyperbolizing Surfaces

Geometric structures

Surface groups

SL(2, ℝ)

SL(2, ℃

SU(2, 1)

 $SL(3,\mathbb{R})$

 $\operatorname{Aff}(2,\mathbb{R})$

• (Baues 2000) Deformation space $\approx \mathbb{R}^2$, with $\{(0,0\} \longleftrightarrow$ Euclidean structure.

▲ロト ▲帰 ト ▲ 三 ト ▲ 三 ト の Q ()

Hyperbolizing Surfaces

Geometric structures

Surface groups

SL(2, ℝ)

 $SL(2, \mathbb{C}$

SU(2, 1)

 $SL(3,\mathbb{R})$

 $\operatorname{Aff}(2,\mathbb{R})$

• (Baues 2000) Deformation space $\approx \mathbb{R}^2$, with $\{(0,0\} \longleftrightarrow$ Euclidean structure.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Mod(Σ)-action is *linear* GL(2, \mathbb{Z})-action on \mathbb{R}^2 .

Hyperbolizing Surfaces

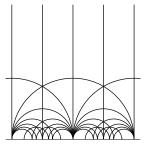
- Geometric structures
- Surface groups
- SL(2, ℝ)
- SL(2, C)
- SU(2_1)
- 00(2, 2)
- SL(3, ℝ)
- $Aff(2,\mathbb{R})$

- (Baues 2000) Deformation space $\approx \mathbb{R}^2$, with $\{(0,0\} \longleftrightarrow$ Euclidean structure.
- $Mod(\Sigma)$ -action is *linear* $GL(2, \mathbb{Z})$ -action on \mathbb{R}^2 .
- The orbit space the moduli space of complete affine compact orientable 2-manifolds is non-Hausdorff.

Hyperbolizing Surfaces

- Geometric structures
- Surface groups
- SL(2, ℝ)
- SL(2, ℂ)
- SU(2, 1)
- --(-,-)
- SL(3, ℝ)
- $Aff(2,\mathbb{R})$

- (Baues 2000) Deformation space $\approx \mathbb{R}^2$, with $\{(0,0\} \longleftrightarrow$ Euclidean structure.
- $Mod(\Sigma)$ -action is *linear* $GL(2, \mathbb{Z})$ -action on \mathbb{R}^2 .
- The orbit space the moduli space of complete affine compact orientable 2-manifolds is non-Hausdorff.
- Contrast to the proper action of Mod(Σ) ≅ PGL(2, ℤ) on 𝔅(Σ) by projective transformations.



▲日▼▲□▼▲□▼▲□▼ □ ののの

Hyperbolizing
Hyperbolizing Surfaces
$Aff(2,\mathbb{R})$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●