Algebraic varieties of surface group representations

Surface group Characteristic classes

Hyperbolic geometry PSL $(2, \mathbb{C})$ SU(n, 1)

Singularities

Algebraic varieties of surface group representations

William M. Goldman

Department of Mathematics University of Maryland

HIRZ80

A Conference in Algebraic Geometry Honoring F. Hirzebruch's 80th Birthday Emmy Noether Institute, Bar-Ilan University, Israel 22 May 2008

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Algebraic varieties of surface group representations

1 Surface groups

Surface group Characteristic classes

Hyperbolic geometry $PSL(2, \mathbb{C})$ SU(n, 1)

Singularities

Algebraic varieties of surface group representations

Characteristic classes

Hyperbolic geometry PSL(2, C) SU(*n*, 1)

Singularities

1 Surface groups

2 Characteristic classes

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperbolic geometry PSL(2, \mathbb{C}) SU(n, 1)

Singularities

1 Surface groups

2 Characteristic classes

3 Hyperbolic geometry

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperbolic geometry PSL(2, \mathbb{C}) SU(n, 1) 1 Surface groups

2 Characteristic classes

3 Hyperbolic geometry

4 PSL(2, ℂ)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperbolic geometry PSL(2, \mathbb{C}) SU(n, 1)

Singularities

1 Surface groups

2 Characteristic classes

3 Hyperbolic geometry

4 PSL(2, ℂ)

5 SU(*n*, 1)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperbolic geometry PSL(2, \mathbb{C}) SU(n, 1)

Singularities

1 Surface groups

2 Characteristic classes

3 Hyperbolic geometry

4 PSL(2, ℂ)

5 SU(*n*, 1)

◆ロ > ◆母 > ◆臣 > ◆臣 > 善臣 - のへで

Algebraic varieties of surface group representations

Surface groups

Characterist classes

Hyperbolic geometry PSL $(2, \mathbb{C})$ SU(n, 1)

Singularities

Let Σ be a compact surface of $\chi(\Sigma) < 0$ with fundamental group $\pi = \pi_1(\Sigma)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Algebraic varieties of surface group representations

Surface groups

Characterist classes

Hyperbolic geometry PSL(2, \mathbb{C}) SU(n, 1)

Singularities

- Let Σ be a compact surface of $\chi(\Sigma) < 0$ with fundamental group $\pi = \pi_1(\Sigma)$.
 - Since π is finitely generated, Hom (π, G) is an algebraic set, for any algebraic Lie group G.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Algebraic varieties of surface group representations

Surface groups

Characterist classes

Hyperbolic geometry PSL(2, \mathbb{C}) SU(n, 1)

Singularities

- Let Σ be a compact surface of $\chi(\Sigma) < 0$ with fundamental group $\pi = \pi_1(\Sigma)$.
 - Since π is finitely generated, Hom(π, G) is an algebraic set, for any algebraic Lie group G.
 - This algebraic structure is invariant under the natural action of $Aut(\pi) \times Aut(G)$.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Algebraic varieties of surface group representations

Surface groups

Characterist classes

Hyperbolic geometry PSL $(2, \mathbb{C})$ SU(n, 1)

Singularities

- Let Σ be a compact surface of $\chi(\Sigma) < 0$ with fundamental group $\pi = \pi_1(\Sigma)$.
 - Since π is finitely generated, Hom(π, G) is an algebraic set, for any algebraic Lie group G.
 - This algebraic structure is invariant under the natural action of Aut(π) × Aut(G).
 - The mapping class group Mod(Σ) ≃ Aut(π)/Inn(π) acts on Hom(π, G)/G.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Algebraic varieties of surface group representations

Surface groups

Characterist classes

Hyperbolic geometry PSL(2, \mathbb{C})

Singularities

- Let Σ be a compact surface of $\chi(\Sigma) < 0$ with fundamental group $\pi = \pi_1(\Sigma)$.
 - Since π is finitely generated, Hom(π, G) is an algebraic set, for any algebraic Lie group G.
 - This algebraic structure is invariant under the natural action of Aut(π) × Aut(G).
 - The mapping class group Mod(Σ) ≃ Aut(π)/Inn(π) acts on Hom(π, G)/G.
 - Representations $\pi \xrightarrow{\rho} G$ arise from *locally homogeneous* geometric structures on Σ , modelled on homogeneous spaces of G.

Algebraic varieties of surface group representations

Surface groups

Characterist classes

Hyperbolic geometry PSL(2, \mathbb{C}) SU(n, 1)

Singularities

Representations $\pi_1(\Sigma) \longrightarrow G$ correspond to flat connections on *G*-bundles over Σ . Let *X* be a *G*-space.

▲ロト ▲□ト ▲ヨト ▲ヨト ヨー のくで

Algebraic varieties of surface group representations

Surface groups

Characteris classes

Hyperboli geometry PSL(2, C

SU(n, 1)

Singularities

Representations $\pi_1(\Sigma) \longrightarrow G$ correspond to flat connections on *G*-bundles over Σ . Let *X* be a *G*-space.

• Let $\tilde{\Sigma} \longrightarrow \Sigma$ be a universal covering space. The diagonal action of π on the *trivial* X-bundle

$$\tilde{\Sigma} \times X \longrightarrow \tilde{\Sigma}$$

is *proper* and *free*, where the action on X is defined by ρ .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Algebraic varieties of surface group representations

Surface groups

Characteris classes

Hyperboli geometry PSL(2, C)

Singularities

Representations $\pi_1(\Sigma) \longrightarrow G$ correspond to flat connections on *G*-bundles over Σ . Let *X* be a *G*-space.

• Let $\tilde{\Sigma} \longrightarrow \Sigma$ be a universal covering space. The diagonal action of π on the *trivial* X-bundle

$$\tilde{\Sigma} \times X \longrightarrow \tilde{\Sigma}$$

is *proper* and *free*, where the action on X is defined by ρ . The quotient

$$X_
ho := (ilde{\Sigma} imes X)/\pi \longrightarrow \Sigma$$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

is a (G, X)-bundle over Σ associated to ρ .

Algebraic varieties of surface group representations

Surface groups

Characterist classes

Hyperboli geometry PSL(2, C)

Singularities

Representations $\pi_1(\Sigma) \longrightarrow G$ correspond to flat connections on *G*-bundles over Σ . Let *X* be a *G*-space.

• Let $\tilde{\Sigma} \longrightarrow \Sigma$ be a universal covering space. The diagonal action of π on the *trivial* X-bundle

$$\tilde{\Sigma} \times X \longrightarrow \tilde{\Sigma}$$

is *proper* and *free*, where the action on X is defined by ρ . The quotient

$$X_
ho := (ilde{\Sigma} imes X)/\pi \longrightarrow \Sigma$$

- is a (G, X)-bundle over Σ associated to ρ .
- Such bundles correspond to *flat connections* on the associated principal *G*-bundle over Σ (take X = G with right-multiplication).

Algebraic varieties of surface group representations

Surface groups

Characterist classes

Hyperbolic geometry PSL(2, ℂ)

Singularities

Representations $\pi_1(\Sigma) \longrightarrow G$ correspond to flat connections on *G*-bundles over Σ . Let *X* be a *G*-space.

• Let $\tilde{\Sigma} \longrightarrow \Sigma$ be a universal covering space. The diagonal action of π on the *trivial* X-bundle

$$\tilde{\Sigma} \times X \longrightarrow \tilde{\Sigma}$$

is *proper* and *free*, where the action on X is defined by ρ . The quotient

$$X_
ho := (ilde{\Sigma} imes X) / \pi \longrightarrow \Sigma$$

- is a (G, X)-bundle over Σ associated to ρ .
- Such bundles correspond to *flat connections* on the associated principal *G*-bundle over Σ (take X = G with right-multiplication).
- Topological invariants of this bundle define invariants of the representation.

Characteristic classes

Algebraic varieties of surface group representations

Surface groups

Characteristic classes

Hyperbolic geometry PSL $(2, \mathbb{C})$ SU(n, 1)Singularitie • The first characteristic invariant corresponds to the *connected components* of *G*:

 $\operatorname{Hom}(\pi, G) \longrightarrow \operatorname{Hom}(\pi, \pi_0(G)) \cong H^1(\Sigma, \pi_0(G))$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Characteristic classes

Algebraic varieties of surface group representations

Surface groups

Characteristic classes

Hyperbolic geometry $PSL(2, \mathbb{C})$ SU(n, 1) • The first characteristic invariant corresponds to the *connected components* of *G*:

 $\operatorname{Hom}(\pi, G) \longrightarrow \operatorname{Hom}(\pi, \pi_0(G)) \cong H^1(\Sigma, \pi_0(G))$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

■ G = GL(n, ℝ), O(n): the first Stiefel-Whitney class detects orientability of the associated vector bundle.

Compact and complex semisimple groups

Algebraic varieties of surface group representations

Surface groups

Characteristic classes

Hyperbolic geometry PSL $(2, \mathbb{C})$ SU(n, 1)Singularitie Now suppose G is connected. The next invariant obstructs lifting ρ to the universal covering group $\tilde{G} \longrightarrow G$:

$$\operatorname{Hom}(\pi, G) \xrightarrow{\mathfrak{o}_2} H^2(\Sigma, \pi_1(G)) \cong \pi_1(G)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

Compact and complex semisimple groups

Algebraic varieties of surface group representations

Surface groups

Characteristic classes

Hyperbolic geometry $PSL(2, \mathbb{C})$ SU(n, 1)Singularitie Now suppose G is connected. The next invariant obstructs lifting ρ to the universal covering group $\tilde{G} \longrightarrow G$:

$$\operatorname{Hom}(\pi,G) \xrightarrow{\mathfrak{o}_2} H^2(\Sigma,\pi_1(G)) \cong \pi_1(G)$$

When G is a connected complex or compact semisimple Lie group, then o₂ defines an isomorphism

$$\pi_0(\operatorname{Hom}(\pi,G)) \xrightarrow{\cong} \pi_1(G).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(Narasimhan–Seshadri, Atiyah–Bott, Ramanathan, Goldman, Jun Li, Rapinchuk–Chernousov–Benyash-Krivets, ...)

Closed orientable surfaces

Algebraic varieties of surface group representations

Surface groups

Characteristic classes

Hyperbolic geometry PSL $(2, \mathbb{C})$ SU(n, 1) Decompose a surface of genus g

as a 4g-gon with its edges identified in 2g pairs and all vertices identified to a single point.

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー のなべ

Presentation of $\pi_1(\Sigma)$

Algebraic varieties of surface group representations

Characteristic classes

Hyperbolic geometry PSL $(2, \mathbb{C})$ SU(n, 1)Singularitie

$$\langle A_1, \dots, B_g \mid A_1 B_1 A_1^{-1} B_1^{-1} \dots A_g B_g A_g^{-1} B_g^{-1} = 1 \rangle$$

Presentation of $\pi_1(\Sigma)$

Algebraic varieties of surface group representations

Surface groups

Characteristic classes

Hyperbolic geometry $PSL(2, \mathbb{C})$ SU(n, 1)Singularitie

$$\langle A_1, \dots, B_g \mid A_1 B_1 A_1^{-1} B_1^{-1} \dots A_g B_g A_g^{-1} B_g^{-1} = 1 \rangle$$

• A representation ρ is determined by the 2g-tuple

$$(\alpha_1,\ldots,\beta_g)\in G^{2g}$$

.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

satisfying

$$[\alpha_1, \beta_1] \dots [\alpha_g, \beta_g] = 1$$

Take $\alpha_i = \rho(A_i)$ and $\beta_i = \rho(B_i)$.

Presentation of $\pi_1(\Sigma)$

Algebraic varieties of surface group representations

Surface groups

Characteristic classes

Hyperbolic geometry $PSL(2, \mathbb{C})$ SU(n, 1)

$$\langle A_1, \dots, B_g \mid A_1 B_1 A_1^{-1} B_1^{-1} \dots A_g B_g A_g^{-1} B_g^{-1} = 1 \rangle$$

$$A representation \rho is determined by the 2g-tuple$$

$$(\alpha_1,\ldots,\beta_g)\in G^{2g}$$

satisfying

$$[\alpha_1,\beta_1]\ldots[\alpha_g,\beta_g]=1.$$

Take $\alpha_i = \rho(A_i)$ and $\beta_i = \rho(B_i)$.

• To compute $\mathfrak{o}_2(\rho)$, lift the images of the generators

$$\widetilde{\alpha_1},\ldots,\widetilde{\beta_g}\in \widetilde{G}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Algebraic varieties of surface group representations

Evaluate the relation:

Surface groups

Characteristic classes

Hyperbolic geometry PSL $(2, \mathbb{C})$ SU(n, 1)Singularitie $[\widetilde{\alpha_1}, \widetilde{\beta_1}] \dots, [\widetilde{\alpha_g}, \widetilde{\beta_g}]$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Algebraic varieties of surface group representations

Surface groups

Characteristic classes

Hyperbolic geometry PSL $(2, \mathbb{C})$ SU(n, 1) Evaluate the relation:

$$[\widetilde{\alpha_1}, \widetilde{\beta_1}] \dots, [\widetilde{\alpha_g}, \widetilde{\beta_g}]$$

Lives in

$$\operatorname{Ker}(\tilde{G} \longrightarrow G) = \pi_1(G).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Algebraic varieties of surface group representations

Surface groups

Characteristic classes

Hyperbolic geometry $PSL(2, \mathbb{C})$ SU(n, 1) Evaluate the relation:

$$[\widetilde{\alpha_1}, \widetilde{\beta_1}] \dots, [\widetilde{\alpha_g}, \widetilde{\beta_g}]$$

Lives in

$$\operatorname{Ker}(ilde{G} \longrightarrow G) = \pi_1(G).$$

Independent of choice of lifts.

Algebraic varieties of surface group representations

Surface groups

Characteristic classes

Hyperbolic geometry $PSL(2, \mathbb{C})$ SU(n, 1)Singularitie Evaluate the relation:

$$[\widetilde{\alpha_1}, \widetilde{\beta_1}] \dots, [\widetilde{\alpha_g}, \widetilde{\beta_g}]$$

Lives in

$$\operatorname{Ker}(\tilde{G} \longrightarrow G) = \pi_1(G).$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Independent of choice of lifts.

• Equals $\mathfrak{o}_2(\rho) \in \pi_1(G)$.

Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperbolic geometry PSL $(2, \mathbb{C})$ SU(n, 1) When G = PSL(2, R) the group of orientation-preserving isometries of H², then o₂ is the *Euler class* of the associated flat oriented H²-bundle over Σ.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperbolic geometry $PSL(2, \mathbb{C})$ SU(n, 1)

Singularities

When G = PSL(2, ℝ) the group of orientation-preserving isometries of H², then o₂ is the *Euler class* of the associated flat oriented H²-bundle over Σ.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

■ $|e(\rho)| \le |\chi(\Sigma)|$ (Milnor 1958, Wood 1971)

Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperbolic geometry PSL $(2, \mathbb{C})$ SU(n, 1)

Singularities

- When G = PSL(2, ℝ) the group of orientation-preserving isometries of H², then o₂ is the *Euler class* of the associated flat oriented H²-bundle over Σ.
 - $|e(\rho)| \le |\chi(\Sigma)|$ (Milnor 1958, Wood 1971)
 - **Equality** $\iff \rho$ discrete embedding. (Goldman 1980)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperbolic geometry $PSL(2, \mathbb{C})$ SU(n, 1)

Singularities

When G = PSL(2, ℝ) the group of orientation-preserving isometries of H², then o₂ is the *Euler class* of the associated flat oriented H²-bundle over Σ.

■ $|e(\rho)| \le |\chi(\Sigma)|$ (Milnor 1958, Wood 1971)

- **Equality** $\iff \rho$ discrete embedding. (Goldman 1980)
 - $\blacksquare \ \rho$ corresponds to a hyperbolic structure on Σ

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperbolic geometry PSL $(2, \mathbb{C})$ SU(n, 1)

Singularities

When G = PSL(2, ℝ) the group of orientation-preserving isometries of H², then o₂ is the *Euler class* of the associated flat oriented H²-bundle over Σ.

■ $|e(\rho)| \le |\chi(\Sigma)|$ (Milnor 1958, Wood 1971)

Equality $\iff \rho$ discrete embedding. (Goldman 1980)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• ρ corresponds to a hyperbolic structure on Σ

$$\blacksquare H^2_{\rho} \cong T\Sigma.$$

Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperbolic geometry PSL $(2, \mathbb{C})$ SU(n, 1)

Singularities

When G = PSL(2, ℝ) the group of orientation-preserving isometries of H², then o₂ is the *Euler class* of the associated flat oriented H²-bundle over Σ.

■ $|e(\rho)| \le |\chi(\Sigma)|$ (Milnor 1958, Wood 1971)

- Equality $\iff \rho$ discrete embedding. (Goldman 1980)
 - ρ corresponds to a hyperbolic structure on Σ • $H^2_{\rho} \cong T\Sigma$.
- Uniformization: maximal component of Hom(π, PSL(2, ℝ))/PSL(2, ℝ) identifies with Teichmüller space ℑ_Σ of marked hyperbolic structures on Σ.

Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperbolic geometry PSL $(2, \mathbb{C})$ SU(n, 1)

Singularities

When $G = PSL(2, \mathbb{R})$ the group of orientation-preserving isometries of H², then o_2 is the *Euler class* of the associated flat oriented H²-bundle over Σ .

■ $|e(\rho)| \le |\chi(\Sigma)|$ (Milnor 1958, Wood 1971)

- Equality $\iff \rho$ discrete embedding. (Goldman 1980)
 - ρ corresponds to a hyperbolic structure on Σ • $H^2_{\rho} \cong T\Sigma$.
- Uniformization: maximal component of Hom(π, PSL(2, R))/PSL(2, R) identifies with Teichmüller space ℑ_Σ of marked hyperbolic structures on Σ.
- Component of Hom(π, PSL(2, ℝ))/PGL(2, ℝ) consisting exactly of discrete embeddings.
Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperbolic geometry PSL $(2, \mathbb{C})$ SU(n, 1) Generalizes Kneser's theorem on maps $\Sigma \xrightarrow{f} \Sigma'$ between closed oriented surfaces:

◆ロト ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ○ の Q @

Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperbolic geometry $PSL(2, \mathbb{C})$ SU(n, 1)

Singularities

Generalizes Kneser's theorem on maps $\Sigma \xrightarrow{f} \Sigma'$ between closed oriented surfaces:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 $| \deg(f)\chi(\Sigma')| \le |\chi(\Sigma)|$

Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperbolic geometry $PSL(2, \mathbb{C})$ SU(n, 1)

Singularities

Generalizes Kneser's theorem on maps $\Sigma \xrightarrow{f} \Sigma'$ between closed oriented surfaces:

- $|\deg(f)\chi(\Sigma')| \le |\chi(\Sigma)|$
- Equality \iff *f* homotopic to a covering-space.

Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperbolic geometry $PSL(2, \mathbb{C})$ SU(n, 1)Singularities Generalizes Kneser's theorem on maps $\Sigma \xrightarrow{f} \Sigma'$ between closed oriented surfaces:

- $\bullet |\deg(f)\chi(\Sigma')| \le |\chi(\Sigma)|$
- Equality $\iff f$ homotopic to a covering-space.
- Components of Hom(π, PSL(2, ℝ)) are the 4g 3 nonempty preimages of

 $\operatorname{Hom}(\pi, \operatorname{PSL}(2, \mathbb{R})) \xrightarrow{e} \mathbb{Z}.$

(G, Hitchin)

Branched hyperbolic structures

Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperbolic geometry $PSL(2, \mathbb{C})$ SU(n, 1)Singularities Representations in other components arise from hyperbolic structures with isolated conical singularities of cone angles $2\pi k$, where $k \ge 1$.

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー のなべ

Branched hyperbolic structures

Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperbolic geometry $PSL(2, \mathbb{C})$ SU(n, 1)Singularities Representations in other components arise from hyperbolic structures with isolated conical singularities of cone angles $2\pi k$, where $k \ge 1$.

The holonomy representation of a hyperbolic surface with cone angles $2\pi k_i$ extends to $\pi_1(\Sigma)$ with Euler number

$$e(\rho)=2-2g+\sum(k_i-1).$$

Branched hyperbolic structures

Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperbolic geometry $PSL(2, \mathbb{C})$ SU(n, 1)Singularities Representations in other components arise from hyperbolic structures with isolated conical singularities of cone angles $2\pi k$, where $k \ge 1$.

The holonomy representation of a hyperbolic surface with cone angles 2πk_i extends to π₁(Σ) with Euler number

$$e(
ho)=2-2g+\sum(k_i-1).$$

For example, such structures arise from identifying polygons in H² If the sum of the interior angles is $2\pi k$, where $k \in \mathbb{Z}$, then quotient space is a hyperbolic surface with one singularity (the image of the vertex) with cone angle $2\pi k$.

A hyperbolic surface of genus two

Algebraic varieties of surface group representations

Surface group Characteristic classes

Hyperbolic geometry $PSL(2, \mathbb{C})$ SU(n, 1)Singularitie

・ロト ・聞ト ・ヨト ・ヨト

э

A hyperbolic surface of genus two

Algebraic varieties of surface group representations

Surface group Characteristic classes

Hyperbolic geometry $PSL(2, \mathbb{C})$ SU(n, 1)Singularities

Identifying a regular octagon with angles π/4 yields a nonsingular hyperbolic surface with e(ρ) = χ(Σ) = −2.

A hyperbolic surface of genus two

Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperbolic geometry $PSL(2, \mathbb{C})$ SU(n, 1)Singularitie:

- Identifying a regular octagon with angles π/4 yields a nonsingular hyperbolic surface with e(ρ) = χ(Σ) = −2.
- But when the angles are π/2, the surface has one singularity with cone angle 4π and

$$e(
ho) = 1 + \chi(\Sigma) = -1.$$

Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperbolic geometry $PSL(2, \mathbb{C})$ SU(n, 1)Singularities ■ Each component of Hom(*π*, PSL(2, ℝ)) contains holonomy of branched hyperbolic structures.

Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperbolic geometry $PSL(2, \mathbb{C})$ SU(n, 1)Singularities ■ Each component of Hom(π , PSL(2, \mathbb{R})) contains holonomy of branched hyperbolic structures.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• $e^{-1}(2-2g+k)$ deformation retracts onto Sym^k(Σ) for $0 \le k < 2g - 2$. (Hitchin 1987)

Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperbolic geometry $PSL(2, \mathbb{C})$ SU(n, 1)Singularities

- Each component of Hom(*π*, PSL(2, ℝ)) contains holonomy of branched hyperbolic structures.
- $e^{-1}(2-2g+k)$ deformation retracts onto Sym^k(Σ) for $0 \le k < 2g 2$. (Hitchin 1987)
- If $\Sigma \xrightarrow{f} \Sigma_1$ is a degree one map not homotopic to a homeomorphism, and Σ_1 is a hyperbolic structure with holonomy ϕ_1 , then the composition

$$\pi_1(\Sigma) \xrightarrow{f_*} \pi_1(\Sigma_1) \xrightarrow{\phi_1} \mathsf{PSL}(2,\mathbb{R})$$

is *not* the holonomy of a branched hyperbolic structure.

Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperbolic geometry $PSL(2, \mathbb{C})$ SU(n, 1)Singularities

- Each component of Hom(π , PSL(2, \mathbb{R})) contains holonomy of branched hyperbolic structures.
- $e^{-1}(2-2g+k)$ deformation retracts onto Sym^k(Σ) for $0 \le k < 2g 2$. (Hitchin 1987)
- If $\Sigma \xrightarrow{f} \Sigma_1$ is a degree one map not homotopic to a homeomorphism, and Σ_1 is a hyperbolic structure with holonomy ϕ_1 , then the composition

$$\pi_1(\Sigma) \xrightarrow{f_*} \pi_1(\Sigma_1) \xrightarrow{\phi_1} \mathsf{PSL}(2,\mathbb{R})$$

is not the holonomy of a branched hyperbolic structure.

• *Conjecture:* every representation with dense image occurs as the holonomy of a branched hyperbolic structure.

Quasi-Fuchsian groups

Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperboli geometry

 $\mathsf{PSL}(2,\mathbb{C})$

SU(n, 1)

Singularities

The group of orientation-preserving isometries of $H^3_{\mathbb{R}}$ equals $PSL(2,\mathbb{C})$. Close to Fuchsian representations in $PSL(2,\mathbb{R})$ are *quasi-Fuchsian representations*.

- Quasi-fuchsian representations are discrete embeddings.
- $Q\mathcal{F} \approx \mathfrak{T}_{\Sigma} \times \overline{\mathfrak{T}_{\Sigma}}$ (Bers 1960)
- The closure of $Q\mathcal{F}$ consists of all discrete embeddings $\pi \hookrightarrow \mathsf{PSL}(2,\mathbb{C})$ (Thurston-Bonahon 1984)
- The discrete embeddings are *not open* and do not comprise a component of Hom(π, G)/G.

Complex hyperbolic geometry

Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperbolic geometry

SU(n, 1)

Singularities

■ Complex hyperbolic space Hⁿ_C is the unit ball in Cⁿ with the Bergman metric invariant under the projective transformations in CPⁿ.

Complex hyperbolic geometry

Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperbolic geometry

SU(n, 1)

Singularities

■ Complex hyperbolic space Hⁿ_C is the unit ball in Cⁿ with the Bergman metric invariant under the projective transformations in CPⁿ.

• C-linear subspaces meet $H^n_{\mathbb{C}}$ in totally geodesic subspaces.

Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperboli geometry

SU(*n*, 1)

Singularities

Start with a discrete embedding π → U(1,1) acting on a complex geodesic H¹_C ⊂ Hⁿ_C.

Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperboli geometry

SU(n, 1)

Singularities

Start with a discrete embedding $\pi \xrightarrow{\rho_0} U(1,1)$ acting on a complex geodesic $H^1_{\mathbb{C}} \subset H^n_{\mathbb{C}}$.

■ Every nearby deformation π → U(n, 1) stabilizes a complex geodesic, and is conjugate to a discrete embedding

$$\pi \xrightarrow{
ho} \mathsf{U}(1,1) imes \mathsf{U}(n-1) \subset \mathsf{U}(n,1).$$

Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperbolic geometry

SU(n, 1)

Singularities

- Start with a discrete embedding $\pi \xrightarrow{\rho_0} U(1,1)$ acting on a complex geodesic $H^1_{\mathbb{C}} \subset H^n_{\mathbb{C}}$.
- Every nearby deformation π → U(n, 1) stabilizes a complex geodesic, and is conjugate to a discrete embedding

$$\pi \xrightarrow{
ho} \mathsf{U}(1,1) imes \mathsf{U}(n-1) \subset \mathsf{U}(n,1).$$

▲日▼▲□▼▲□▼▲□▼ □ ののの

• The deformation space is $\mathfrak{T}_{\Sigma} \times \operatorname{Hom}(\pi, U(n-1))/U(n-1).$

Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperbolio geometry

SU(*n*, 1)

Singularities

- Start with a discrete embedding $\pi \xrightarrow{\rho_0} U(1,1)$ acting on a complex geodesic $H^1_{\mathbb{C}} \subset H^n_{\mathbb{C}}$.
- Every nearby deformation π → U(n, 1) stabilizes a complex geodesic, and is conjugate to a discrete embedding

$$\pi \xrightarrow{
ho} \mathsf{U}(1,1) imes \mathsf{U}(n-1) \subset \mathsf{U}(n,1).$$

- The deformation space is $\mathfrak{T}_{\Sigma} \times \operatorname{Hom}(\pi, U(n-1))/U(n-1).$
- ρ characterized by maximality of Z-valued characteristic class generalizing Euler class. (Toledo 1986)

Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperbolic geometry

SU(n, 1)

Singularities

- Start with a discrete embedding $\pi \xrightarrow{\rho_0} U(1,1)$ acting on a complex geodesic $H^1_{\mathbb{C}} \subset H^n_{\mathbb{C}}$.
- Every nearby deformation π → U(n, 1) stabilizes a complex geodesic, and is conjugate to a discrete embedding

$$\pi \xrightarrow{
ho} \mathsf{U}(1,1) imes \mathsf{U}(n-1) \subset \mathsf{U}(n,1).$$

- The deformation space is $\mathfrak{T}_{\Sigma} \times \operatorname{Hom}(\pi, U(n-1))/U(n-1).$
- ρ characterized by maximality of Z-valued characteristic class generalizing Euler class. (Toledo 1986)
- Generalized to maximal representations by Burger-lozzi-Wienhard and Bradlow-Garcia-Prada-Gothen-Mundet.

Singularities in Hom (π, G)

Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperbolic geometry

SU(n, 1)

Singularities

Singular points in Hom (π, G) !

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Singularities in Hom (π, G)

Algebraic varieties of surface group representations

- Surface groups Characteristic classes
- Hyperbolic geometry PSL(2, C)

Singularities

- Singular points in Hom (π, G) !
- In general the analytic germ of a reductive representation of the fundamental group of a compact Kähler manifold is defined by a system of homogeneous quadratic equations. (Goldman–Millson 1988, with help from Deligne)

Singularities in Hom (π, G)

Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperbolic geometry PSL(2, ℂ)

Singularities

- Singular points in Hom (π, G) !
- In general the analytic germ of a reductive representation of the fundamental group of a compact Kähler manifold is defined by a system of homogeneous quadratic equations. (Goldman–Millson 1988, with help from Deligne)
- Deformation theory: twisted version of the *formality* of the rational homotopy type of compact Kähler manifolds (Deligne-Griffiths-Morgan-Sullivan 1975).

The deformation groupoid

Algebraic varieties of surface group representations

Surface group Characteristic classes

Hyperboli geometry PSL(2, C)

SU(n, 1)

Singularities

 Objects in the deformation theory correspond to *flat* connections, g_{Adρ}-valued 1-forms ω on Σ satisying the Maurer-Cartan equations:

$$D\omega + \frac{1}{2}[\omega, \omega] = 0.$$

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー のなべ

The deformation groupoid

۷

Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperbolic geometry PSL(2, \mathbb{C})

Singularities

 Objects in the deformation theory correspond to *flat* connections, g_{Adρ}-valued 1-forms ω on Σ satisying the Maurer-Cartan equations:

$$D\omega + \frac{1}{2}[\omega, \omega] = 0.$$

 Morphisms in the deformation theory correspond to infinitesimal gauge transformations, sections η of g_{Adρ}:

$$\omega \stackrel{\eta}{\longmapsto} e^{\operatorname{\mathsf{ad}}(\eta)}(\omega) + Digg(rac{e^{\operatorname{\mathsf{ad}}(\eta)}-1}{\operatorname{\mathsf{ad}}(\eta)} igg).$$

The deformation groupoid

Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperbolic geometry PSL $(2, \mathbb{C})$ SU(n, 1)

Singularities

 Objects in the deformation theory correspond to *flat* connections, g_{Adρ}-valued 1-forms ω on Σ satisying the Maurer-Cartan equations:

$$D\omega + \frac{1}{2}[\omega, \omega] = 0.$$

 Morphisms in the deformation theory correspond to infinitesimal gauge transformations, sections η of g_{Adρ}:

$$\omega \stackrel{\eta}{\longmapsto} e^{\operatorname{\mathsf{ad}}(\eta)}(\omega) + D\bigg(rac{e^{\operatorname{\mathsf{ad}}(\eta)}-1}{\operatorname{\mathsf{ad}}(\eta)}\bigg).$$

■ This groupoid is *equivalent* to the groupoid whose objects form Hom(π, G) and the morphisms Inn(G).

The quadratic cone

Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperboli geometry PSL(2, C)

SU(n, 1)

Singularities

• The Zariski tangent space to the flat connections equals $Z^1(\Sigma, \mathfrak{g}_{Ad\rho})$:

$$D\omega = 0,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

the *linearization* of the Maurer-Cartan equation.

The quadratic cone

Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperbolic geometry PSL $(2, \mathbb{C})$ SU(n, 1)

Singularities

 The Zariski tangent space to the flat connections equals Z¹(Σ, g_{Adρ}):

$$D\omega = 0,$$

the *linearization* of the Maurer-Cartan equation.

 $\blacksquare \ \omega$ is tangent to an analytic path \Longleftrightarrow

$$[\omega, \omega] = 0 \in H^2(\Sigma, \mathfrak{g}_{\operatorname{Ad} \rho}).$$

The quadratic cone

Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperbolic geometry PSL $(2, \mathbb{C})$ SU(n, 1)

Singularities

The Zariski tangent space to the flat connections equals Z¹(Σ, g_{Adρ}):

$$D\omega = 0,$$

the *linearization* of the Maurer-Cartan equation.

 $\blacksquare \ \omega$ is tangent to an analytic path \Longleftrightarrow

(

$$[\omega, \omega] = 0 \in H^2(\Sigma, \mathfrak{g}_{\operatorname{Ad} \rho}).$$

 An explicit exponential map from the quadratic cone in Z¹(Σ, g_{Adρ}) can be constructed from Hodge theory:

$$\omega\longmapsto ig(I+ar\partial_D^*\mathsf{ad}(\omega^{(0,1)})ig)^{-1}(\omega).$$

Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperbolic geometry PSL(2, ℂ)

SU(n, 1)

Singularities

Consider a discrete embedding $\pi \xrightarrow{\rho_0} SU(1,1)$ and its neighborhood in Hom $(\pi, U(n,1))$.

Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperbolic geometry PSL(2, C)

SU(n, 1)

Singularities

Consider a discrete embedding $\pi \xrightarrow{\rho_0} SU(1,1)$ and its neighborhood in Hom $(\pi, U(n,1))$.

• The full Zariski tangent space is $Z^1(\Sigma, \mathfrak{su}(n, 1)_{Ad\rho_0})$.

Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperbolic geometry PSL $(2, \mathbb{C})$ SU(n, 1)

Singularities

Consider a discrete embedding $\pi \xrightarrow{\rho_0} SU(1,1)$ and its neighborhood in Hom $(\pi, U(n,1))$.

The full Zariski tangent space is Z¹(Σ, su(n, 1)_{Adρ0}).
 Ad(U(1, 1))-invariant decomposition of Lie algebras

$$\mathfrak{u}(n,1)_{\mathsf{Ad}(\mathsf{U}(1,1))} = \left(\mathfrak{u}(1,1)_{\mathsf{Ad}} \oplus \mathfrak{u}(n-1)\right) \oplus \left(\mathbb{C}^{1,1} \otimes \mathbb{C}^{n-1}\right)$$

 \implies Zariski tangent space decomposes:

$$Z^1ig(\Sigma,\mathfrak{u}(1,1)_{\mathsf{Ad}
ho_0}\oplus\mathfrak{u}(n-1)ig)\ \oplus\ Z^1ig(\Sigma,\mathbb{C}^{1,1}\otimes\mathbb{C}^{n-1}_{
ho_0}ig).$$

Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperbolic geometry PSL $(2, \mathbb{C})$ SU(n, 1)

Singularities

Consider a discrete embedding $\pi \xrightarrow{\rho_0} SU(1,1)$ and its neighborhood in Hom $(\pi, U(n,1))$.

The full Zariski tangent space is Z¹(Σ, su(n, 1)_{Adρ0}).
 Ad(U(1, 1))-invariant decomposition of Lie algebras

$$\mathfrak{u}(n,1)_{\mathsf{Ad}(\mathsf{U}(1,1))} = \left(\mathfrak{u}(1,1)_{\mathsf{Ad}} \oplus \mathfrak{u}(n-1)\right) \oplus \left(\mathbb{C}^{1,1} \otimes \mathbb{C}^{n-1}\right)$$

 \implies Zariski tangent space decomposes:

$$Z^1ig(\Sigma,\mathfrak{u}(1,1)_{\operatorname{\mathsf{Ad}}
ho_0}\oplus\mathfrak{u}(n-1)ig)\ \oplus\ Z^1(\Sigma,\mathbb{C}^{1,1}\otimes\mathbb{C}^{n-1}_{
ho_0}).$$

• The quadratic form reduces to the cup-product $H^1(\Sigma, \mathbb{C}^{1,1}_{\rho_0}) \times H^1(\Sigma, \mathbb{C}^{1,1}_{\rho_0}) \longrightarrow H^2(\Sigma, \mathbb{R}) \cong \mathbb{R},$ coefficients $\mathbb{C}^{1,1}_{\rho_0}$ paired by $(z_1, z_2) \longmapsto \operatorname{Im}\langle z_1, z_2 \rangle.$

Second order rigidity

Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperbolic geometry

SU(n, 1)

Singularities

Zariski normal space $H^1(\Sigma, \mathbb{C}^{1,1}_{\rho_0}) \cong \mathbb{C}^{4g-4}$.
Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperbolic geometry $\mathsf{PSL}(2,\mathbb{C})$

SU(n, 1)

Singularities

- Zariski normal space $H^1(\Sigma, \mathbb{C}^{1,1}_{\rho_0}) \cong \mathbb{C}^{4g-4}$.
- Signature of defining quadratic form equals 2e(ρ₀). (Werner Meyer 1971)

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 • • • • • •

Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperbolic geometry PSL(2, ℂ)

SU(n, 1)

Singularities

- Zariski normal space $H^1(\Sigma, \mathbb{C}^{1,1}_{\rho_0}) \cong \mathbb{C}^{4g-4}$.
- Signature of defining quadratic form equals 2e(ρ₀). (Werner Meyer 1971)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Signature \leq Dimension \implies Milnor-Wood.

Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperbolic geometry PSL(2, C)

SU(n, 1)

Singularities

• Zariski normal space $H^1(\Sigma, \mathbb{C}^{1,1}_{\rho_0}) \cong \mathbb{C}^{4g-4}$.

 Signature of defining quadratic form equals 2e(ρ₀). (Werner Meyer 1971)

- Signature \leq Dimension \implies Milnor-Wood.
- Equality \iff the quadratic form is definite.

Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperboli geometry

 $\mathsf{PSL}(2,\mathbb{C})$

SU(n, 1)

Singularities

• Zariski normal space $H^1(\Sigma, \mathbb{C}^{1,1}_{\rho_0}) \cong \mathbb{C}^{4g-4}$.

 Signature of defining quadratic form equals 2e(ρ₀). (Werner Meyer 1971)

- Signature \leq Dimension \implies Milnor-Wood.
- Equality \iff the quadratic form is definite.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Local rigidity.

Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperbolic geometry PSI (2 C)

SU(*n*, 1)

Singularities

- Zariski normal space $H^1(\Sigma, \mathbb{C}^{1,1}_{\rho_0}) \cong \mathbb{C}^{4g-4}$.
- Signature of defining quadratic form equals 2e(ρ₀). (Werner Meyer 1971)
 - Signature \leq Dimension \implies Milnor-Wood.
 - Equality \iff the quadratic form is definite.
 - Local rigidity.
- ∀ even e with |e| ≤ 2g − 2, corresponding component of Hom(π, SU(2, 1)) contains discrete embeddings. (Goldman–Kapovich–Leeb 2001)

▲日▼▲□▼▲□▼▲□▼ □ ののの

Algebraic varieties of surface group representations

Surface group Characteristic classes

Hyperbolic geometry PSL(2, C)

SU(n, 1)

Singularities

• When ρ_0 is a discrete embedding, the quadratic form arises from the *Petersson* pairing on automorphic forms.

Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperbolic geometry PSL(2, C)

SU(n, 1)

Singularities

When ρ₀ is a discrete embedding, the quadratic form arises from the *Petersson* pairing on automorphic forms.
 Riemann surface X := H²/ρ₀(π) ≈ Σ.

Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperbolic geometry PSL $(2, \mathbb{C})$ SU(n, 1)

Singularities

- When ρ_0 is a discrete embedding, the quadratic form arises from the *Petersson* pairing on automorphic forms.
- Riemann surface $X := \mathrm{H}^2/\rho_0(\pi) \approx \Sigma$.
- Hodge decomposition:

$$H^1(X, \mathbb{C}^{1,1}_{\rho_0}) \ = \ H^{1,0}(X, \mathbb{C}^{1,1}_{\rho_0}) \ \oplus \ H^{0,1}(X, \mathbb{C}^{1,1}_{\rho_0}).$$

Algebraic varieties of surface group representations

Surface groups Characteristic classes

Hyperbolic geometry PSL $(2, \mathbb{C})$ SU(n, 1)

Singularities

- When ρ_0 is a discrete embedding, the quadratic form arises from the *Petersson* pairing on automorphic forms.
- Riemann surface $X := H^2/\rho_0(\pi) \approx \Sigma$.
- Hodge decomposition:

$$H^1(X, \mathbb{C}^{1,1}_{\rho_0}) \ = \ H^{1,0}(X, \mathbb{C}^{1,1}_{\rho_0}) \ \oplus \ H^{0,1}(X, \mathbb{C}^{1,1}_{\rho_0}).$$

Eichler-Shimura isomorphisms

$$egin{aligned} & H^{0,1}(X,\mathbb{C}^{1,1}_{
ho_0})\cong H^0(X,K^{3/2})\ & H^{1,0}(X,\mathbb{C}^{1,1}_{
ho_0})\cong H^0(X,K^{3/2}) \end{aligned}$$

carries cup-product/symplectic coefficient pairing to L^2 Hermitian product on weight 3 automorphic forms. Algebraic varieties of surface group representations

Surface group Characteristic classes

Hyperbolio geometry PSL(2, ℂ)

SU(n, 1)

Singularities

Happy Birthday, Professor Hirzebruch!

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 • • • • • •

Algebraic varieties of surface group representations

Surface group Characteristic classes

Hyperbolic geometry PSL(2, \mathbb{C})

SU(n, 1)

Singularities

◆□> ◆□> ◆豆> ◆豆>

Ξ.

Algebraic varieties of surface group representations

Surface group Characteristic classes

Hyperbolic geometry PSL(2, \mathbb{C})

SU(n, 1)

Singularities

◆□ > ◆□ > ◆豆 > ◆豆 >

Ξ.