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Geometry through symmetry

In his 1872 Erlangen Program, Felix Klein proposed that a geometry is the
study of properties of an abstract space X which are invariant under a
transitive group G of transformations of X .
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Topology: Smooth manifold Σ with coordinate patches Uα;
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Putting geometric structure on a topological space

Topology: Smooth manifold Σ with coordinate patches Uα;
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Charts — diffeomorphisms

Uα
ψα

−−→ ψα(Uα) ⊂ X

On components of Uα ∩ Uβ , ∃g ∈ G such that

g ◦ ψα = ψβ .

Local (G ,X )-geometry independent of patch.
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Putting geometric structure on a topological space

Topology: Smooth manifold Σ with coordinate patches Uα;
Charts — diffeomorphisms

Uα
ψα

−−→ ψα(Uα) ⊂ X

On components of Uα ∩ Uβ , ∃g ∈ G such that

g ◦ ψα = ψβ .

Local (G ,X )-geometry independent of patch.

(Ehresmann 1936): Geometric manifold M modeled on X .
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Geometrization in 2 and 3 dimensions
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Dimension 2: every surface has exactly one of:
Spherical geometry (if χ(Σ) > 0);
Euclidean geometry (if χ(Σ) = 0);
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Geometrization in 2 and 3 dimensions

Dimension 2: every surface has exactly one of:
Spherical geometry (if χ(Σ) > 0);
Euclidean geometry (if χ(Σ) = 0);
Hyperbolic geometry (if χ(Σ) < 0).
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Geometrization in 2 and 3 dimensions

Dimension 2: every surface has exactly one of:
Spherical geometry (if χ(Σ) > 0);
Euclidean geometry (if χ(Σ) = 0);
Hyperbolic geometry (if χ(Σ) < 0).

Equivalently, Riemannian metrics of constant curvature +1, 0, −1.
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Euclidean geometry (if χ(Σ) = 0);
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Equivalently, Riemannian metrics of constant curvature +1, 0, −1.
Locally homogeneous Riemannian geometries, modeled on X = G/H,
H compact.
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Geometrization in 2 and 3 dimensions

Dimension 2: every surface has exactly one of:
Spherical geometry (if χ(Σ) > 0);
Euclidean geometry (if χ(Σ) = 0);
Hyperbolic geometry (if χ(Σ) < 0).

Equivalently, Riemannian metrics of constant curvature +1, 0, −1.
Locally homogeneous Riemannian geometries, modeled on X = G/H,
H compact.
(Thurston 1976): 3-manifolds canonically decompose into locally

homogeneous Riemannian pieces (8 types). (proved by Perelman)
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Classification of geometric structures
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Classification of geometric structures

Basic question: Given a topology Σ and a geometry X = G/H,
determine all possible ways of providing Σ with the local geometry of
(X ,G ).
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Classification of geometric structures

Basic question: Given a topology Σ and a geometry X = G/H,
determine all possible ways of providing Σ with the local geometry of
(X ,G ).

Example: The 2-sphere admits no Euclidean structure:
6 ∃ metrically accurate world atlas.
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Classification of geometric structures

Basic question: Given a topology Σ and a geometry X = G/H,
determine all possible ways of providing Σ with the local geometry of
(X ,G ).

Example: The 2-sphere admits no Euclidean structure:
6 ∃ metrically accurate world atlas.
Example: The 2-torus admits a moduli space of Euclidean structures.
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Quotients of domains
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Quotients of domains

Suppose that Ω ⊂ X is an open subset invariant under a subgroup
Γ ⊂ G such that:
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Quotients of domains

Suppose that Ω ⊂ X is an open subset invariant under a subgroup
Γ ⊂ G such that:

Γ is discrete;
Γ acts properly and freely on Ω

Then M = Ω/Γ is a (G ,X )-manifold covered by Ω.
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Suppose that Ω ⊂ X is an open subset invariant under a subgroup
Γ ⊂ G such that:

Γ is discrete;
Γ acts properly and freely on Ω

Then M = Ω/Γ is a (G ,X )-manifold covered by Ω.

Convex RP
n-structures: Ω ⊂ RP

n convex domain.
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n convex domain.
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Quotients of domains

Suppose that Ω ⊂ X is an open subset invariant under a subgroup
Γ ⊂ G such that:

Γ is discrete;
Γ acts properly and freely on Ω

Then M = Ω/Γ is a (G ,X )-manifold covered by Ω.

Convex RP
n-structures: Ω ⊂ RP

n convex domain.

Projective geometry inside a quadric Ω is hyperbolic geometry.

Hyperbolic distance is defined by cross-ratios: d(x , y) = log[A, x , y ,B].
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Quotients of domains

Suppose that Ω ⊂ X is an open subset invariant under a subgroup
Γ ⊂ G such that:

Γ is discrete;
Γ acts properly and freely on Ω

Then M = Ω/Γ is a (G ,X )-manifold covered by Ω.

Convex RP
n-structures: Ω ⊂ RP

n convex domain.

Projective geometry inside a quadric Ω is hyperbolic geometry.

Hyperbolic distance is defined by cross-ratios: d(x , y) = log[A, x , y ,B].
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Projective geometry contains hyperbolic geometry.
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Quotients of domains

Suppose that Ω ⊂ X is an open subset invariant under a subgroup
Γ ⊂ G such that:

Γ is discrete;
Γ acts properly and freely on Ω

Then M = Ω/Γ is a (G ,X )-manifold covered by Ω.

Convex RP
n-structures: Ω ⊂ RP

n convex domain.

Projective geometry inside a quadric Ω is hyperbolic geometry.

Hyperbolic distance is defined by cross-ratios: d(x , y) = log[A, x , y ,B].
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Projective geometry contains hyperbolic geometry.

Hyperbolic structures are convex RP
n-structures.

() Locally Homogeneous Geometric Manifolds
International Congress of Mathematicians Hyderabad,

/ 29



Another example: Projective tiling of RP
2 by equilateral

60o-triangles

This tesselation of the open triangular region is equivalent to the tiling of
the Euclidean plane by equilateral triangles.
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Example: A projective deformation of a tiling of the

hyperbolic plane by (60o,60o,45o)-triangles.

Both domains are tiled by triangles, invariant under a Coxeter group
Γ(3, 3, 4). First domain bounded by a conic (hyperbolic geometry), second
domain bounded by C 1+α-convex curve where 0 < α < 1.
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Into the mainstream media
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Example: A hyperbolic structure on a surface of genus two
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Example: A hyperbolic structure on a surface of genus two

Identify sides of an octagon to form a closed genus two surface.
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Example: A hyperbolic structure on a surface of genus two

Identify sides of an octagon to form a closed genus two surface.
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Realize these identifications isometrically for a regular 45o-octagon.
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Modeling structures on representations of π1
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Modeling structures on representations of π1

Marked (G ,X )-structure on Σ: diffeomorphism Σ
f
−→ M where M is a

(G ,X )-manifold.
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Modeling structures on representations of π1

Marked (G ,X )-structure on Σ: diffeomorphism Σ
f
−→ M where M is a

(G ,X )-manifold.

Define deformation space

D(G ,X )(Σ) :=

{

Marked (G ,X )-structures on Σ

}

/Isotopy
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Modeling structures on representations of π1

Marked (G ,X )-structure on Σ: diffeomorphism Σ
f
−→ M where M is a

(G ,X )-manifold.

Define deformation space

D(G ,X )(Σ) :=

{

Marked (G ,X )-structures on Σ

}

/Isotopy

Mapping class group

Mod(Σ) := π0

(

Diff(Σ)
)

acts on D(G ,X )(Σ).
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Representation varieties
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Representation varieties

Let π = 〈X1, . . . ,Xn〉 be finitely generated and G ⊂ GL(N,R) a linear
algebraic group.
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Representation varieties

Let π = 〈X1, . . . ,Xn〉 be finitely generated and G ⊂ GL(N,R) a linear
algebraic group.

The set Hom(π,G ) of homomorphisms

π −→ G

enjoys the natural structure of an affine algebraic variety
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Representation varieties

Let π = 〈X1, . . . ,Xn〉 be finitely generated and G ⊂ GL(N,R) a linear
algebraic group.

The set Hom(π,G ) of homomorphisms

π −→ G

enjoys the natural structure of an affine algebraic variety

Invariant under Aut(π) × Aut(G).
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Representation varieties

Let π = 〈X1, . . . ,Xn〉 be finitely generated and G ⊂ GL(N,R) a linear
algebraic group.

The set Hom(π,G ) of homomorphisms

π −→ G

enjoys the natural structure of an affine algebraic variety

Invariant under Aut(π) × Aut(G).
Action of Out(π) := Aut(π)/Inn(π) on

Hom(π,G)/G := Hom(π,G)/({1} × Inn(G))

() Locally Homogeneous Geometric Manifolds
International Congress of Mathematicians Hyderabad,

/ 29



Holonomy
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Holonomy

A marked structure determines a developing map Σ̃ −→ X and a
holonomy representation π −→ G .
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Holonomy

A marked structure determines a developing map Σ̃ −→ X and a
holonomy representation π −→ G .

Globalize the coordinate charts and coordinate changes respectively.
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holonomy representation π −→ G .
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−−→ Hom(π,G )/G

Equivariant respecting

Mod(Σ) −→ Out
(
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Holonomy

A marked structure determines a developing map Σ̃ −→ X and a
holonomy representation π −→ G .

Globalize the coordinate charts and coordinate changes respectively.

Holonomy defines a mapping

D(G ,X )(Σ)
hol
−−→ Hom(π,G )/G

Equivariant respecting

Mod(Σ) −→ Out
(

π1(Σ)
)

(Thurston): The mapping hol is a local homeomorphism.
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Holonomy

A marked structure determines a developing map Σ̃ −→ X and a
holonomy representation π −→ G .

Globalize the coordinate charts and coordinate changes respectively.

Holonomy defines a mapping

D(G ,X )(Σ)
hol
−−→ Hom(π,G )/G

Equivariant respecting

Mod(Σ) −→ Out
(

π1(Σ)
)

(Thurston): The mapping hol is a local homeomorphism.

For quotient structures, hol is an embedding.
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Symplectic geometry
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Symplectic geometry

When AdG preserves inner product on g, then Hom(π,G )/G inherits
Out(π)-invariant symplectic structure, generalizing:
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For many types of representations corresponding to quotient
structures, action is proper, generalizing classical case of T(Σ).
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Symplectic geometry

When AdG preserves inner product on g, then Hom(π,G )/G inherits
Out(π)-invariant symplectic structure, generalizing:

Cup-product on H1(Σ,R) (when G = R)
Kähler form on Jacobi variety (when G = U(1))
Weil-Petersson structure on T(Σ) (when G = PSL(2,R))

Via hol, passes to symplectic structure on D(G ,X )(Σ).

Symplectic form defines a natural invariant smooth measure on
Hom(π,G )/G .

G is compact =⇒ action is ergodic. (G, Pickrell-Xia)

For many types of representations corresponding to quotient
structures, action is proper, generalizing classical case of T(Σ).

Convex compact Kleinian, maximal representations, Hitchin
representations ...
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Symplectic geometry

When AdG preserves inner product on g, then Hom(π,G )/G inherits
Out(π)-invariant symplectic structure, generalizing:

Cup-product on H1(Σ,R) (when G = R)
Kähler form on Jacobi variety (when G = U(1))
Weil-Petersson structure on T(Σ) (when G = PSL(2,R))

Via hol, passes to symplectic structure on D(G ,X )(Σ).

Symplectic form defines a natural invariant smooth measure on
Hom(π,G )/G .

G is compact =⇒ action is ergodic. (G, Pickrell-Xia)

For many types of representations corresponding to quotient
structures, action is proper, generalizing classical case of T(Σ).

Convex compact Kleinian, maximal representations, Hitchin
representations ...
All subsumed in Anosov representations (Labourie).
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Examples: Hyperbolic structures
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Examples: Hyperbolic structures

Hyperbolic geometry: When X = H2 and G = Isom(H2), the
deformation space D(G ,X )(Σ) identifies with Fricke space F(Σ).
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Hyperbolic geometry: When X = H2 and G = Isom(H2), the
deformation space D(G ,X )(Σ) identifies with Fricke space F(Σ).

Identifies with Teichmüller space T(Σ) (marked conformal structures)
via Klein-Koebe-Poincaré Uniformization Theorem.
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Examples: Hyperbolic structures

Hyperbolic geometry: When X = H2 and G = Isom(H2), the
deformation space D(G ,X )(Σ) identifies with Fricke space F(Σ).

Identifies with Teichmüller space T(Σ) (marked conformal structures)
via Klein-Koebe-Poincaré Uniformization Theorem.

hol embeds F(Σ) as a connected component of Hom(π,G )/G .

F(Σ) ≈ R
6g−6 and Mod(Σ) acts properly discretely.
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Maximal representations
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Maximal representations

Representation
π

ρ

−→ PSL(2,R)

define a flat oriented H2-bundle Eρ over Σ.
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Maximal representations

Representation
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ρ

−→ PSL(2,R)

define a flat oriented H2-bundle Eρ over Σ.

Flat oriented H2-bundles determined by Euler class in H2(Σ,Z) ∼= Z.
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define a flat oriented H2-bundle Eρ over Σ.
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ρ

−→ PSL(2,R)

define a flat oriented H2-bundle Eρ over Σ.

Flat oriented H2-bundles determined by Euler class in H2(Σ,Z) ∼= Z.
(Milnor 1958, Wood 1971) |Euler(ρ)| ≤ −Euler(TΣ) = |χ(Σ)|
Hyperbolic structure determines a transverse section of Eρ, which gives
an isomorphism Eρ ∼= TΣ.
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define a flat oriented H2-bundle Eρ over Σ.

Flat oriented H2-bundles determined by Euler class in H2(Σ,Z) ∼= Z.
(Milnor 1958, Wood 1971) |Euler(ρ)| ≤ −Euler(TΣ) = |χ(Σ)|
Hyperbolic structure determines a transverse section of Eρ, which gives
an isomorphism Eρ ∼= TΣ.

(G 1980) Equality ⇐⇒ ρ defines hyperbolic structure on Σ.
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Maximal representations

Representation
π

ρ

−→ PSL(2,R)

define a flat oriented H2-bundle Eρ over Σ.

Flat oriented H2-bundles determined by Euler class in H2(Σ,Z) ∼= Z.
(Milnor 1958, Wood 1971) |Euler(ρ)| ≤ −Euler(TΣ) = |χ(Σ)|
Hyperbolic structure determines a transverse section of Eρ, which gives
an isomorphism Eρ ∼= TΣ.

(G 1980) Equality ⇐⇒ ρ defines hyperbolic structure on Σ.

Connected components of Hom(π,PSL(2,R)) are Euler−1(±j), where

j = 0, 1, . . . ,−χ(Σ)
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Example: Branched hyperbolic genus two surface
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Example: Branched hyperbolic genus two surface
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Identifying sides of a regular right-angled octagon gives closed genus
two surface, but with a singularity with cone angle 8 · π/2 = 4π
corresponding to the vertex.
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Example: Branched hyperbolic genus two surface
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Identifying sides of a regular right-angled octagon gives closed genus
two surface, but with a singularity with cone angle 8 · π/2 = 4π
corresponding to the vertex.

The holonomy around the singular point is a rotation of angle 4π (the
identity) so one obtains a representation of π1(Σ2).
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Example: Branched hyperbolic genus two surface
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Identifying sides of a regular right-angled octagon gives closed genus
two surface, but with a singularity with cone angle 8 · π/2 = 4π
corresponding to the vertex.

The holonomy around the singular point is a rotation of angle 4π (the
identity) so one obtains a representation of π1(Σ2).

This representation has Euler number 1 + χ(Σ) = −1.

() Locally Homogeneous Geometric Manifolds
International Congress of Mathematicians Hyderabad,

/ 29



G = PSL(2, R), PGL(2, C)
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G = PSL(2, R), PGL(2, C)

The component Euler−1
(

χ(Σ + k)
)

corresponds to singular

hyperbolic structures on Σ with k cone points of cone angle 4π.
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G = PSL(2, R), PGL(2, C)

The component Euler−1
(

χ(Σ + k)
)

corresponds to singular

hyperbolic structures on Σ with k cone points of cone angle 4π.

McOwen-Troyanov uniformization defines map

Symk(Σ) −→ Euler−1
(

χ(Σ + k)
)

which is a homotopy-equivalence. (Hitchin)
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G = PSL(2, R), PGL(2, C)

The component Euler−1
(

χ(Σ + k)
)

corresponds to singular

hyperbolic structures on Σ with k cone points of cone angle 4π.

McOwen-Troyanov uniformization defines map

Symk(Σ) −→ Euler−1
(

χ(Σ + k)
)

which is a homotopy-equivalence. (Hitchin)

Topology of Hom(π,G) understood by infinite-dimensional Morse-Bott
theory on spaces of connections (gauge theory) through work of
Atiyah, Bott, Hitchin, Bradlow, Garcia-Prada, Gothen, Mundet i Riera,
Daskalopoulos, Weitsman, Wentworth, Wilkin, and others.
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G = PSL(2, R), PGL(2, C)

The component Euler−1
(

χ(Σ + k)
)

corresponds to singular

hyperbolic structures on Σ with k cone points of cone angle 4π.

McOwen-Troyanov uniformization defines map

Symk(Σ) −→ Euler−1
(

χ(Σ + k)
)

which is a homotopy-equivalence. (Hitchin)

Topology of Hom(π,G) understood by infinite-dimensional Morse-Bott
theory on spaces of connections (gauge theory) through work of
Atiyah, Bott, Hitchin, Bradlow, Garcia-Prada, Gothen, Mundet i Riera,
Daskalopoulos, Weitsman, Wentworth, Wilkin, and others.
For G = SL(2,C), homology generated by that of the
SU(2)-representations and the SL(2,R)-representations (symmetric
powers of Σ.)
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Rigidity: Hermitian Symmetric Spaces
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Rigidity: Hermitian Symmetric Spaces

When G is a group of isometries of a Hermitian symmetric space,
Euler class generalizes to bounded Z-valued invariant of
representations (Turaev-Toledo).
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Rigidity: Hermitian Symmetric Spaces

When G is a group of isometries of a Hermitian symmetric space,
Euler class generalizes to bounded Z-valued invariant of
representations (Turaev-Toledo).

|τ(ρ)| ≤ rank(G ) vol(Σ).
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Rigidity: Hermitian Symmetric Spaces

When G is a group of isometries of a Hermitian symmetric space,
Euler class generalizes to bounded Z-valued invariant of
representations (Turaev-Toledo).

|τ(ρ)| ≤ rank(G ) vol(Σ).

When X = Hn
C
, then equality ⇐⇒ ρ is a discrete embedding

preserving a complex geodesic.
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Rigidity: Hermitian Symmetric Spaces

When G is a group of isometries of a Hermitian symmetric space,
Euler class generalizes to bounded Z-valued invariant of
representations (Turaev-Toledo).

|τ(ρ)| ≤ rank(G ) vol(Σ).

When X = Hn
C
, then equality ⇐⇒ ρ is a discrete embedding

preserving a complex geodesic.

ρ discrete (quasi-isometric) embedding, preserving a subdomain of tube

type, is reductive. (Burger-Iozzi-Labourie-Wienhard)
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Rigidity: Hermitian Symmetric Spaces

When G is a group of isometries of a Hermitian symmetric space,
Euler class generalizes to bounded Z-valued invariant of
representations (Turaev-Toledo).

|τ(ρ)| ≤ rank(G ) vol(Σ).

When X = Hn
C
, then equality ⇐⇒ ρ is a discrete embedding

preserving a complex geodesic.

ρ discrete (quasi-isometric) embedding, preserving a subdomain of tube

type, is reductive. (Burger-Iozzi-Labourie-Wienhard)
Corroborates Morse theory description of topology of maximal
components extending Hitchin’s Higgs bundle methods (Bradlow,
Garcia-Prada, Gothen 2005).
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Example: CP
1-structures
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Example: CP
1-structures

When X = CP
1 and G = PGL(2,C), Poincaré identified D(G ,X )(Σ)

with an affine bundle over T(Σ) whose fiber over a Riemann surface R

is the vector space H0(R ,K 2) of holomorphic quadratic differentials.
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1 and G = PGL(2,C), Poincaré identified D(G ,X )(Σ)

with an affine bundle over T(Σ) whose fiber over a Riemann surface R

is the vector space H0(R ,K 2) of holomorphic quadratic differentials.

Thus D(G ,X )(Σ) ≈ R
12g−12 and Mod(Σ) acts properly discretely.
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Example: CP
1-structures

When X = CP
1 and G = PGL(2,C), Poincaré identified D(G ,X )(Σ)

with an affine bundle over T(Σ) whose fiber over a Riemann surface R

is the vector space H0(R ,K 2) of holomorphic quadratic differentials.

Thus D(G ,X )(Σ) ≈ R
12g−12 and Mod(Σ) acts properly discretely.

D(G ,X )(Σ) contains the space of quasi-Fuchsian representations.
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Example: RP
2-structures
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Example: RP
2-structures

When X = RP
2 and G = PGL(3,R), the deformation space

D(G ,X )(Σ) is a vector bundle over F(Σ) whose fiber over a Riemann
surface R is the vector space H0(R ,K 3) of holomorphic cubic

differentials (Labourie, Loftin)
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Example: RP
2-structures

When X = RP
2 and G = PGL(3,R), the deformation space

D(G ,X )(Σ) is a vector bundle over F(Σ) whose fiber over a Riemann
surface R is the vector space H0(R ,K 3) of holomorphic cubic

differentials (Labourie, Loftin)

For any R-split semisimple G , Hitchin (1990) found a contractible
component containing F(Σ).
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Example: RP
2-structures

When X = RP
2 and G = PGL(3,R), the deformation space

D(G ,X )(Σ) is a vector bundle over F(Σ) whose fiber over a Riemann
surface R is the vector space H0(R ,K 3) of holomorphic cubic

differentials (Labourie, Loftin)

For any R-split semisimple G , Hitchin (1990) found a contractible
component containing F(Σ).

Labourie (2004): Hitchin representations are discrete embeddings and
that Mod(Σ) acts properly discretely. Uses intrinsic characterization
of invariant hyperconvex curves in projective space (Labourie,
Guichard).
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Example: RP
2-structures

When X = RP
2 and G = PGL(3,R), the deformation space

D(G ,X )(Σ) is a vector bundle over F(Σ) whose fiber over a Riemann
surface R is the vector space H0(R ,K 3) of holomorphic cubic

differentials (Labourie, Loftin)

For any R-split semisimple G , Hitchin (1990) found a contractible
component containing F(Σ).

Labourie (2004): Hitchin representations are discrete embeddings and
that Mod(Σ) acts properly discretely. Uses intrinsic characterization
of invariant hyperconvex curves in projective space (Labourie,
Guichard).

(Choi-G 1990) Deformation space of all RP
2-structures on Σ

homeomorphic to R
−8χ(Σ) × Z.
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Example:Complete affine 3-manifolds
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Example:Complete affine 3-manifolds

A complete affine manifold is a quotient

Mn = R
n/Γ

where Γ ⊂ Aff(n,R) is a discrete subgroup acting properly and freely.
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Example:Complete affine 3-manifolds

A complete affine manifold is a quotient

Mn = R
n/Γ

where Γ ⊂ Aff(n,R) is a discrete subgroup acting properly and freely.

“Auslander Conjecture”: M closed
?

=⇒ Γ virtually polycyclic.
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Example:Complete affine 3-manifolds

A complete affine manifold is a quotient

Mn = R
n/Γ

where Γ ⊂ Aff(n,R) is a discrete subgroup acting properly and freely.

“Auslander Conjecture”: M closed
?

=⇒ Γ virtually polycyclic.

In that case M finitely covered by a complete affine solvmanifold Γ\G
where G is a Lie group with left-invariant affine structure; such
structures easily classified.
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where Γ ⊂ Aff(n,R) is a discrete subgroup acting properly and freely.

“Auslander Conjecture”: M closed
?

=⇒ Γ virtually polycyclic.

In that case M finitely covered by a complete affine solvmanifold Γ\G
where G is a Lie group with left-invariant affine structure; such
structures easily classified.
(Fried-G 1983) True for n = 3.
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Example:Complete affine 3-manifolds

A complete affine manifold is a quotient

Mn = R
n/Γ

where Γ ⊂ Aff(n,R) is a discrete subgroup acting properly and freely.

“Auslander Conjecture”: M closed
?

=⇒ Γ virtually polycyclic.

In that case M finitely covered by a complete affine solvmanifold Γ\G
where G is a Lie group with left-invariant affine structure; such
structures easily classified.
(Fried-G 1983) True for n = 3.
Known for n ≤ 6 (Abels, Margulis, Soifer, Tomanov, ...)
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Example:Complete affine 3-manifolds

A complete affine manifold is a quotient

Mn = R
n/Γ

where Γ ⊂ Aff(n,R) is a discrete subgroup acting properly and freely.

“Auslander Conjecture”: M closed
?

=⇒ Γ virtually polycyclic.

In that case M finitely covered by a complete affine solvmanifold Γ\G
where G is a Lie group with left-invariant affine structure; such
structures easily classified.
(Fried-G 1983) True for n = 3.
Known for n ≤ 6 (Abels, Margulis, Soifer, Tomanov, ...)

Milnor asked (1977) whether true without assuming M compact;
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Example:Complete affine 3-manifolds

A complete affine manifold is a quotient

Mn = R
n/Γ

where Γ ⊂ Aff(n,R) is a discrete subgroup acting properly and freely.

“Auslander Conjecture”: M closed
?

=⇒ Γ virtually polycyclic.

In that case M finitely covered by a complete affine solvmanifold Γ\G
where G is a Lie group with left-invariant affine structure; such
structures easily classified.
(Fried-G 1983) True for n = 3.
Known for n ≤ 6 (Abels, Margulis, Soifer, Tomanov, ...)

Milnor asked (1977) whether true without assuming M compact;

Margulis (1983): proper affine actions of free Γ EXIST!
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Complete flat Lorentz manifolds
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Complete flat Lorentz manifolds

Fried-G (1983) implies that any nonsolvable complete affine
3-manifold is a quotient by an affine deformation of a discrete

embedding π1(M
3)

L
→֒ O(2, 1).
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Complete flat Lorentz manifolds

Fried-G (1983) implies that any nonsolvable complete affine
3-manifold is a quotient by an affine deformation of a discrete

embedding π1(M
3)

L
→֒ O(2, 1).

The quotient H2/L(π1(M
3)) is a complete hyperbolic surface Σ.
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Complete flat Lorentz manifolds

Fried-G (1983) implies that any nonsolvable complete affine
3-manifold is a quotient by an affine deformation of a discrete

embedding π1(M
3)

L
→֒ O(2, 1).

The quotient H2/L(π1(M
3)) is a complete hyperbolic surface Σ.

Mess (1990) Σ is noncompact, so π1(M
3) must be free.
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Complete flat Lorentz manifolds

Fried-G (1983) implies that any nonsolvable complete affine
3-manifold is a quotient by an affine deformation of a discrete

embedding π1(M
3)

L
→֒ O(2, 1).

The quotient H2/L(π1(M
3)) is a complete hyperbolic surface Σ.

Mess (1990) Σ is noncompact, so π1(M
3) must be free.

Drumm (1990) Every noncompact complete hyperbolic surface of
finite type admits a proper affine deformation.
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Drumm’s Schottky groups

The classical construction of Schottky groups fails using affine half-spaces
and slabs. Drumm’s geometric construction uses crooked planes, PL
hypersurfaces adapted to the Lorentz geometry which bound fundamental
polyhedra for Schottky groups.
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Affine action of level 2 congruence subgroup of GL(2, Z)
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Affine action of level 2 congruence subgroup of GL(2, Z)

Proper affine deformations exist even for lattices (Drumm).
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Classification
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Classification

Deformation space is a bundle over the Fricke space F(Σ), with fiber
consisting of equivalence classes of proper affine deformations;
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Classification

Deformation space is a bundle over the Fricke space F(Σ), with fiber
consisting of equivalence classes of proper affine deformations;

If ∂Σ has b components, then F(Σ) ≈ [0,∞)b × (0,∞)−3χ(Σ)−b.
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Classification

Deformation space is a bundle over the Fricke space F(Σ), with fiber
consisting of equivalence classes of proper affine deformations;

If ∂Σ has b components, then F(Σ) ≈ [0,∞)b × (0,∞)−3χ(Σ)−b.
(G-Labourie-Margulis 2009) The fibers are open convex cones in
R−3χ(Σ)
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Deformation space is a bundle over the Fricke space F(Σ), with fiber
consisting of equivalence classes of proper affine deformations;

If ∂Σ has b components, then F(Σ) ≈ [0,∞)b × (0,∞)−3χ(Σ)−b.
(G-Labourie-Margulis 2009) The fibers are open convex cones in
R−3χ(Σ)

Defined by signed Lorentzian lengths.
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Deformation space is a bundle over the Fricke space F(Σ), with fiber
consisting of equivalence classes of proper affine deformations;

If ∂Σ has b components, then F(Σ) ≈ [0,∞)b × (0,∞)−3χ(Σ)−b.
(G-Labourie-Margulis 2009) The fibers are open convex cones in
R−3χ(Σ)

Defined by signed Lorentzian lengths.

Crooked Plane Conjecture: M3 admits fundamental domain bounded
by crooked planes.
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Classification

Deformation space is a bundle over the Fricke space F(Σ), with fiber
consisting of equivalence classes of proper affine deformations;

If ∂Σ has b components, then F(Σ) ≈ [0,∞)b × (0,∞)−3χ(Σ)−b.
(G-Labourie-Margulis 2009) The fibers are open convex cones in
R−3χ(Σ)

Defined by signed Lorentzian lengths.

Crooked Plane Conjecture: M3 admits fundamental domain bounded
by crooked planes.

Corollary: (Tameness) M3 ≈ open solid handlebody of genus 1− χ(Σ).
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Classification

Deformation space is a bundle over the Fricke space F(Σ), with fiber
consisting of equivalence classes of proper affine deformations;

If ∂Σ has b components, then F(Σ) ≈ [0,∞)b × (0,∞)−3χ(Σ)−b.
(G-Labourie-Margulis 2009) The fibers are open convex cones in
R−3χ(Σ)

Defined by signed Lorentzian lengths.

Crooked Plane Conjecture: M3 admits fundamental domain bounded
by crooked planes.

Corollary: (Tameness) M3 ≈ open solid handlebody of genus 1− χ(Σ).
(Charette-Drumm-G 2010): Proved for χ(Σ) = −1.
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Deformation spaces for surfaces with χ(Σ)

(u) Three-holed sphere (v) Two-holed RP
2

(w) One-holed torus (x) One-holed Klein bottle
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