
ISOSPECTRALITY OF FLAT LORENTZ 3-MANIFOLDS

TODD A. DRUMM AND WILLIAM M. GOLDMAN

Abstract. Complete flat Lorentz 3-manifolds with nonamenable
fundamental group bear a striking resemblance to hyperbolic Rie-
mann surfaces. For example, every nonparabolic closed curve is
freely homotopic to a unique closed geodesic, which is necessarily
spacelike. In his seminal papers on the subject, Margulis intro-
duced a function α : π1(M) −→ R which associates the signed
Lorentzian length of this geodesic to a conjugacy class in π1(M).
In this paper we show that the conjugacy class of the linear holo-
nomy representation π1(M) −→ SO(2, 1) and Margulis’s invariant
completely determine M up to isometry.

1. Introduction

In this paper we consider actions of groups of isometries of Minkowski
2 + 1-space E. Minkowski space is a complete simply-connected flat
Lorentzian manifold, which identifies with an affine space whose un-
derlying vector space is a 3-dimensional real vector space R2,1 with a
nondegenerate symmetric bilinear form of index 1. Explicitly we take
R2,1 to be R3 with inner product:

B(x, y) := x1y1 + x2y2 − x3y3

so that E identifies with R3 with Lorentzian metric tensor

(dx1)
2 + (dx2)

2 − (dx3)
2.

The automorphism group of R2,1 is the orthogonal group O(2, 1)
consisting of linear isometries of E. In general, an isometry of E is an
affine transformation

h : E −→ E
x 7−→ g(x) + u

where the linear part g = L(h) ∈ O(2, 1) is a linear isometry. The inter-
section SO(2, 1) = O(2, 1)∩ SL(3,R) consists of orientation-preserving
linear isometries. The nullcone

N := {x ∈ R2,1 | B(x, x) = 0}
1
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is invariant under O(2, 1). The complement N − {0} consists of two
components (the future and the past)

N+ := {x ∈ N | x3 > 0},N− := {x ∈ N | x3 < 0}.

The subgroup SO(2, 1)0 of SO(2, 1) stabilizing either N+ or N− is the
identity component of the Lie group O(2, 1). The group Isom(E) of
affine isometries of E equals the semidirect product O(2, 1)n R2,1 and
the quotient projection

L : Isom(E) −→ O(2, 1))

assigns to an affine isometry h ∈ L : Isom(E) its linear part g = L(h) ∈
O(2, 1):

h(x) = g(x) + u

where u ∈ R2,1 is the translational part of h.
An element of O(2, 1) is hyperbolic if and only if it has three distinct

real eigenvalues. Since an isometry’s eigenvalues occur in reciprocal
pairs, a hyperbolic element of SO(2, 1) must have 1 as an eigenvalue. If
g ∈ SO(2, 1)0 is hyperbolic, then the other two eigenvalues are necessar-
ily positive. Margulis associated to a hyperbolic element g ∈ SO(2, 1)0

a canonical basis as follows. Let the eigenvalues of g be λ−1 < 1 < λ.
Then there exist unique eigenvectors x−(g), x0(g), x+(g) such that

• gx±(g) = λ±1x±(g) and gx0(g) = x0(g);
• x±(g) ∈ N+ and ‖x

±(g)‖ = 1;
• (x−(g), x0(g), x+(g)) is a right handed basis for R2,1.

Since x0(g) is fixed under the orthogonal linear transformation g,

(1) B(gu− u, x0(g)) = 0

for all u ∈ R2,1.
An affine isometry h of E is called hyperbolic if its linear part g =

L(h) is hyperbolic.

2. The Margulis invariant of hyperbolic affine isometries

Suppose that h ∈ Isom0(E) is a hyperbolic affine isometry. Following
Margulis, define

(2) α(h;x) = B(hx− x, x0(g))

for any x ∈ E. For any y ∈ E, let u = y − x. Then (1) implies

α(h;x)− α(h; y) = B
(

(g − I)u, x0(g)
)

= 0

so that α(h;x) = α(h) is independent of x. The foliation of E by lines
parallel to x0(g) is invariant under h and therefore there is an induced
affine transformation h′ on the leaf space E′ = E/x0(g). Since the linear
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part g′ has no fixed vectors, h′ has a unique fixed point in E′. Therefore
h leaves invariant a unique line Ch parallel to x0(g).
The restriction of h to Ch is translation τ by α(h)x

0(g). In particular
α(h) = 0 if and only if h fixes a point x ∈ E. In this case the set of
fixed points is exactly the line Ch. In general the planes parallel to

the orthogonal complement x0(g)
⊥
(which is spanned by x±(g)) define

a foliation whose leaf space identifies to Ch under the quotient map
Π : E −→ Ch. The diagram

E h
−−−→ E

Π





y





y
Π

Ch −−−→
τ

Ch

commutes. Suppose that 〈h〉 acts freely on E. In this case, the pro-
jection E −→ Ch is equivariant and Ch projects to the unique closed
geodesic in E/〈h〉. Because x0(g) has unit (Lorentzian) length, |α(h)|
equals as the Lorentzian length of the unique closed geodesic in E/〈h〉.
Let Γ0 be a subgroup of SO(2, 1)

0. An affine deformation of Γ0 is a
representation

φ : Γ0 −→ Isom(E) ∼= SO(2, 1)0 n R2,1

such that L ◦ φ is the identity map of Γ0. For γ ∈ Γ0, write
φ(γ)(x) = L(γ)x+ u(γ)

where L(γ) ∈ Γ0 and u(γ) ∈ R2,1. (When there is no danger of con-
fusion, the symbol φ will be omitted.) Then u is a cocycle of Γ0 with
coefficients in the Γ0-module R2,1 corresponding to the linear action of
L : Γ0 −→ SO(2, 1)0. In this way affine deformations of Γ0 correspond
to cocycles in Z1(Γ0,R2,1) and translational conjugacy classes of affine
deformations correspond to cohomology classes in H1(Γ0,R2,1).

Lemma 1. α is a class function on π.

Proof. Let γ, η ∈ π. Then x0(ηγη−1) = L(η)x0(γ) and
u(ηγη−1) = L(η)u(γ) +

(

I − L(ηγη−1)
)

u(η).

Therefore

α(ηγη−1) = B
(

u(ηγη−1), x0(ηγη−1)
)

= B(L(η)u(γ),L(η)x0(γ)) + B
(

(

I − L(ηγη−1)
)

u(η),L(η)x0(γ)
)

= B(u(γ), x0(γ)) = α(γ)

by (1). ¤
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3. Radiance

Margulis’s invariant can be interpreted homologically. Each element
γ ∈ Γ defines a homomorphism

iγ : Z −→ Γ

n 7−→ γn

which induces

i∗γ : H
1(Γ0,R2,1) −→ H1(Z,R2,1).

Inner product with x0(γ)

B(., x0(γ)) : R2,1 −→ R
v 7−→ B(v, x0(γ))

is a homomorphism of Z-modules inducing an isomorphism

B(., x0(γ))∗ : H1(Z,R2,1) −→ H1(Z,R) ∼= R.

The composition

H1(Γ,R2,1) −→ H1(Z,R2,1) −→ H1(Z,R) ∼= R.

maps the cohomology class [u] ∈ H1(Γ,R2,1) to α(γ).

4. Main theorem

The purpose of this note is to prove:

Theorem 1. Suppose that Γ0 is a discrete subgroup of SO(2, 1)
0 freely

generated by g1, g2. Suppose that u, v ∈ Z1(Γ0,R2,1) define affine de-
formations with α(u) = α(v). Then [u] = [v].

Thus the classification of affine deformations reduces from R2,1-valued
cohomology classes [u] of Γ to ordinary R-valued class functions α(u)
on Γ. The invariant α(u) depends linearly on u. Therefore it suffices
to show that the cohomology class [u] ∈ H1(Γ,R2,1) correponding to
an affine deformation Γu with αu = 0 must vanish. In this case we say
that Γu is radiant, that is, there exists a point x ∈ E fixed by Γ. (The
terminology arises since an affine transformation is radiant if and only
if it preserves a radiant vector field

n
∑

i=1

(xi − pi)
∂

∂xi

”radiating” from p ∈ E.) We shall in fact show a much stronger state-
ment:
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Lemma 2. Let h1, h2 ∈ Isom
0(E) be hyperbolic whose linear parts g1, g2

generate a nonsolvable subgroup Γ0 of SO(2, 1)
0. Suppose that h1, h2

and their product h2h1 are radiant. Then Γ = 〈h1, h2〉 is radiant.

An alternative statement is that if α(h1) = α(h2) = α(h2h1) = 0,
then α(w(h1, h2)) = 0 for any word w ∈ F2.

Proof. Since h1, h2 are radiant, their invariant lines consist of their
respective fixed points. For hyperbolic h ∈ Isom0(E), let E±(h) de-
note the affine subspace containing Ch and parallel to the linear sub-
space spanned by x±(h) and xo(h). Since h1 and h2 are assumed to
be transversal and hyperbolic, the four vectors {x±(h1), x

±(h1)} are all
distinct. Since the line Ch1

is transverse to the plane E+(h2), they in-
tersect at a point q. Furthermore since h1 and h2 share no fixed points,
q /∈ Ch2

. Since q ∈ E+(h2)− Ch2
, there exists c 6= 0 such that

h2(q)− q = cx+(g2).

Since g2g1 and g2 share no eigenspaces, B(x+(g2), x0(g2g1)) 6= 0.
Therefore:

α(h2h1) = B(h2h1(q)− q, x0(g2g1))

= B(h2(q)− q, x0(g2g1))

= cB(x+(g2), x0(g2g1)) 6= 0

as desired. ¤

The converse is not true: If g1, g2 are hyperbolic linear isometries
which share a null eigenvector, then it is easy to construct a non-
radiant affine deformation such that α(h1) = α(h2) = α(h1h2) = 0.
For example, choose p1, p2 6= 0 and

gi =





1 0 0
0 cosh(pi) sinh(pi)
0 sinh(pi) cosh(pi)





for i = 1, 2, and translational parts

u1 =





0
0
0



 , u2 =





0
1
1



 .

It can be shown that α(γ) = 0 for any γ ∈ 〈h1, h2〉. However, the line
l = {(t, 0, 0)|t ∈ R} is the fixed point set for g1 and g2, but Ch1

= l
and Ch2

= (ep2 − 1)−1(u2) + l. Since Ch1
∩ Ch2

= ∅, the group 〈h1, h2〉
is nonradiant.
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