Algebraic varieties of surface group representations

William M. Goldman

Department of Mathematics University of Maryland

HIRZ80

A Conference in Algebraic Geometry
Honoring F. Hirzebruch's 80th Birthday
Emmy Noether Institute, Bar-Ilan University, Israel 22 May 2008

Outline

Algebraic

1 Surface groups

Surface groups
Characteristic
classes
Hyperbolic
geometry
$\operatorname{PSL}(2, \mathbb{C})$
$\operatorname{SU}(n, 1)$
Singularities

Outline

Algebraic
1 Surface groups

Surface groups
2 Characteristic classes
Characteristic
classes
Hyperbolic
geometry
$\operatorname{PSL}(2, \mathbb{C})$
$\operatorname{SU}(n, 1)$
Singularities

Outline

Algebraic

1 Surface groups

Surface groups
2 Characteristic classes
Characteristic
classes
Hyperbolic
3 Hyperbolic geometry

Outline

Algebraic
varieties of surface group representations

Surface groups
Characteristic classes

Hyperbolic geometry

PSL(2, C $)$
$\operatorname{SU}(n, 1)$
Singularities

1 Surface groups

2 Characteristic classes

3 Hyperbolic geometry
$4 \operatorname{PSL}(2, \mathbb{C})$

Outline

Algebraic
varieties of surface group representations

1 Surface groups

2 Characteristic classes

3 Hyperbolic geometry
Hyperbolic geometry

PSL(2, C $)$
$\operatorname{SU}(n, 1)$
Singularities
$4 \operatorname{PSL}(2, \mathbb{C})$
$5 \mathrm{SU}(n, 1)$

Outline

Algebraic
varieties of surface group representations

Surface groups
Characteristic classes

Hyperbolic geometry
$\operatorname{PSL}(2, \mathbb{C})$
$\operatorname{SU}(n, 1)$
Singularities

1 Surface groups
2 Characteristic classes
3 Hyperbolic geometry
4 PSL(2, C)
$5 \mathrm{SU}(n, 1)$
6 Singularities

Representations of surface groups

Algebraic
varieties of surface group representations

Let Σ be a compact surface of $\chi(\Sigma)<0$ with fundamental group $\pi=\pi_{1}(\Sigma)$.

Surface groups
Characteristic
classes
Hyperbolic geometry
$\operatorname{PSL}(2, \mathbb{C})$
$\mathrm{SU}(n, 1)$
Singularities

Representations of surface groups

Algebraic
varieties of surface group representa-
tions

Surface groups
Characteristic classes

Hyperbolic geometry
PSL(2, C
$\operatorname{SU}(n, 1)$
Singularities

Let Σ be a compact surface of $\chi(\Sigma)<0$ with fundamental group $\pi=\pi_{1}(\Sigma)$.
\square Since π is finitely generated, $\operatorname{Hom}(\pi, G)$ is an algebraic set, for any algebraic Lie group G.

Representations of surface groups

Let Σ be a compact surface of $\chi(\Sigma)<0$ with fundamental group $\pi=\pi_{1}(\Sigma)$.
\square Since π is finitely generated, $\operatorname{Hom}(\pi, G)$ is an algebraic set, for any algebraic Lie group G.
■ This algebraic structure is invariant under the natural action of $\operatorname{Aut}(\pi) \times \operatorname{Aut}(G)$.

Representations of surface groups

Let Σ be a compact surface of $\chi(\Sigma)<0$ with fundamental group $\pi=\pi_{1}(\Sigma)$.
\square Since π is finitely generated, $\operatorname{Hom}(\pi, G)$ is an algebraic set, for any algebraic Lie group G.
■ This algebraic structure is invariant under the natural action of $\operatorname{Aut}(\pi) \times \operatorname{Aut}(G)$.
■ The mapping class group $\operatorname{Mod}(\Sigma) \cong \operatorname{Aut}(\pi) / \operatorname{lnn}(\pi)$ acts on $\operatorname{Hom}(\pi, G) / G$.

Representations of surface groups

Let Σ be a compact surface of $\chi(\Sigma)<0$ with fundamental group $\pi=\pi_{1}(\Sigma)$.
\square Since π is finitely generated, $\operatorname{Hom}(\pi, G)$ is an algebraic set, for any algebraic Lie group G.
■ This algebraic structure is invariant under the natural action of $\operatorname{Aut}(\pi) \times \operatorname{Aut}(G)$.
■ The mapping class group $\operatorname{Mod}(\Sigma) \cong \operatorname{Aut}(\pi) / \operatorname{lnn}(\pi)$ acts on $\operatorname{Hom}(\pi, G) / G$.
■ Representations $\pi \xrightarrow{\rho} G$ arise from locally homogeneous geometric structures on Σ, modelled on homogeneous spaces of G.

Flat connections

Algebraic
varieties of surface group representations

Surface groups
Characteristic
classes
Hyperbolic geometry
$\operatorname{PSL}(2, \mathbb{C})$
$\mathrm{SU}(n, 1)$
Singularities

Representations $\pi_{1}(\Sigma) \longrightarrow G$ correspond to flat connections on G-bundles over Σ. Let X be a G-space.

Flat connections

Algebraic
varieties of
surface group
representa-
tions
Representations $\pi_{1}(\Sigma) \longrightarrow G$ correspond to flat connections on G-bundles over Σ. Let X be a G-space.
$■$ Let $\tilde{\Sigma} \longrightarrow \Sigma$ be a universal covering space. The diagonal action of π on the trivial X-bundle

$$
\tilde{\Sigma} \times X \longrightarrow \tilde{\Sigma}
$$

is proper and free, where the action on X is defined by ρ.

Flat connections

Representations $\pi_{1}(\Sigma) \longrightarrow G$ correspond to flat connections on G-bundles over Σ. Let X be a G-space.
$■$ Let $\tilde{\Sigma} \longrightarrow \Sigma$ be a universal covering space. The diagonal action of π on the trivial X-bundle

$$
\tilde{\Sigma} \times X \longrightarrow \tilde{\Sigma}
$$

is proper and free, where the action on X is defined by ρ.
■ The quotient

$$
X_{\rho}:=(\tilde{\Sigma} \times X) / \pi \longrightarrow \Sigma
$$

is a (G, X)-bundle over Σ associated to ρ.

Flat connections

Algebraic
varieties of
surface group representations

Surface groups
Characteristic classes

Hyperbolic geometry
$\operatorname{PSL}(2, \mathbb{C})$
$\mathrm{SU}(n, 1)$
Singularities

Representations $\pi_{1}(\Sigma) \longrightarrow G$ correspond to flat connections on G-bundles over Σ. Let X be a G-space.

■ Let $\tilde{\Sigma} \longrightarrow \Sigma$ be a universal covering space. The diagonal action of π on the trivial X-bundle

$$
\tilde{\Sigma} \times X \longrightarrow \tilde{\Sigma}
$$

is proper and free, where the action on X is defined by ρ.
■ The quotient

$$
X_{\rho}:=(\tilde{\Sigma} \times X) / \pi \longrightarrow \Sigma
$$

is a (G, X)-bundle over Σ associated to ρ.

- Such bundles correspond to flat connections on the associated principal G-bundle over Σ (take $X=G$ with right-multiplication).

Flat connections

Algebraic
varieties of
surface group
representations

Representations $\pi_{1}(\Sigma) \longrightarrow G$ correspond to flat connections on G-bundles over Σ. Let X be a G-space.

■ Let $\tilde{\Sigma} \longrightarrow \Sigma$ be a universal covering space. The diagonal action of π on the trivial X-bundle

$$
\tilde{\Sigma} \times X \longrightarrow \tilde{\Sigma}
$$

is proper and free, where the action on X is defined by ρ.
■ The quotient

$$
X_{\rho}:=(\tilde{\Sigma} \times X) / \pi \longrightarrow \Sigma
$$

is a (G, X)-bundle over Σ associated to ρ.

- Such bundles correspond to flat connections on the associated principal G-bundle over Σ (take $X=G$ with right-multiplication).
- Topological invariants of this bundle define invariants of the representation.

Characteristic classes

■ The first characteristic invariant corresponds to the connected components of G :

Characteristic classes

Hyperbolic geometry

PSL $(2, \mathbb{C})$
$\operatorname{SU}(n, 1)$
Singularities
$\operatorname{Hom}(\pi, G) \longrightarrow \operatorname{Hom}\left(\pi, \pi_{0}(G)\right) \cong H^{1}\left(\Sigma, \pi_{0}(G)\right)$

Characteristic classes

■ The first characteristic invariant corresponds to the connected components of G :

$$
\operatorname{Hom}(\pi, G) \longrightarrow \operatorname{Hom}\left(\pi, \pi_{0}(G)\right) \cong H^{1}\left(\Sigma, \pi_{0}(G)\right)
$$

■ $G=G L(n, \mathbb{R}), O(n)$: the first Stiefel-Whitney class detects orientability of the associated vector bundle.

Compact and complex semisimple groups

■ Now suppose G is connected. The next invariant obstructs lifting ρ to the universal covering group $\tilde{G} \longrightarrow G$:

$$
\operatorname{Hom}(\pi, G) \xrightarrow{\mathfrak{o}_{2}} H^{2}\left(\Sigma, \pi_{1}(G)\right) \cong \pi_{1}(G)
$$

Compact and complex semisimple groups

■ When G is a connected complex or compact semisimple Lie group, then \mathfrak{o}_{2} defines an isomorphism

$$
\pi_{0}(\operatorname{Hom}(\pi, G)) \stackrel{\cong}{\rightrightarrows} \pi_{1}(G) .
$$

(Narasimhan-Seshadri, Atiyah-Bott, Ramanathan, Goldman, Jun Li, Rapinchuk-Chernousov-Benyash-Krivets, ...)

Closed orientable surfaces

Algebraic
varieties of surface group representations

Surface groups
Characteristic
classes
Hyperbolic geometry
$\operatorname{PSL}(2, \mathbb{C})$
$\operatorname{SU}(n, 1)$
Singularities

Decompose a surface of genus g

as a $4 g$-gon with its edges identified in $2 g$ pairs and all vertices identified to a single point.

Presentation of $\pi_{1}(\Sigma)$

Algebraic
varieties of surface group representations

$$
\left\langle A_{1}, \ldots, B_{g} \mid A_{1} B_{1} A_{1}^{-1} B_{1}^{-1} \ldots A_{g} B_{g} A_{g}^{-1} B_{g}^{-1}=1\right\rangle
$$

Presentation of $\pi_{1}(\Sigma)$

Algebraic
varieties of surface group representations

$$
\left\langle A_{1}, \ldots, B_{g} \mid A_{1} B_{1} A_{1}^{-1} B_{1}^{-1} \ldots A_{g} B_{g} A_{g}^{-1} B_{g}^{-1}=1\right\rangle
$$

■ A representation ρ is determined by the $2 g$-tuple

$$
\left(\alpha_{1}, \ldots, \beta_{g}\right) \in G^{2 g}
$$

satisfying

$$
\left[\alpha_{1}, \beta_{1}\right] \ldots\left[\alpha_{g}, \beta_{g}\right]=1
$$

Take $\alpha_{i}=\rho\left(A_{i}\right)$ and $\beta_{i}=\rho\left(B_{i}\right)$.

Presentation of $\pi_{1}(\Sigma)$

$$
\left\langle A_{1}, \ldots, B_{g} \mid A_{1} B_{1} A_{1}^{-1} B_{1}^{-1} \ldots A_{g} B_{g} A_{g}^{-1} B_{g}^{-1}=1\right\rangle
$$

■ A representation ρ is determined by the $2 g$-tuple

$$
\left(\alpha_{1}, \ldots, \beta_{g}\right) \in G^{2 g}
$$

satisfying

$$
\left[\alpha_{1}, \beta_{1}\right] \ldots\left[\alpha_{g}, \beta_{g}\right]=1 .
$$

Take $\alpha_{i}=\rho\left(A_{i}\right)$ and $\beta_{i}=\rho\left(B_{i}\right)$.
■ To compute $\mathfrak{o}_{2}(\rho)$, lift the images of the generators

$$
\widetilde{\alpha_{1}}, \ldots, \widetilde{\beta_{g}} \in \tilde{G}
$$

The second obstruction

Algebraic
varieties of surface group representations

■ Evaluate the relation:

$$
\left[\widetilde{\alpha_{1}}, \widetilde{\beta_{1}}\right] \ldots,\left[\widetilde{\alpha_{g}}, \widetilde{\beta_{g}}\right]
$$

Characteristic classes

Hyperbolic geometry

PSL(2, C)
$\operatorname{SU}(n, 1)$
Singularities

The second obstruction

■ Evaluate the relation:

$$
\left[\widetilde{\alpha_{1}}, \widetilde{\beta_{1}}\right] \ldots,\left[\widetilde{\alpha_{g}}, \widetilde{\beta_{g}}\right]
$$

Characteristic classes

- Lives in

$$
\operatorname{Ker}(\tilde{G} \longrightarrow G)=\pi_{1}(G) .
$$

The second obstruction

■ Evaluate the relation:

Surface groups
Characteristic classes

■ Lives in

$$
\operatorname{Ker}(\tilde{G} \longrightarrow G)=\pi_{1}(G)
$$

■ Independent of choice of lifts.

The second obstruction

■ Evaluate the relation:

Surface groups
Characteristic
classes
Hyperbolic
geometry
■ Lives in

$$
\operatorname{Ker}(\tilde{G} \longrightarrow G)=\pi_{1}(G)
$$

■ Independent of choice of lifts.
$■$ Equals $\mathfrak{o}_{2}(\rho) \in \pi_{1}(G)$.

Euler class

Algebraic
varieties of surface group representations

■ When $G=\operatorname{PSL}(2, \mathbb{R})$ the group of orientation-preserving isometries of H^{2}, then \mathfrak{o}_{2} is the Euler class of the associated flat oriented H^{2}-bundle over Σ.

Euler class

Algebraic
varieties of surface group representations

Surface groups
Characteristic classes

Hyperbolic geometry
$\operatorname{PSL}(2, \mathbb{C})$
$\operatorname{SU}(n, 1)$
Singularities

■ When $G=\operatorname{PSL}(2, \mathbb{R})$ the group of orientation-preserving isometries of H^{2}, then \mathfrak{o}_{2} is the Euler class of the associated flat oriented H^{2}-bundle over Σ.

■ $|e(\rho)| \leq|\chi(\Sigma)|$ (Milnor 1958, Wood 1971)

Euler class

Algebraic
varieties of surface group representations

Surface groups
Characteristic classes

Hyperbolic geometry

PSL(2, C $)$
$\operatorname{SU}(n, 1)$
Singularities

■ When $G=\operatorname{PSL}(2, \mathbb{R})$ the group of orientation-preserving isometries of H^{2}, then \mathfrak{o}_{2} is the Euler class of the associated flat oriented H^{2}-bundle over Σ.

■ $|e(\rho)| \leq|\chi(\Sigma)|$ (Milnor 1958, Wood 1971)
■ Equality $\Longleftrightarrow \rho$ discrete embedding. (Goldman 1980)

Euler class

Algebraic
varieties of surface group representations

Surface groups
Characteristic classes

Hyperbolic geometry

PSL(2, C
$\operatorname{SU}(n, 1)$
Singularities

■ When $G=\operatorname{PSL}(2, \mathbb{R})$ the group of orientation-preserving isometries of H^{2}, then \mathfrak{o}_{2} is the Euler class of the associated flat oriented H^{2}-bundle over Σ.

■ $|e(\rho)| \leq|\chi(\Sigma)|$ (Milnor 1958, Wood 1971)
■ Equality $\Longleftrightarrow \rho$ discrete embedding. (Goldman 1980)

- ρ corresponds to a hyperbolic structure on Σ

Euler class

Algebraic
varieties of surface group representations

Surface groups
Characteristic classes

Hyperbolic geometry

PSL(2, C
$\operatorname{SU}(n, 1)$
Singularities

■ When $G=\operatorname{PSL}(2, \mathbb{R})$ the group of orientation-preserving isometries of H^{2}, then \mathfrak{o}_{2} is the Euler class of the associated flat oriented H^{2}-bundle over Σ.

■ $|e(\rho)| \leq|\chi(\Sigma)|$ (Milnor 1958, Wood 1971)
■ Equality $\Longleftrightarrow \rho$ discrete embedding. (Goldman 1980)

- ρ corresponds to a hyperbolic structure on Σ
- $\mathrm{H}_{\rho}^{2} \cong T \Sigma$.

Euler class

■ When $G=\operatorname{PSL}(2, \mathbb{R})$ the group of orientation-preserving isometries of H^{2}, then \mathfrak{o}_{2} is the Euler class of the associated flat oriented H^{2}-bundle over Σ.

■ $|e(\rho)| \leq|\chi(\Sigma)|$ (Milnor 1958, Wood 1971)
■ Equality $\Longleftrightarrow \rho$ discrete embedding. (Goldman 1980)

- ρ corresponds to a hyperbolic structure on Σ
- $\mathrm{H}_{\rho}^{2} \cong T \Sigma$.

■ Uniformization: maximal component of $\operatorname{Hom}(\pi, \operatorname{PSL}(2, \mathbb{R})) / \operatorname{PSL}(2, \mathbb{R})$ identifies with Teichmüller space \mathfrak{T}_{Σ} of marked hyperbolic structures on Σ.

Euler class

■ When $G=\operatorname{PSL}(2, \mathbb{R})$ the group of orientation-preserving isometries of H^{2}, then \mathfrak{o}_{2} is the Euler class of the associated flat oriented H^{2}-bundle over Σ.

■ $|e(\rho)| \leq|\chi(\Sigma)|$ (Milnor 1958, Wood 1971)
■ Equality $\Longleftrightarrow \rho$ discrete embedding. (Goldman 1980)
■ ρ corresponds to a hyperbolic structure on Σ

- $\mathrm{H}_{\rho}^{2} \cong T \Sigma$.

■ Uniformization: maximal component of $\operatorname{Hom}(\pi, \operatorname{PSL}(2, \mathbb{R})) / \operatorname{PSL}(2, \mathbb{R})$ identifies with Teichmüller space \mathfrak{T}_{Σ} of marked hyperbolic structures on Σ.
■ Component of $\operatorname{Hom}(\pi, \operatorname{PSL}(2, \mathbb{R})) / \operatorname{PGL}(2, \mathbb{R})$ consisting exactly of discrete embeddings.

Maximal component

■ Generalizes Kneser's theorem on maps $\Sigma \xrightarrow{f} \Sigma^{\prime}$ between closed oriented surfaces:

Maximal component

■ Generalizes Kneser's theorem on maps $\Sigma \xrightarrow{f} \Sigma^{\prime}$ between closed oriented surfaces:

$$
\text { ■ }\left|\operatorname{deg}(f) \chi\left(\Sigma^{\prime}\right)\right| \leq|\chi(\Sigma)|
$$

Maximal component

■ Generalizes Kneser's theorem on maps $\Sigma \xrightarrow{f} \Sigma^{\prime}$ between closed oriented surfaces:

- $\left|\operatorname{deg}(f) \chi\left(\Sigma^{\prime}\right)\right| \leq|\chi(\Sigma)|$

■ Equality $\Longleftrightarrow f$ homotopic to a covering-space.

Maximal component

■ Generalizes Kneser's theorem on maps $\Sigma \xrightarrow{f} \Sigma^{\prime}$ between closed oriented surfaces:

- $\left|\operatorname{deg}(f) \chi\left(\Sigma^{\prime}\right)\right| \leq|\chi(\Sigma)|$
- Equality $\Longleftrightarrow f$ homotopic to a covering-space. nonempty preimages of

$$
\operatorname{Hom}(\pi, \operatorname{PSL}(2, \mathbb{R})) \xrightarrow{e} \mathbb{Z}
$$

(G, Hitchin)

Branched hyperbolic structures

Algebraic
varieties of
surface group representa-
tions

Representations in other components arise from hyperbolic structures with isolated conical singularities of cone angles $2 \pi k$, where $k \geq 1$.

Branched hyperbolic structures

Representations in other components arise from hyperbolic structures with isolated conical singularities of cone angles $2 \pi k$, where $k \geq 1$.

- The holonomy representation of a hyperbolic surface with cone angles $2 \pi k_{i}$ extends to $\pi_{1}(\Sigma)$ with Euler number

$$
e(\rho)=2-2 g+\sum\left(k_{i}-1\right)
$$

Branched hyperbolic structures

Representations in other components arise from hyperbolic structures with isolated conical singularities of cone angles $2 \pi k$, where $k \geq 1$.

- The holonomy representation of a hyperbolic surface with cone angles $2 \pi k_{i}$ extends to $\pi_{1}(\Sigma)$ with Euler number

$$
e(\rho)=2-2 g+\sum\left(k_{i}-1\right)
$$

■ For example, such structures arise from identifying polygons in H^{2} If the sum of the interior angles is $2 \pi k$, where $k \in \mathbb{Z}$, then quotient space is a hyperbolic surface with one singularity (the image of the vertex) with cone angle $2 \pi k$.

A hyperbolic surface of genus two

Algebraic
varieties of surface group representations

Surface groups
Characteristic classes

Hyperbolic geometry

PSL(2, C)
$\operatorname{SU}(n, 1)$

A hyperbolic surface of genus two

Algebraic
varieties of surface group representations

Surface groups

Characteristic classes

Hyperbolic geometry

PSL(2, C)

■ Identifying a regular octagon with angles $\pi / 4$ yields a nonsingular hyperbolic surface with $e(\rho)=\chi(\Sigma)=-2$.

A hyperbolic surface of genus two

Algebraic
varieties of
surface group representations

Surface groups
Characteristic classes

Hyperbolic geometry
$\operatorname{PSL}(2, \mathbb{C})$

■ Identifying a regular octagon with angles $\pi / 4$ yields a nonsingular hyperbolic surface with $e(\rho)=\chi(\Sigma)=-2$.
■ But when the angles are $\pi / 2$, the surface has one singularity with cone angle 4π and

$$
e(\rho)=1+\chi(\Sigma)=-1
$$

The other components: symmetric powers

Algebraic
varieties of surface group representations

■ Each component of $\operatorname{Hom}(\pi, \operatorname{PSL}(2, \mathbb{R}))$ contains holonomy of branched hyperbolic structures.

The other components: symmetric powers

Algebraic
varieties of
surface group representations

Surface groups
Characteristic classes

Hyperbolic geometry

PSL(2, C $)$
$\operatorname{SU}(n, 1)$
Singularities

■ Each component of $\operatorname{Hom}(\pi, \operatorname{PSL}(2, \mathbb{R}))$ contains holonomy of branched hyperbolic structures.

- $e^{-1}(2-2 g+k)$ deformation retracts onto $\operatorname{Sym}^{k}(\Sigma)$ for $0 \leq k<2 g-2$. (Hitchin 1987)

The other components: symmetric powers

■ Each component of $\operatorname{Hom}(\pi, \operatorname{PSL}(2, \mathbb{R}))$ contains holonomy of branched hyperbolic structures.
■ $e^{-1}(2-2 g+k)$ deformation retracts onto $\operatorname{Sym}^{k}(\Sigma)$ for $0 \leq k<2 g-2$. (Hitchin 1987)
■ If $\Sigma \xrightarrow{f} \Sigma_{1}$ is a degree one map not homotopic to a homeomorphism, and Σ_{1} is a hyperbolic structure with holonomy ϕ_{1}, then the composition

$$
\pi_{1}(\Sigma) \xrightarrow{f_{*}} \pi_{1}\left(\Sigma_{1}\right) \xrightarrow{\phi_{1}} \operatorname{PSL}(2, \mathbb{R})
$$

is not the holonomy of a branched hyperbolic structure.

The other components: symmetric powers

Algebraic
varieties of surface group representations

■ Each component of $\operatorname{Hom}(\pi, \operatorname{PSL}(2, \mathbb{R}))$ contains holonomy of branched hyperbolic structures.
■ $e^{-1}(2-2 g+k)$ deformation retracts onto $\operatorname{Sym}^{k}(\Sigma)$ for $0 \leq k<2 g-2$. (Hitchin 1987)
■ If $\Sigma \xrightarrow{f} \Sigma_{1}$ is a degree one map not homotopic to a homeomorphism, and Σ_{1} is a hyperbolic structure with holonomy ϕ_{1}, then the composition

$$
\pi_{1}(\Sigma) \xrightarrow{f_{*}} \pi_{1}\left(\Sigma_{1}\right) \xrightarrow{\phi_{1}} \operatorname{PSL}(2, \mathbb{R})
$$

is not the holonomy of a branched hyperbolic structure.
■ Conjecture: every representation with dense image occurs as the holonomy of a branched hyperbolic structure.

Quasi-Fuchsian groups

Algebraic
varieties of surface group representations

Surface groups
Characteristic classes

Hyperbolic geometry $\operatorname{PSL}(2, \mathbb{C})$

The group of orientation-preserving isometries of $\mathrm{H}_{\mathbb{R}}^{3}$ equals $\operatorname{PSL}(2, \mathbb{C})$. Close to Fuchsian representations in $\operatorname{PSL}(2, \mathbb{R})$ are quasi-Fuchsian representations.

■ Quasi-fuchsian representations are discrete embeddings.
■ $\mathcal{Q F} \approx \mathfrak{T}_{\Sigma} \times \overline{\mathfrak{T}_{\Sigma}}$ (Bers 1960)

- The closure of $\mathcal{Q \mathcal { F }}$ consists of all discrete embeddings $\pi \hookrightarrow \operatorname{PSL}(2, \mathbb{C})$ (Thurston-Bonahon 1984)
■ The discrete embeddings are not open and do not comprise a component of $\operatorname{Hom}(\pi, G) / G$.

Complex hyperbolic geometry

■ Complex hyperbolic space $\mathrm{H}_{\mathbb{C}}^{n}$ is the unit ball in \mathbb{C}^{n} with the Bergman metric invariant under the projective transformations in $\mathbb{C P}^{n}$.

Complex hyperbolic geometry

■ Complex hyperbolic space $\mathrm{H}_{\mathbb{C}}^{n}$ is the unit ball in \mathbb{C}^{n} with the Bergman metric invariant under the projective transformations in $\mathbb{C P}^{n}$.

■ \mathbb{C}-linear subspaces meet $\mathrm{H}_{\mathbb{C}}^{n}$ in totally geodesic subspaces.

Deforming discrete groups

Algebraic
varieties of surface group representations
\square Start with a discrete embedding $\pi \xrightarrow{\rho_{0}} \mathrm{U}(1,1)$ acting on a complex geodesic $\mathrm{H}_{\mathbb{C}}^{1} \subset \mathrm{H}_{\mathbb{C}}^{n}$.

Deforming discrete groups

Algebraic
varieties of surface group representations

Surface groups
Characteristic classes

Hyperbolic geometry
$\operatorname{PSL}(2, \mathbb{C})$
$\mathrm{SU}(n, 1)$
$■$ Start with a discrete embedding $\pi \xrightarrow{\rho_{0}} \mathrm{U}(1,1)$ acting on a complex geodesic $\mathrm{H}_{\mathbb{C}}^{1} \subset \mathrm{H}_{\mathbb{C}}^{n}$.
■ Every nearby deformation $\pi \xrightarrow{\rho} \mathrm{U}(n, 1)$ stabilizes a complex geodesic, and is conjugate to a discrete embedding

$$
\pi \xrightarrow{\rho} \mathrm{U}(1,1) \times \mathrm{U}(n-1) \subset \mathrm{U}(n, 1) .
$$

Deforming discrete groups

Algebraic
varieties of surface group representations

Surface groups
Characteristic classes

Hyperbolic geometry

PSL(2, C $)$
$\operatorname{SU}(n, 1)$
Singularities
$■$ Start with a discrete embedding $\pi \xrightarrow{\rho_{0}} \mathrm{U}(1,1)$ acting on a complex geodesic $\mathrm{H}_{\mathbb{C}}^{1} \subset \mathrm{H}_{\mathbb{C}}^{n}$.
■ Every nearby deformation $\pi \xrightarrow{\rho} \mathrm{U}(n, 1)$ stabilizes a complex geodesic, and is conjugate to a discrete embedding

$$
\pi \xrightarrow{\rho} \mathrm{U}(1,1) \times \mathrm{U}(n-1) \subset \mathrm{U}(n, 1)
$$

- The deformation space is $\mathfrak{T}_{\Sigma} \times \operatorname{Hom}(\pi, U(n-1)) / U(n-1)$.

Deforming discrete groups

Algebraic
varieties of surface group representations

Surface groups
Characteristic classes

Hyperbolic geometry
$\operatorname{PSL}(2, \mathbb{C})$
$\operatorname{SU}(n, 1)$
Singularities

■ Start with a discrete embedding $\pi \xrightarrow{\rho_{0}} \mathrm{U}(1,1)$ acting on a complex geodesic $\mathrm{H}_{\mathbb{C}}^{1} \subset \mathrm{H}_{\mathbb{C}}^{n}$.
■ Every nearby deformation $\pi \xrightarrow{\rho} \mathrm{U}(n, 1)$ stabilizes a complex geodesic, and is conjugate to a discrete embedding

$$
\pi \xrightarrow{\rho} \mathrm{U}(1,1) \times \mathrm{U}(n-1) \subset \mathrm{U}(n, 1) .
$$

- The deformation space is $\mathfrak{T}_{\Sigma} \times \operatorname{Hom}(\pi, U(n-1)) / U(n-1)$.
■ ρ characterized by maximality of \mathbb{Z}-valued characteristic class generalizing Euler class. (Toledo 1986)

Deforming discrete groups

Algebraic
varieties of surface group representations

■ Start with a discrete embedding $\pi \xrightarrow{\rho_{0}} \mathrm{U}(1,1)$ acting on a complex geodesic $\mathrm{H}_{\mathbb{C}}^{1} \subset \mathrm{H}_{\mathbb{C}}^{n}$.
■ Every nearby deformation $\pi \xrightarrow{\rho} \mathrm{U}(n, 1)$ stabilizes a complex geodesic, and is conjugate to a discrete embedding

$$
\pi \xrightarrow{\rho} \mathrm{U}(1,1) \times \mathrm{U}(n-1) \subset \mathrm{U}(n, 1) .
$$

- The deformation space is

$$
\mathfrak{T}_{\Sigma} \times \operatorname{Hom}(\pi, U(n-1)) / U(n-1) .
$$

■ ρ characterized by maximality of \mathbb{Z}-valued characteristic class generalizing Euler class. (Toledo 1986)
■ Generalized to maximal representations by
Burger-lozzi-Wienhard and Bradlow-Garcia-Prada-Gothen-Mundet.

Singularities in $\operatorname{Hom}(\pi, G)$

■ Singular points in $\operatorname{Hom}(\pi, G)$!

Surface groups

Characteristic classes

Hyperbolic geometry
$\operatorname{PSL}(2, \mathbb{C})$
$\operatorname{SU}(n, 1)$
Singularities

Singularities in $\operatorname{Hom}(\pi, G)$

■ Singular points in $\operatorname{Hom}(\pi, G)$!
■ In general the analytic germ of a reductive representation of the fundamental group of a compact Kähler manifold is defined by a system of homogeneous quadratic equations. (Goldman-Millson 1988, with help from Deligne)

Singularities in $\operatorname{Hom}(\pi, G)$

■ Singular points in $\operatorname{Hom}(\pi, G)$!

Characteristic classes

■ In general the analytic germ of a reductive representation of the fundamental group of a compact Kähler manifold is defined by a system of homogeneous quadratic equations. (Goldman-Millson 1988, with help from Deligne)
■ Deformation theory: twisted version of the formality of the rational homotopy type of compact Kähler manifolds (Deligne-Griffiths-Morgan-Sullivan 1975).

The deformation groupoid

Algebraic
varieties of surface group representations

■ Objects in the deformation theory correspond to flat connections, $\mathfrak{g}_{\text {Ad } \rho}$-valued 1 -forms ω on Σ satisying the Maurer-Cartan equations:

$$
D \omega+\frac{1}{2}[\omega, \omega]=0 .
$$

The deformation groupoid

Algebraic
varieties of surface group representations

■ Objects in the deformation theory correspond to flat connections, $\mathfrak{g}_{\text {Ad } \rho}$-valued 1 -forms ω on Σ satisying the Maurer-Cartan equations:

$$
D \omega+\frac{1}{2}[\omega, \omega]=0 .
$$

- Morphisms in the deformation theory correspond to infinitesimal gauge transformations, sections η of $\mathfrak{g}_{\text {Ad } \rho}$:

$$
\omega \stackrel{\eta}{\longmapsto} e^{\operatorname{ad}(\eta)}(\omega)+D\left(\frac{e^{\operatorname{ad}(\eta)}-1}{\operatorname{ad}(\eta)}\right) .
$$

The deformation groupoid

■ Objects in the deformation theory correspond to flat connections, $\mathfrak{g}_{\text {Ad } \rho}$-valued 1-forms ω on Σ satisying the Maurer-Cartan equations:

$$
D \omega+\frac{1}{2}[\omega, \omega]=0 .
$$

- Morphisms in the deformation theory correspond to infinitesimal gauge transformations, sections η of $\mathfrak{g}_{\text {Ad } \rho}$:

$$
\omega \stackrel{\eta}{\longmapsto} e^{\operatorname{ad}(\eta)}(\omega)+D\left(\frac{e^{\operatorname{ad}(\eta)}-1}{\operatorname{ad}(\eta)}\right) .
$$

■ This groupoid is equivalent to the groupoid whose objects form $\operatorname{Hom}(\pi, G)$ and the morphisms $\operatorname{Inn}(G)$.

The quadratic cone

Algebraic varieties of surface group representations

Surface groups

Characteristic classes

Hyperbolic geometry

PSL(2, C)
$\operatorname{SU}(n, 1)$
Singularities

■ The Zariski tangent space to the flat connections equals $Z^{1}\left(\Sigma, \mathfrak{g}_{\mathrm{Ad} \rho}\right):$

$$
D \omega=0,
$$

the linearization of the Maurer-Cartan equation.

The quadratic cone

$$
[\omega, \omega]=0 \in H^{2}\left(\Sigma, \mathfrak{g}_{\mathrm{Ad} \rho}\right)
$$

■ The Zariski tangent space to the flat connections equals $Z^{1}\left(\Sigma, \mathfrak{g}_{\mathrm{Ad} \rho}\right)$:

$$
D \omega=0
$$

the linearization of the Maurer-Cartan equation.
■ ω is tangent to an analytic path \Longleftrightarrow

The quadratic cone

$$
[\omega, \omega]=0 \in H^{2}\left(\Sigma, \mathfrak{g}_{\mathrm{Ad} \rho}\right)
$$

■ An explicit exponential map from the quadratic cone in $Z^{1}\left(\Sigma, \mathfrak{g}_{\mathrm{Ad} \rho}\right)$ can be constructed from Hodge theory:

$$
\omega \longmapsto\left(I+\bar{\partial}_{D}^{*} \operatorname{ad}\left(\omega^{(0,1)}\right)\right)^{-1}(\omega) .
$$

Complex hyperbolic surfaces

Algebraic
varieties of surface group representations

Consider a discrete embedding $\pi \xrightarrow{\rho_{0}} \mathrm{SU}(1,1)$ and its neighborhood in $\operatorname{Hom}(\pi, \mathrm{U}(n, 1))$.

Complex hyperbolic surfaces

Algebraic
varieties of surface group representations

Consider a discrete embedding $\pi \xrightarrow{\rho_{0}} \mathrm{SU}(1,1)$ and its neighborhood in $\operatorname{Hom}(\pi, \mathrm{U}(n, 1))$.

■ The full Zariski tangent space is $Z^{1}\left(\Sigma, \mathfrak{s u}(n, 1)_{\operatorname{Ad} \rho_{0}}\right)$.

Complex hyperbolic surfaces

Algebraic
varieties of surface group representations

Consider a discrete embedding $\pi \xrightarrow{\rho_{0}} \mathrm{SU}(1,1)$ and its neighborhood in $\operatorname{Hom}(\pi, U(n, 1))$.

- The full Zariski tangent space is $Z^{1}\left(\Sigma, \mathfrak{s u}(n, 1)_{\operatorname{Ad} \rho_{0}}\right)$.
- $\operatorname{Ad}(\mathrm{U}(1,1))$-invariant decomposition of Lie algebras

$$
\mathfrak{u}(n, 1)_{\operatorname{Ad}(U(1,1))}=\left(\mathfrak{u}(1,1)_{\operatorname{Ad}} \oplus \mathfrak{u}(n-1)\right) \oplus\left(\mathbb{C}^{1,1} \otimes \mathbb{C}^{n-1}\right)
$$

\Longrightarrow Zariski tangent space decomposes:

$$
Z^{1}\left(\Sigma, \mathfrak{u}(1,1)_{\operatorname{Ad} \rho_{0}} \oplus \mathfrak{u}(n-1)\right) \oplus Z^{1}\left(\Sigma, \mathbb{C}^{1,1} \otimes \mathbb{C}_{\rho_{0}}^{n-1}\right)
$$

Complex hyperbolic surfaces

Algebraic
varieties of surface group representations

Consider a discrete embedding $\pi \xrightarrow{\rho_{0}} \mathrm{SU}(1,1)$ and its neighborhood in $\operatorname{Hom}(\pi, \mathrm{U}(n, 1))$.

- The full Zariski tangent space is $Z^{1}\left(\Sigma, \mathfrak{s u}(n, 1)_{\operatorname{Ad} \rho_{0}}\right)$.
- $\operatorname{Ad}(\mathrm{U}(1,1))$-invariant decomposition of Lie algebras

$$
\mathfrak{u}(n, 1)_{\operatorname{Ad}(U(1,1))}=\left(\mathfrak{u}(1,1)_{\operatorname{Ad}} \oplus \mathfrak{u}(n-1)\right) \oplus\left(\mathbb{C}^{1,1} \otimes \mathbb{C}^{n-1}\right)
$$

\Longrightarrow Zariski tangent space decomposes:

$$
Z^{1}\left(\Sigma, \mathfrak{u}(1,1)_{\operatorname{Ad} \rho_{0}} \oplus \mathfrak{u}(n-1)\right) \oplus Z^{1}\left(\Sigma, \mathbb{C}^{1,1} \otimes \mathbb{C}_{\rho_{0}}^{n-1}\right)
$$

■ The quadratic form reduces to the cup-product

$$
H^{1}\left(\Sigma, \mathbb{C}_{\rho_{0}}^{1,1}\right) \times H^{1}\left(\Sigma, \mathbb{C}_{\rho_{0}}^{1,1}\right) \longrightarrow H^{2}(\Sigma, \mathbb{R}) \cong \mathbb{R}
$$

coefficients $\mathbb{C}_{\rho_{0}}^{1,1}$ paired by

$$
\left(z_{1}, z_{2}\right) \longmapsto \operatorname{Im}\left\langle z_{1}, z_{2}\right\rangle .
$$

Second order rigidity

Algebraic
varieties of surface group representations

■ Zariski normal space $H^{1}\left(\Sigma, \mathbb{C}_{\rho_{0}}^{1,1}\right) \cong \mathbb{C}^{4 g-4}$.

Surface groups

Characteristic
classes
Hyperbolic geometry
$\operatorname{PSL}(2, \mathbb{C})$
$\operatorname{SU}(n, 1)$
Singularities

Second order rigidity

■ Zariski normal space $H^{1}\left(\Sigma, \mathbb{C}_{\rho_{0}}^{1,1}\right) \cong \mathbb{C}^{4 g-4}$.
Surface groups
■ Signature of defining quadratic form equals $2 e\left(\rho_{0}\right)$. (Werner Meyer 1971)

Second order rigidity

■ Zariski normal space $H^{1}\left(\Sigma, \mathbb{C}_{\rho_{0}}^{1,1}\right) \cong \mathbb{C}^{4 g-4}$.
Surface groups
■ Signature of defining quadratic form equals $2 e\left(\rho_{0}\right)$. (Werner Meyer 1971)

■ Signature \leq Dimension \Longrightarrow Milnor-Wood.

Second order rigidity

■ Zariski normal space $H^{1}\left(\Sigma, \mathbb{C}_{\rho_{0}}^{1,1}\right) \cong \mathbb{C}^{4 g-4}$.
■ Signature of defining quadratic form equals $2 e\left(\rho_{0}\right)$. (Werner Meyer 1971)

■ Signature \leq Dimension \Longrightarrow Milnor-Wood.
■ Equality \Longleftrightarrow the quadratic form is definite.

Second order rigidity

■ Zariski normal space $H^{1}\left(\Sigma, \mathbb{C}_{\rho_{0}}^{1,1}\right) \cong \mathbb{C}^{4 g-4}$.
■ Signature of defining quadratic form equals $2 e\left(\rho_{0}\right)$. (Werner Meyer 1971)

■ Signature \leq Dimension \Longrightarrow Milnor-Wood.

- Equality \Longleftrightarrow the quadratic form is definite.
- Local rigidity.

Second order rigidity

■ Zariski normal space $H^{1}\left(\Sigma, \mathbb{C}_{\rho_{0}}^{1,1}\right) \cong \mathbb{C}^{4 g-4}$.

Characteristic classes

■ Signature of defining quadratic form equals $2 e\left(\rho_{0}\right)$. (Werner Meyer 1971)

■ Signature \leq Dimension \Longrightarrow Milnor-Wood.

- Equality \Longleftrightarrow the quadratic form is definite.
- Local rigidity.

■ \forall even e with $|e| \leq 2 g-2$, corresponding component of $\operatorname{Hom}(\pi, \operatorname{SU}(2,1))$ contains discrete embeddings.
(Goldman-Kapovich-Leeb 2001)

Another approach to positivity

Algebraic varieties of surface group representations

Surface groups

Characteristic classes

Hyperbolic geometry

PSL(2, C)
$\operatorname{SU}(n, 1)$
Singularities

■ When ρ_{0} is a discrete embedding, the quadratic form arises from the Petersson pairing on automorphic forms.

Another approach to positivity

Algebraic
varieties of surface group representations

■ When ρ_{0} is a discrete embedding, the quadratic form arises from the Petersson pairing on automorphic forms.
■ Riemann surface $X:=\mathrm{H}^{2} / \rho_{0}(\pi) \approx \Sigma$.

Surface groups

Characteristic classes

Hyperbolic geometry

PSL(2, C)
$\mathrm{SU}(n, 1)$
Singularities

Another approach to positivity

Algebraic
varieties of surface group representations

Surface groups
Characteristic classes

Hyperbolic geometry
$\operatorname{PSL}(2, \mathbb{C})$
$\operatorname{SU}(n, 1)$
Singularities

■ When ρ_{0} is a discrete embedding, the quadratic form arises from the Petersson pairing on automorphic forms.
■ Riemann surface $X:=\mathrm{H}^{2} / \rho_{0}(\pi) \approx \Sigma$.
■ Hodge decomposition:

$$
H^{1}\left(X, \mathbb{C}_{\rho_{0}}^{1,1}\right)=H^{1,0}\left(X, \mathbb{C}_{\rho_{0}}^{1,1}\right) \oplus H^{0,1}\left(X, \mathbb{C}_{\rho_{0}}^{1,1}\right)
$$

Another approach to positivity

■ When ρ_{0} is a discrete embedding, the quadratic form arises from the Petersson pairing on automorphic forms.
■ Riemann surface $X:=\mathrm{H}^{2} / \rho_{0}(\pi) \approx \Sigma$.
■ Hodge decomposition:

$$
H^{1}\left(X, \mathbb{C}_{\rho_{0}}^{1,1}\right)=H^{1,0}\left(X, \mathbb{C}_{\rho_{0}}^{1,1}\right) \oplus H^{0,1}\left(X, \mathbb{C}_{\rho_{0}}^{1,1}\right)
$$

■ Eichler-Shimura isomorphisms

$$
\begin{aligned}
& H^{0,1}\left(X, \mathbb{C}_{\rho_{0}}^{1,1}\right) \cong H^{0}\left(X, K^{3 / 2}\right) \\
& H^{1,0}\left(X, \mathbb{C}_{\rho_{0}}^{1,1}\right) \cong H^{0}\left(X, K^{3 / 2}\right)
\end{aligned}
$$

carries cup-product/symplectic coefficient pairing to L^{2} Hermitian product on weight 3 automorphic forms.

Happy Birthday, Professor Hirzebruch!

Algebraic
varieties of surface group representations

```
Surface groups
```

Characteristic
classes

Hyperbolic
geometry
PSL(2, C)
$\operatorname{SU}(n, 1)$
Singularities

Algebraic
varieties of surface group representations

```
Surface groups
```

Characteristic
classes

Hyperbolic
geometry
PSL(2, C)
$\operatorname{SU}(n, 1)$
Singularities

