Deformations of geometric structures and representations of fundamental groups

William M. Goldman

Department of Mathematics University of Maryland

Seventh KAIST Geometric Topology Fair Gyeongju, Korea July 9-11, 2007

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

http://www.math.umd.edu/~wmg/kaist.pdf

Enhancing Topology with Geometry

Deformations of geometric structure

Real projective structures

Representation varieties and character varieties

Hamiltonian flows of real projective structures

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Geometry through symmetry

- In his 1872 Erlangen Program, Felix Klein proposed that a geometry is the study of properties of an abstract space X which are invariant under a transitive group G of transformations of X.
- Klein was heavily influenced by Sophus Lie, who was trying to develop a theory of *continuous groups*, to exploit *infinitesimal symmetry* to study differential equations, similar to how Galois exploited symmetry to study *algebraic* equations.

Geometry through symmetry

- In his 1872 Erlangen Program, Felix Klein proposed that a geometry is the study of properties of an abstract space X which are invariant under a transitive group G of transformations of X.
- Klein was heavily influenced by Sophus Lie, who was trying to develop a theory of *continuous groups*, to exploit *infinitesimal symmetry* to study differential equations, similar to how Galois exploited symmetry to study *algebraic* equations.

・ コット ふぼう ふほう トロッ

Geometry through symmetry

- In his 1872 Erlangen Program, Felix Klein proposed that a geometry is the study of properties of an abstract space X which are invariant under a transitive group G of transformations of X.
- Klein was heavily influenced by Sophus Lie, who was trying to develop a theory of *continuous groups*, to exploit *infinitesimal symmetry* to study differential equations, similar to how Galois exploited symmetry to study *algebraic* equations.

- ► Euclidean geometry: X = ℝⁿ Euclidean space and G = lsom(X) the group of rigid motions:
- A rigid motion is a map x → Ax + b where A ∈ O(n) is orthogonal and b ∈ ℝⁿ is a translation vector.
- Invariant notions: Distance, angle, parallel, area, lines, ...
- ► Euclidean geometry: special case of affine geometry wheree X = ℝⁿ and G = Aff(X), where A ∈ GL(n, ℝ) is only required to be *linear*.
- Only parallelism, lines preserved.
- ▶ Affine geometry: special case of *projective* geometry, when *parallelism* abandoned. G = PGL(n + 1, ℝ), X = ℝPⁿ.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

▶ But the *space* must be *enlarged*: $\mathbb{R}^n \subsetneq \mathbb{R}^p^n$

- ► Euclidean geometry: X = ℝⁿ Euclidean space and G = lsom(X) the group of rigid motions:
- A rigid motion is a map x → Ax + b where A ∈ O(n) is orthogonal and b ∈ ℝⁿ is a translation vector.
- ▶ Invariant notions: Distance, angle, parallel, area, lines, ...
- ▶ Euclidean geometry: special case of *affine* geometry wheree $X = \mathbb{R}^n$ and G = Aff(X), where $A \in GL(n, \mathbb{R})$ is only required to be *linear*.
- Only parallelism, lines preserved.
- ► Affine geometry: special case of *projective* geometry, when *parallelism* abandoned. G = PGL(n + 1, ℝ), X = ℝPⁿ.

• But the *space* must be *enlarged*: $\mathbb{R}^n \subsetneq \mathbb{RP}^n$

- ► Euclidean geometry: X = ℝⁿ Euclidean space and G = lsom(X) the group of rigid motions:
- A rigid motion is a map x → Ax + b where A ∈ O(n) is orthogonal and b ∈ ℝⁿ is a translation vector.
- Invariant notions: Distance, angle, parallel, area, lines, ...
- ▶ Euclidean geometry: special case of *affine* geometry wheree $X = \mathbb{R}^n$ and G = Aff(X), where $A \in GL(n, \mathbb{R})$ is only required to be *linear*.
- Only parallelism, lines preserved.
- ► Affine geometry: special case of *projective* geometry, when *parallelism* abandoned. G = PGL(n + 1, ℝ), X = ℝPⁿ.
- ▶ But the *space* must be *enlarged*: $\mathbb{R}^n \subsetneq \mathbb{R}^p^n$

- ► Euclidean geometry: X = ℝⁿ Euclidean space and G = lsom(X) the group of rigid motions:
- A rigid motion is a map x → Ax + b where A ∈ O(n) is orthogonal and b ∈ ℝⁿ is a translation vector.
- Invariant notions: Distance, angle, parallel, area, lines, ...
- ▶ Euclidean geometry: special case of *affine* geometry wheree $X = \mathbb{R}^n$ and G = Aff(X), where $A \in GL(n, \mathbb{R})$ is only required to be *linear*.
- Only parallelism, lines preserved.
- ▶ Affine geometry: special case of *projective* geometry, when *parallelism* abandoned. G = PGL(n + 1, ℝ), X = ℝPⁿ.
- ▶ But the *space* must be *enlarged*: $\mathbb{R}^n \subsetneq \mathbb{R}^p^n$

- ► Euclidean geometry: X = ℝⁿ Euclidean space and G = lsom(X) the group of rigid motions:
- A rigid motion is a map x → Ax + b where A ∈ O(n) is orthogonal and b ∈ ℝⁿ is a translation vector.
- Invariant notions: Distance, angle, parallel, area, lines, ...
- ► Euclidean geometry: special case of *affine* geometry wheree X = ℝⁿ and G = Aff(X), where A ∈ GL(n, ℝ) is only required to be *linear*.
- Only parallelism, lines preserved.
- ▶ Affine geometry: special case of *projective* geometry, when *parallelism* abandoned. G = PGL(n + 1, ℝ), X = ℝPⁿ.
- But the *space* must be *enlarged*: $\mathbb{R}^n \subsetneq \mathbb{RP}^n$

- ► Euclidean geometry: X = ℝⁿ Euclidean space and G = lsom(X) the group of rigid motions:
- A rigid motion is a map x → Ax + b where A ∈ O(n) is orthogonal and b ∈ ℝⁿ is a translation vector.
- Invariant notions: Distance, angle, parallel, area, lines, ...
- ► Euclidean geometry: special case of affine geometry wheree X = ℝⁿ and G = Aff(X), where A ∈ GL(n, ℝ) is only required to be *linear*.
- Only parallelism, lines preserved.
- ▶ Affine geometry: special case of *projective* geometry, when *parallelism* abandoned. G = PGL(n + 1, ℝ), X = ℝPⁿ.
- But the *space* must be *enlarged*: $\mathbb{R}^n \subsetneq \mathbb{RP}^n$

- ► Euclidean geometry: X = ℝⁿ Euclidean space and G = lsom(X) the group of rigid motions:
- A rigid motion is a map x → Ax + b where A ∈ O(n) is orthogonal and b ∈ ℝⁿ is a translation vector.
- Invariant notions: Distance, angle, parallel, area, lines, ...
- ► Euclidean geometry: special case of affine geometry wheree X = ℝⁿ and G = Aff(X), where A ∈ GL(n, ℝ) is only required to be *linear*.
- Only parallelism, lines preserved.
- ► Affine geometry: special case of *projective* geometry, when *parallelism* abandoned. G = PGL(n + 1, ℝ), X = ℝℙⁿ.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• But the *space* must be *enlarged*: $\mathbb{R}^n \subsetneq \mathbb{R}^p$

- ► Euclidean geometry: X = ℝⁿ Euclidean space and G = lsom(X) the group of rigid motions:
- A rigid motion is a map x → Ax + b where A ∈ O(n) is orthogonal and b ∈ ℝⁿ is a translation vector.
- Invariant notions: Distance, angle, parallel, area, lines, ...
- ► Euclidean geometry: special case of *affine* geometry wheree X = ℝⁿ and G = Aff(X), where A ∈ GL(n, ℝ) is only required to be *linear*.
- Only parallelism, lines preserved.
- ► Affine geometry: special case of *projective* geometry, when *parallelism* abandoned. G = PGL(n + 1, ℝ), X = ℝℙⁿ.
- But the *space* must be *enlarged*: $\mathbb{R}^n \subsetneq \mathbb{RP}^n$

- Hyperbolic geometry: X = Hⁿ ⊂ ℝPⁿ G = O(n, 1) the subset of PGL(n + 1, ℝ) stabilizing X;
- (Beltrami Hilbert) Define the hyperbolic metric on X projectively in terms of cross-ratios:

Distance $d(x, y) = \log[A, x, y, B]$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Hyperbolic geometry: X = Hⁿ ⊂ ℝPⁿ G = O(n, 1) the subset of PGL(n + 1, ℝ) stabilizing X;

 (Beltrami – Hilbert) Define the hyperbolic metric on X projectively in terms of cross-ratios:

Distance $d(x, y) = \log[A, x, y, B]$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

- Hyperbolic geometry: X = Hⁿ ⊂ ℝPⁿ G = O(n, 1) the subset of PGL(n + 1, ℝ) stabilizing X;
- (Beltrami Hilbert) Define the hyperbolic metric on X projectively in terms of cross-ratios:

Distance $d(x, y) = \log[A, x, y, B]$

- Hyperbolic geometry: X = Hⁿ ⊂ ℝPⁿ G = O(n, 1) the subset of PGL(n + 1, ℝ) stabilizing X;
- (Beltrami Hilbert) Define the hyperbolic metric on X projectively in terms of cross-ratios:

Distance $d(x, y) = \log[A, x, y, B]$

Topology: Smooth manifold Σ with coordinate patches U_α;
 Charts — diffeomorphisms

$$U_{lpha} \xrightarrow{\psi_{lpha}} \psi_{lpha}(U_{lpha}) \subset X$$

▶ For each component $C \subset U_{\alpha} \cap U_{\beta}$, $\exists g = g(C) \in G$ such that

$$\mathbf{g}\circ\psi_{\alpha}|_{\mathcal{C}}=\psi_{\beta}|_{\mathcal{C}}.$$

▶ Local (*G*, *X*)-geometry defined by ψ_{α} independent of patch.

► (Ehresmann 1936) Σ acquires geometric structure M modeled on (G, X).

Topology: Smooth manifold Σ with coordinate patches U_α;
 Charts — diffeomorphisms

$$U_{lpha} \xrightarrow{\psi_{lpha}} \psi_{lpha}(U_{lpha}) \subset X$$

▶ For each component $C \subset U_{\alpha} \cap U_{\beta}$, $\exists g = g(C) \in G$ such that

$$\mathbf{g}\circ\psi_{\alpha}|_{\mathcal{C}}=\psi_{\beta}|_{\mathcal{C}}.$$

▶ Local (*G*, *X*)-geometry defined by ψ_{α} independent of patch.

► (Ehresmann 1936) Σ acquires geometric structure M modeled on (G, X).

• Topology: Smooth manifold Σ with coordinate patches U_{α} ;

Charts — diffeomorphisms

$$U_{lpha} \xrightarrow{\psi_{lpha}} \psi_{lpha}(U_{lpha}) \subset X$$

▶ For each component $C \subset U_{\alpha} \cap U_{\beta}$, $\exists g = g(C) \in G$ such that

$$\mathbf{g}\circ\psi_{\alpha}|_{\mathcal{C}}=\psi_{\beta}|_{\mathcal{C}}.$$

▶ Local (*G*, *X*)-geometry defined by ψ_{α} independent of patch.

► (Ehresmann 1936) Σ acquires geometric structure M modeled on (G, X).

▲日▼▲□▼▲□▼▲□▼ □ ののの

- Topology: Smooth manifold Σ with coordinate patches U_{α} ;
- Charts diffeomorphisms

$$U_{lpha} \xrightarrow{\psi_{lpha}} \psi_{lpha}(U_{lpha}) \subset X$$

- ▶ For each component $C \subset U_{\alpha} \cap U_{\beta}$, $\exists g = g(C) \in G$ such that $g \circ \psi_{\alpha}|_{C} = \psi_{\beta}|_{C}$.
- Local (G, X)-geometry defined by ψ_α independent of patch.
 (Ehresmann 1936) Σ acquires geometric structure M modeled on (G, X).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Topology: Smooth manifold Σ with coordinate patches U_{α} ;
- Charts diffeomorphisms

$$U_{lpha} \xrightarrow{\psi_{lpha}} \psi_{lpha}(U_{lpha}) \subset X$$

▶ For each component $C \subset U_{\alpha} \cap U_{\beta}$, $\exists g = g(C) \in G$ such that

$$\mathbf{g}\circ\psi_{\alpha}|_{\mathbf{C}}=\psi_{\beta}|_{\mathbf{C}}.$$

Local (G, X)-geometry defined by ψ_α independent of patch.
 (Ehresmann 1936) Σ acquires geometric structure M modeled on (G, X).

- Topology: Smooth manifold Σ with coordinate patches U_{α} ;
- Charts diffeomorphisms

$$U_{lpha} \xrightarrow{\psi_{lpha}} \psi_{lpha}(U_{lpha}) \subset X$$

▶ For each component $C \subset U_{\alpha} \cap U_{\beta}$, $\exists g = g(C) \in G$ such that

$$\mathbf{g}\circ\psi_{\alpha}|_{\mathbf{C}}=\psi_{\beta}|_{\mathbf{C}}.$$

- Local (G, X)-geometry defined by ψ_{α} independent of patch.
- (Ehresmann 1936) Σ acquires geometric structure M modeled on (G, X).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Suppose that Ω ⊂ X is an open subset invariant under a subgroup Γ ⊂ G such that:

- F is discrete;
- Γ acts *properly* on Ω
- \blacktriangleright Γ acts *freely* on Ω .
- Then $M = \Omega/\Gamma$ is a (G, X)-manifold
- The covering space $\Omega \longrightarrow M$ is a (G, X)-morphism.
- Complete affine structures: Ω entire affine patch $\mathbb{R}^n \subset \mathbb{RP}^n$.
- Convex ℝPⁿ-structures: Ω ⊂ ℝPⁿ convex domain containing no affine line (properly convex).

◆□> ◆□> ◆三> ◆三> ・三 のへで

Suppose that Ω ⊂ X is an open subset invariant under a subgroup Γ ⊂ G such that:

- Γ is discrete;
- Γ acts *properly* on Ω
- **Γ** acts *freely* on Ω .
- Then $M = \Omega/\Gamma$ is a (G, X)-manifold
- The covering space $\Omega \longrightarrow M$ is a (G, X)-morphism.
- Complete affine structures: Ω entire affine patch $\mathbb{R}^n \subset \mathbb{RP}^n$.
- Convex ℝPⁿ-structures: Ω ⊂ ℝPⁿ convex domain containing no affine line (properly convex).

▲日▼▲□▼▲□▼▲□▼ □ ののの

- Suppose that Ω ⊂ X is an open subset invariant under a subgroup Γ ⊂ G such that:
 - Γ is discrete;
 - Γ acts *properly* on Ω
 - **Γ** acts *freely* on Ω .
- Then $M = \Omega/\Gamma$ is a (G, X)-manifold
- The covering space $\Omega \longrightarrow M$ is a (G, X)-morphism.
- Complete affine structures: Ω entire affine patch $\mathbb{R}^n \subset \mathbb{RP}^n$.
- Convex ℝPⁿ-structures: Ω ⊂ ℝPⁿ convex domain containing no affine line (properly convex).

▲日▼▲□▼▲□▼▲□▼ □ ののの

- Suppose that Ω ⊂ X is an open subset invariant under a subgroup Γ ⊂ G such that:
 - Γ is discrete;
 - Γ acts *properly* on Ω
 - Γ acts *freely* on Ω .
- Then $M = \Omega/\Gamma$ is a (G, X)-manifold
- The covering space $\Omega \longrightarrow M$ is a (G, X)-morphism.
- Complete affine structures: Ω entire affine patch $\mathbb{R}^n \subset \mathbb{RP}^n$.
- Convex ℝPⁿ-structures: Ω ⊂ ℝPⁿ convex domain containing no affine line (properly convex).

- Suppose that Ω ⊂ X is an open subset invariant under a subgroup Γ ⊂ G such that:
 - Γ is discrete;
 - Γ acts properly on Ω
 - Γ acts freely on Ω.
- Then $M = \Omega/\Gamma$ is a (G, X)-manifold
- The covering space $\Omega \longrightarrow M$ is a (G, X)-morphism.
- Complete affine structures: Ω entire affine patch $\mathbb{R}^n \subset \mathbb{RP}^n$.
- Convex ℝPⁿ-structures: Ω ⊂ ℝPⁿ convex domain containing no affine line (properly convex).

▲日▼▲□▼▲□▼▲□▼ □ ののの

- Suppose that Ω ⊂ X is an open subset invariant under a subgroup Γ ⊂ G such that:
 - Γ is discrete;
 - Γ acts properly on Ω
 - Γ acts freely on Ω.
- Then $M = \Omega/\Gamma$ is a (G, X)-manifold
- The covering space $\Omega \longrightarrow M$ is a (G, X)-morphism.
- Complete affine structures: Ω entire affine patch $\mathbb{R}^n \subset \mathbb{RP}^n$.
- Convex ℝPⁿ-structures: Ω ⊂ ℝPⁿ convex domain containing no affine line (properly convex).

- Suppose that Ω ⊂ X is an open subset invariant under a subgroup Γ ⊂ G such that:
 - Γ is discrete;
 - Γ acts *properly* on Ω
 - Γ acts freely on Ω.
- Then $M = \Omega/\Gamma$ is a (G, X)-manifold
- The covering space $\Omega \longrightarrow M$ is a (G, X)-morphism.
- Complete affine structures: Ω entire affine patch $\mathbb{R}^n \subset \mathbb{RP}^n$.
- Convex ℝPⁿ-structures: Ω ⊂ ℝPⁿ convex domain containing no affine line (properly convex).

- Suppose that Ω ⊂ X is an open subset invariant under a subgroup Γ ⊂ G such that:
 - Γ is discrete;
 - Γ acts *properly* on Ω
 - Γ acts freely on Ω.
- Then $M = \Omega/\Gamma$ is a (G, X)-manifold
- The covering space $\Omega \longrightarrow M$ is a (G, X)-morphism.
- Complete affine structures: Ω entire affine patch $\mathbb{R}^n \subset \mathbb{RP}^n$.
- Convex ℝPⁿ-structures: Ω ⊂ ℝPⁿ convex domain containing no affine line (properly convex).

- Suppose that Ω ⊂ X is an open subset invariant under a subgroup Γ ⊂ G such that:
 - Γ is discrete;
 - Γ acts *properly* on Ω
 - Γ acts freely on Ω.
- Then $M = \Omega/\Gamma$ is a (G, X)-manifold
- The covering space $\Omega \longrightarrow M$ is a (G, X)-morphism.
- Complete affine structures: Ω entire affine patch $\mathbb{R}^n \subset \mathbb{RP}^n$.
- Convex ℝPⁿ-structures: Ω ⊂ ℝPⁿ convex domain containing no affine line (properly convex).

▲日▼▲□▼▲□▼▲□▼ □ ののの

A projective (3, 3, 3) triangle tesselation

This tesselation of the open triangular region is equivalent to the tiling of the Euclidean plane by equilateral triangles.

◆ロ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

Examples of incomplete quotient affine structures

Hyperbolic structures as \mathbb{RP}^2 -structures

- Using the Klein-Beltrami model of hyperbolic geometry, the convex domain Ω bounded by a conic inherits a projectively invariant hyperbolic geometry.
- ► The charts for the hyperbolic structure determine charts for an ℝP²-structure.
- Every hyperbolic manifold is convex \mathbb{RP}^2 -manifold.
- A tiling of Ω = H² in the projective model by triangles with angles π/3, π/3, π/4. The corresponding Coxeter group contains a finite index subgroup Γ such that Ω/Γ is a closed hyperbolic (and hence convex ℝP²-) surface.

Hyperbolic structures as \mathbb{RP}^2 -structures

- Using the Klein-Beltrami model of hyperbolic geometry, the convex domain Ω bounded by a conic inherits a projectively invariant hyperbolic geometry.
- ► The charts for the hyperbolic structure determine charts for an ℝP²-structure.
- Every hyperbolic manifold is convex \mathbb{RP}^2 -manifold.
- A tiling of Ω = H² in the projective model by triangles with angles π/3, π/3, π/4. The corresponding Coxeter group contains a finite index subgroup Γ such that Ω/Γ is a closed hyperbolic (and hence convex ℝP²-) surface.

Hyperbolic structures as \mathbb{RP}^2 -structures

- Using the Klein-Beltrami model of hyperbolic geometry, the convex domain Ω bounded by a conic inherits a projectively invariant hyperbolic geometry.
- ► The charts for the hyperbolic structure determine charts for an ℝP²-structure.
- Every hyperbolic manifold is convex \mathbb{RP}^2 -manifold.
- A tiling of Ω = H² in the projective model by triangles with angles π/3, π/3, π/4. The corresponding Coxeter group contains a finite index subgroup Γ such that Ω/Γ is a closed hyperbolic (and hence convex ℝP²-) surface.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 りへで

Hyperbolic structures as \mathbb{RP}^2 -structures

- Using the Klein-Beltrami model of hyperbolic geometry, the convex domain Ω bounded by a conic inherits a projectively invariant hyperbolic geometry.
- ► The charts for the hyperbolic structure determine charts for an ℝP²-structure.
- Every hyperbolic manifold is convex \mathbb{RP}^2 -manifold.
- A tiling of Ω = H² in the projective model by triangles with angles π/3, π/3, π/4. The corresponding Coxeter group contains a finite index subgroup Γ such that Ω/Γ is a closed hyperbolic (and hence convex ℝP²-) surface.

◆□ > < @ > < E > < E > E のQ@

Hyperbolic structures as \mathbb{RP}^2 -structures

- Using the Klein-Beltrami model of hyperbolic geometry, the convex domain Ω bounded by a conic inherits a projectively invariant hyperbolic geometry.
- ► The charts for the hyperbolic structure determine charts for an ℝP²-structure.
- Every hyperbolic manifold is convex \mathbb{RP}^2 -manifold.
- A tiling of Ω = H² in the projective model by triangles with angles π/3, π/3, π/4. The corresponding Coxeter group contains a finite index subgroup Γ such that Ω/Γ is a closed hyperbolic (and hence convex ℝP²-) surface.

- (Kuiper 1954) $\partial \Omega$ is a conic and *M* is hyperbolic.
- (Benzécri 1960) $\partial \Omega$ is a C^1 convex curve.
- ▶ (Vinberg-Kac 1968) A triangle tiling, arising from a Kac-Moody Lie algebra. The corresponding discrete group lies in SL(3, Z).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- χ(Σ) < 0: there will be other domains with fractal boundary determining convex ℝP²-structures M on Σ.
- (Kuiper 1954) $\partial \Omega$ is a conic and *M* is hyperbolic.
- (Benzécri 1960) $\partial \Omega$ is a C^1 convex curve.
- ▶ (Vinberg-Kac 1968) A triangle tiling, arising from a Kac-Moody Lie algebra. The corresponding discrete group lies in SL(3, Z).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○

- χ(Σ) < 0: there will be other domains with fractal boundary determining convex ℝP²-structures M on Σ.
- (Kuiper 1954) $\partial \Omega$ is a conic and *M* is hyperbolic.
- (Benzécri 1960) $\partial \Omega$ is a C^1 convex curve.
- ▶ (Vinberg-Kac 1968) A triangle tiling, arising from a Kac-Moody Lie algebra. The corresponding discrete group lies in SL(3, Z).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- χ(Σ) < 0: there will be other domains with fractal boundary determining convex ℝP²-structures M on Σ.
- (Kuiper 1954) $\partial \Omega$ is a conic and *M* is hyperbolic.
- (Benzécri 1960) $\partial \Omega$ is a C^1 convex curve.
- ▶ (Vinberg-Kac 1968) A triangle tiling, arising from a Kac-Moody Lie algebra. The corresponding discrete group lies in SL(3, Z).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○

- χ(Σ) < 0: there will be other domains with fractal boundary determining convex ℝP²-structures M on Σ.
- (Kuiper 1954) $\partial \Omega$ is a conic and *M* is hyperbolic.
- (Benzécri 1960) $\partial \Omega$ is a C^1 convex curve.
- ▶ (Vinberg-Kac 1968) A triangle tiling, arising from a Kac-Moody Lie algebra. The corresponding discrete group lies in SL(3, Z).

- ► Coordinate *changes* g(C), for $C \subset U\alpha \cap U_{\beta}$, define fibration $E \xrightarrow{\Pi} M$, fiber X, structure group G;
- Product fibration over U_{α} :

$$E_{\alpha} := U_{\alpha} \times X \xrightarrow{\Pi_{\alpha}} U_{\alpha} :$$

- ▶ Since $C \mapsto g(C) \in G$ is constant, the *foliations* of E_{α} defined by projections $E_{\alpha} \longrightarrow X$ define foliation \mathfrak{F} of E;
- Each leaf L of \mathfrak{F} is transverse to Π ;
- The restriction $\Pi|_L$ is a covering space $L \longrightarrow M$.

- Coordinate *changes* g(C), for $C \subset U\alpha \cap U_{\beta}$, define fibration $E \xrightarrow{\Pi} M$, fiber X, structure group G;
- Product fibration over U_{α} :

$$E_{\alpha} := U_{\alpha} \times X \xrightarrow{\Pi_{\alpha}} U_{\alpha} :$$

- ▶ Since $C \mapsto g(C) \in G$ is constant, the *foliations* of E_{α} defined by projections $E_{\alpha} \longrightarrow X$ define foliation \mathfrak{F} of E;
- Each leaf L of \mathfrak{F} is transverse to Π ;
- The restriction $\Pi|_L$ is a covering space $L \longrightarrow M$.

- Coordinate *changes* g(C), for $C \subset U\alpha \cap U_{\beta}$, define fibration $E \xrightarrow{\Pi} M$, fiber X, structure group G;
- Product fibration over U_{α} :

$$E_{\alpha} := U_{\alpha} \times X \xrightarrow{\Pi_{\alpha}} U_{\alpha} :$$

- Since C → g(C) ∈ G is constant, the foliations of E_α defined by projections E_α → X define foliation ℑ of E;
- Each leaf L of \mathfrak{F} is transverse to Π ;
- The restriction $\Pi|_L$ is a covering space $L \longrightarrow M$.

- Coordinate changes g(C), for $C \subset U\alpha \cap U_{\beta}$, define fibration $E \xrightarrow{\Pi} M$, fiber X, structure group G;
- Product fibration over U_{α} :

$$E_{\alpha} := U_{\alpha} \times X \xrightarrow{\Pi_{\alpha}} U_{\alpha} :$$

- Since C → g(C) ∈ G is constant, the *foliations* of E_α defined by projections E_α → X define foliation ℑ of E;
- Each leaf L of \mathfrak{F} is transverse to Π ;
- The restriction $\Pi|_L$ is a covering space $L \longrightarrow M$.

- Coordinate *changes* g(C), for $C \subset U\alpha \cap U_{\beta}$, define fibration $E \xrightarrow{\Pi} M$, fiber X, structure group G;
- Product fibration over U_{α} :

$$E_{\alpha} := U_{\alpha} \times X \xrightarrow{\Pi_{\alpha}} U_{\alpha} :$$

- Since C → g(C) ∈ G is constant, the foliations of E_α defined by projections E_α → X define foliation 𝔅 of E;
- The restriction $\Pi|_L$ is a covering space $L \longrightarrow M$.

- Coordinate changes g(C), for $C \subset U\alpha \cap U_{\beta}$, define fibration $E \xrightarrow{\Pi} M$, fiber X, structure group G;
- Product fibration over U_{α} :

$$E_{\alpha} := U_{\alpha} \times X \xrightarrow{\Pi_{\alpha}} U_{\alpha} :$$

- Since C → g(C) ∈ G is constant, the *foliations* of E_α defined by projections E_α → X define foliation 𝔅 of E;
- The restriction $\Pi|_L$ is a covering space $L \longrightarrow M$.

The *tangent* flat (G, X)-bundle

◆ロ▶ ◆母▶ ◆臣▶ ◆臣▶ ○臣 - のへで

• Graph the coordinate charts $U_{\alpha} \xrightarrow{\psi_{\alpha}} X$ to obtain sections of $E_{\alpha} := \Pi^{-1}(U_{\alpha}) = U_{\alpha} \times X$:

$$U_{\alpha} \xrightarrow{\operatorname{dev}_{\alpha}} U_{\alpha} \times X$$

- The local sections dev_α extend to a global section dev transverse both to Π and F.
- Such a structure is *equivalent* to a (G, X)-atlas.

• Graph the coordinate charts $U_{\alpha} \xrightarrow{\psi_{\alpha}} X$ to obtain sections of $E_{\alpha} := \Pi^{-1}(U_{\alpha}) = U_{\alpha} \times X$:

$$U_{\alpha} \xrightarrow{\operatorname{\mathsf{dev}}_{\alpha}} U_{\alpha} \times X$$

- The local sections dev_α extend to a global section dev transverse both to Π and F.
- Such a structure is *equivalent* to a (G, X)-atlas.

Graph the coordinate charts U_α → X to obtain sections of E_α := Π⁻¹(U_α) = U_α × X:

$$U_{\alpha} \xrightarrow{\operatorname{\mathsf{dev}}_{\alpha}} U_{\alpha} \times X$$

The local sections dev_α extend to a global section dev transverse both to Π and 𝔅.

Such a structure is *equivalent* to a (G, X)-atlas.

Graph the coordinate charts U_α → X to obtain sections of E_α := Π⁻¹(U_α) = U_α × X:

$$U_{\alpha} \xrightarrow{\operatorname{\mathsf{dev}}_{\alpha}} U_{\alpha} \times X$$

- The local sections dev_α extend to a global section dev transverse both to Π and 𝔅.
- Such a structure is equivalent to a (G, X)-atlas.

The developing section of a (G, X)-structure

▲ロト▲圖ト▲画ト▲画ト 画 のみぐ

The developing section of a (G, X)-structure

▲ロト▲圖ト▲画ト▲画ト 画 のみぐ

Let M → M be a universal covering with deck group π₁(M).
 This structure (E, ℑ) is equivalent to a representation

$$\pi_1(M) \xrightarrow{\rho} G:$$

- $\tilde{E} = \tilde{M} \times X$, with $\pi_1(M)$ -action defined by deck transformations on \tilde{M} and by ρ on G.
- $\blacktriangleright E = \widetilde{E}/\pi_1(M)$
- $\widetilde{\mathfrak{F}}$ is the foliation defined by $\widetilde{E} \longrightarrow X$.
- Sections of Π correspond to ρ-equivariant maps

$$\widetilde{M} \xrightarrow{\widetilde{\operatorname{dev}}} X.$$

• Let $\widetilde{M} \longrightarrow M$ be a universal covering with deck group $\pi_1(M)$.

▶ This structure (E, \mathfrak{F}) is equivalent to a representation

 $\pi_1(M) \xrightarrow{\rho} G$:

- $\tilde{E} = \tilde{M} \times X$, with $\pi_1(M)$ -action defined by deck transformations on \tilde{M} and by ρ on G.
- $\blacktriangleright E = \widetilde{E}/\pi_1(M)$
- $\widetilde{\mathfrak{F}}$ is the foliation defined by $\widetilde{E} \longrightarrow X$.
- Sections of Π correspond to ρ-equivariant maps

$$\widetilde{M} \xrightarrow{\widetilde{\operatorname{dev}}} X.$$

• Let $\widetilde{M} \longrightarrow M$ be a universal covering with deck group $\pi_1(M)$.

• This structure (E,\mathfrak{F}) is equivalent to a representation

$$\pi_1(M) \xrightarrow{\rho} G$$
:

- $\widetilde{E} = \widetilde{M} \times X$, with $\pi_1(M)$ -action defined by deck transformations on \widetilde{M} and by ρ on G.
- $\blacktriangleright E = \widetilde{E}/\pi_1(M)$
- $\widetilde{\mathfrak{F}}$ is the foliation defined by $\widetilde{E} \longrightarrow X$.
- Sections of Π correspond to ρ -equivariant maps

$$\widetilde{M} \xrightarrow{\widetilde{\operatorname{dev}}} X.$$

- Let $M \longrightarrow M$ be a universal covering with deck group $\pi_1(M)$.
- This structure (E,\mathfrak{F}) is equivalent to a representation

$$\pi_1(M) \xrightarrow{\rho} G$$
:

- $\widetilde{E} = \widetilde{M} \times X$, with $\pi_1(M)$ -action defined by deck transformations on \widetilde{M} and by ρ on G.
- $\blacktriangleright E = \widetilde{E}/\pi_1(M)$
- $\widetilde{\mathfrak{F}}$ is the foliation defined by $\widetilde{E} \longrightarrow X$.
- Sections of Π correspond to ρ -equivariant maps

$$\widetilde{M} \xrightarrow{\widetilde{\operatorname{dev}}} X.$$

- Let $M \longrightarrow M$ be a universal covering with deck group $\pi_1(M)$.
- This structure (E,\mathfrak{F}) is equivalent to a representation

$$\pi_1(M) \xrightarrow{\rho} G$$
:

- $\widetilde{E} = \widetilde{M} \times X$, with $\pi_1(M)$ -action defined by deck transformations on \widetilde{M} and by ρ on G.
- $\blacktriangleright E = \widetilde{E}/\pi_1(M)$
- $\widetilde{\mathfrak{F}}$ is the foliation defined by $\widetilde{E} \longrightarrow X$.
- Sections of Π correspond to ρ -equivariant maps

$$\widetilde{M} \xrightarrow{\widetilde{\operatorname{dev}}} X.$$

- Let $\widetilde{M} \longrightarrow M$ be a universal covering with deck group $\pi_1(M)$.
- This structure (E,\mathfrak{F}) is equivalent to a representation

$$\pi_1(M) \xrightarrow{\rho} G$$
:

- $\widetilde{E} = \widetilde{M} \times X$, with $\pi_1(M)$ -action defined by deck transformations on \widetilde{M} and by ρ on G.
- $E = \widetilde{E}/\pi_1(M)$
- $\widetilde{\mathfrak{F}}$ is the foliation defined by $\widetilde{E} \longrightarrow X$.
- Sections of Π correspond to ρ-equivariant maps

$$\widetilde{M} \xrightarrow{\widetilde{\operatorname{dev}}} X.$$

- Let $M \longrightarrow M$ be a universal covering with deck group $\pi_1(M)$.
- This structure (E,\mathfrak{F}) is equivalent to a representation

$$\pi_1(M) \xrightarrow{\rho} G$$
:

- $\widetilde{E} = \widetilde{M} \times X$, with $\pi_1(M)$ -action defined by deck transformations on \widetilde{M} and by ρ on G.
- $\blacktriangleright E = \widetilde{E}/\pi_1(M)$
- $\widetilde{\mathfrak{F}}$ is the foliation defined by $\widetilde{E} \longrightarrow X$.
- Sections of Π correspond to ρ-equivariant maps

$$\widetilde{M} \xrightarrow{\widetilde{\mathsf{dev}}} X.$$

- Let $\widetilde{M} \longrightarrow M$ be a universal covering with deck group $\pi_1(M)$.
- This structure (E,\mathfrak{F}) is equivalent to a representation

$$\pi_1(M) \xrightarrow{\rho} G:$$

- $\widetilde{E} = \widetilde{M} \times X$, with $\pi_1(M)$ -action defined by deck transformations on \widetilde{M} and by ρ on G.
- $E = \widetilde{E}/\pi_1(M)$
- $\widetilde{\mathfrak{F}}$ is the foliation defined by $\widetilde{E} \longrightarrow X$.
- Sections of Π correspond to ρ-equivariant maps

$$\widetilde{M} \xrightarrow{\widetilde{\mathsf{dev}}} X.$$

The Ehresmann-Thurston Theorem

- Assume Σ compact. Two nearby structures with same holonomy are isotopic: equivalent by a diffeo in Diff(M)⁰,
- The holonomy representation ρ of a (G, X)-manifold M has an open neighborhood in Hom(π₁, G) of holonomy representations of *nearby* (G, X)-manifolds.

The Ehresmann-Thurston Theorem

- Assume Σ compact. Two nearby structures with same holonomy are isotopic: equivalent by a diffeo in Diff(M)⁰,
- The holonomy representation ρ of a (G, X)-manifold M has an open neighborhood in Hom(π₁, G) of holonomy representations of *nearby* (G, X)-manifolds.

The Ehresmann-Thurston Theorem

- Assume Σ compact. Two nearby structures with same holonomy are isotopic: equivalent by a diffeo in Diff(M)⁰,
- The holonomy representation ρ of a (G, X)-manifold M has an open neighborhood in Hom(π₁, G) of holonomy representations of *nearby* (G, X)-manifolds.

- A marked (G, X)-structure on Σ is a diffeomorphism $\Sigma \xrightarrow{t} M$ where M is a (G, X)-manifold.
- Marked (G, X)-structures (f_i, M_i) are *isotopic* ⇐⇒ ∃ isomorphism M₁ ^φ→ M₂ with φ ∘ f₁ ≃ f₂.
- Holonomy defines a local homeomorphism

$$\mathfrak{D}_{(G,X)}(\Sigma) := \left\{ \mathsf{Marked} \ (G,X) \text{-structures on } \Sigma \right\} / \mathsf{Isotopy}$$
$$\xrightarrow{\mathsf{hol}} \mathsf{Hom}(\pi_1(\Sigma),G)/G$$

• A marked (G, X)-structure on Σ is a diffeomorphism $\Sigma \xrightarrow{t} M$ where M is a (G, X)-manifold.

- Marked (G, X)-structures (f_i, M_i) are *isotopic* ⇐⇒ ∃ isomorphism M₁ ^φ→ M₂ with φ ∘ f₁ ≃ f₂.
- Holonomy defines a local homeomorphism

$$\mathfrak{D}_{(G,X)}(\Sigma) := \left\{ \mathsf{Marked} \ (G,X) \text{-structures on } \Sigma \right\} / \mathsf{Isotopy}$$
$$\xrightarrow{\mathsf{hol}} \mathsf{Hom}(\pi_1(\Sigma),G)/G$$

- A marked (G, X)-structure on Σ is a diffeomorphism $\Sigma \xrightarrow{t} M$ where M is a (G, X)-manifold.
- Marked (G, X)-structures (f_i, M_i) are *isotopic* ⇐⇒ ∃ isomorphism M₁ ^φ→ M₂ with φ ∘ f₁ ≃ f₂.
- Holonomy defines a local homeomorphism

$$\mathfrak{D}_{(G,X)}(\Sigma) := \left\{ \mathsf{Marked} \ (G,X) \text{-structures on } \Sigma \right\} / \mathsf{Isotopy}$$
$$\xrightarrow{\mathsf{hol}} \mathsf{Hom}(\pi_1(\Sigma),G)/G$$

- A marked (G, X)-structure on Σ is a diffeomorphism $\Sigma \xrightarrow{f} M$ where M is a (G, X)-manifold.
- Marked (G, X)-structures (f_i, M_i) are *isotopic* ⇐⇒ ∃ isomorphism M₁ ^φ→ M₂ with φ ∘ f₁ ≃ f₂.
- Holonomy defines a local homeomorphism

$$\mathfrak{D}_{(G,X)}(\Sigma) := \left\{ \mathsf{Marked} \ (G,X) \text{-structures on } \Sigma \right\} / \mathsf{Isotopy}$$
$$\xrightarrow{\mathsf{hol}} \mathsf{Hom}(\pi_1(\Sigma),G)/G$$
• Let $\Sigma \xrightarrow{f} M$ be a marked (G, X)-structure.

▶ $\eta \in \text{Diff}(\Sigma)$ acts: $(f, M) \mapsto (f \circ \eta, M)$.

Mapping class group

$$\mathsf{Mod}(\Sigma) := \pi_0(\mathsf{Diff}(\Sigma))$$

acts on $\mathfrak{D}_{(G,X)}(\Sigma)$.

hol equivariant respecting

 $\mathsf{Mod}(\Sigma) \longrightarrow \mathsf{Out}(\pi_1(\Sigma)) := \mathsf{Aut}(\pi_1(\Sigma)) / \mathsf{Inn}(\pi_1(\Sigma))$

- Let $\Sigma \xrightarrow{f} M$ be a marked (G, X)-structure.
- ▶ $\eta \in \text{Diff}(\Sigma)$ acts: $(f, M) \mapsto (f \circ \eta, M)$.
- Mapping class group

$$\mathsf{Mod}(\Sigma) := \pi_0(\mathsf{Diff}(\Sigma))$$

acts on $\mathfrak{D}_{(G,X)}(\Sigma)$.

hol equivariant respecting

 $\mathsf{Mod}(\Sigma) \longrightarrow \mathsf{Out}(\pi_1(\Sigma)) := \mathsf{Aut}(\pi_1(\Sigma)) / \mathsf{Inn}(\pi_1(\Sigma))$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Let $\Sigma \xrightarrow{f} M$ be a marked (G, X)-structure.
- $\eta \in \text{Diff}(\Sigma) \text{ acts: } (f, M) \longmapsto (f \circ \eta, M).$

Mapping class group

$$\mathsf{Mod}(\Sigma) := \pi_0(\mathsf{Diff}(\Sigma))$$

acts on $\mathfrak{D}_{(G,X)}(\Sigma)$.

hol equivariant respecting

 $\mathsf{Mod}(\Sigma) \longrightarrow \mathsf{Out}(\pi_1(\Sigma)) := \mathsf{Aut}(\pi_1(\Sigma)) / \mathsf{Inn}(\pi_1(\Sigma))$

• Let
$$\Sigma \xrightarrow{f} M$$
 be a marked (G, X) -structure.

- $\eta \in \text{Diff}(\Sigma) \text{ acts: } (f, M) \longmapsto (f \circ \eta, M).$
- Mapping class group

$$\mathsf{Mod}(\Sigma) := \pi_0(\mathsf{Diff}(\Sigma))$$

acts on $\mathfrak{D}_{(G,X)}(\Sigma)$.

hol equivariant respecting

 $\mathsf{Mod}(\Sigma) \longrightarrow \mathsf{Out}(\pi_1(\Sigma)) := \mathsf{Aut}(\pi_1(\Sigma)) / \mathsf{Inn}(\pi_1(\Sigma))$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

• Let
$$\Sigma \xrightarrow{f} M$$
 be a marked (G, X) -structure.

- ▶ $\eta \in \text{Diff}(\Sigma)$ acts: $(f, M) \longmapsto (f \circ \eta, M)$.
- Mapping class group

$$\mathsf{Mod}(\Sigma) := \pi_0(\mathsf{Diff}(\Sigma))$$

acts on $\mathfrak{D}_{(G,X)}(\Sigma)$.

hol equivariant respecting

$$\mathsf{Mod}(\Sigma) \longrightarrow \mathsf{Out}ig(\pi_1(\Sigma)ig) := \mathsf{Aut}ig(\pi_1(\Sigma)ig)/\mathsf{Inn}ig(\pi_1(\Sigma)ig)$$

• Let
$$\Sigma \xrightarrow{f} M$$
 be a marked (G, X) -structure.

- ▶ $\eta \in \text{Diff}(\Sigma)$ acts: $(f, M) \longmapsto (f \circ \eta, M)$.
- Mapping class group

$$\mathsf{Mod}(\Sigma) := \pi_0(\mathsf{Diff}(\Sigma))$$

acts on $\mathfrak{D}_{(G,X)}(\Sigma)$.

hol equivariant respecting

$$\mathsf{Mod}(\Sigma) \longrightarrow \mathsf{Out}ig(\pi_1(\Sigma)ig) := \mathsf{Aut}ig(\pi_1(\Sigma)ig)/\mathsf{Inn}ig(\pi_1(\Sigma)ig)$$

- Euclidean geometry: X = R² and G = Isom(X)
 D_(G,X)(Σ) identifies with the upper half-plane H²:
- ▶ Point $\tau \in \mathsf{H}^2 \longleftrightarrow$ Euclidean manifold $\mathbb{C}/\langle 1, \tau \rangle$.
- The marking is the choice of basis $1, \tau$ for $\pi_1(M)$.
- Changing the marking is the usual action of PGL(2, Z) on H² by linear fractional transformations which is properly discretel.

- Euclidean geometry: X = R² and G = lsom(X)
 D_(G,X)(Σ) identifies with the upper half-plane H²:
- ▶ Point $\tau \in \mathsf{H}^2 \longleftrightarrow$ Euclidean manifold $\mathbb{C}/\langle 1, \tau \rangle$.
- The marking is the choice of basis $1, \tau$ for $\pi_1(M)$.
- Changing the marking is the usual action of PGL(2, Z) on H² by linear fractional transformations which is properly discrete!.

- Euclidean geometry: X = R² and G = lsom(X)
 D_(G,X)(Σ) identifies with the upper half-plane H²:
- Point $\tau \in H^2 \longleftrightarrow$ Euclidean manifold $\mathbb{C}/\langle 1, \tau \rangle$.
- The marking is the choice of basis $1, \tau$ for $\pi_1(M)$.
- Changing the marking is the usual action of PGL(2, Z) on H² by linear fractional transformations which is properly discrete!.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

- ► Euclidean geometry: X = ℝ² and G = lsom(X) 𝔅_(G,X)(Σ) identifies with the upper half-plane H²:
- Point $\tau \in \mathsf{H}^2 \longleftrightarrow$ Euclidean manifold $\mathbb{C}/\langle 1, \tau \rangle$.
- The marking is the choice of basis $1, \tau$ for $\pi_1(M)$.
- Changing the marking is the usual action of PGL(2, Z) on H² by linear fractional transformations which is properly discrete!.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

- ► Euclidean geometry: X = ℝ² and G = lsom(X) 𝔅_(G,X)(Σ) identifies with the upper half-plane H²:
- Point $\tau \in H^2 \longleftrightarrow$ Euclidean manifold $\mathbb{C}/\langle 1, \tau \rangle$.
- The marking is the choice of basis $1, \tau$ for $\pi_1(M)$.
- Changing the marking is the usual action of PGL(2, Z) on H² by linear fractional transformations which is properly discrete!.

・ロ・・ 日・・ エ・・ 日・ ・ 日・ うんの

- Kuiper (1954) Every complete affine closed orientable 2-manifold is equivalent to either:
 - Euclidean: R²/Λ, where Λ is a lattice of translations (all are affinely equivalent);
 - ▶ Polynomial deformation $\mathbb{R}^2/(f \circ \Lambda \circ f^{-1})$, where

$$(x,y) \xrightarrow{f} (x+y^2,y).$$

- Kuiper (1954) Every complete affine closed orientable 2-manifold is equivalent to either:
 - Euclidean: R²/Λ, where Λ is a lattice of translations (all are affinely equivalent);
 - ▶ Polynomial deformation $\mathbb{R}^2/(f \circ \Lambda \circ f^{-1})$, where

$$(x,y) \xrightarrow{f} (x+y^2,y).$$

- Kuiper (1954) Every complete affine closed orientable 2-manifold is equivalent to either:
 - Euclidean: ℝ²/Λ, where Λ is a lattice of translations (all are affinely equivalent);
 - ▶ Polynomial deformation $\mathbb{R}^2/(f \circ \Lambda \circ f^{-1})$, where

$$(x,y) \xrightarrow{f} (x+y^2,y).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

- Kuiper (1954) Every complete affine closed orientable 2-manifold is equivalent to either:
 - Euclidean: ℝ²/Λ, where Λ is a lattice of translations (all are affinely equivalent);
 - Polynomial deformation $\mathbb{R}^2/(f \circ \Lambda \circ f^{-1})$, where

$$(x,y) \xrightarrow{f} (x+y^2,y).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

- Kuiper (1954) Every complete affine closed orientable 2-manifold is equivalent to either:
 - Euclidean: ℝ²/Λ, where Λ is a lattice of translations (all are affinely equivalent);
 - Polynomial deformation $\mathbb{R}^2/(f \circ \Lambda \circ f^{-1})$, where

$$(x,y) \xrightarrow{f} (x+y^2,y).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

- Kuiper (1954) Every complete affine closed orientable 2-manifold is equivalent to either:
 - Euclidean: ℝ²/Λ, where Λ is a lattice of translations (all are affinely equivalent);
 - Polynomial deformation $\mathbb{R}^2/(f \circ \Lambda \circ f^{-1})$, where

$$(x,y) \xrightarrow{f} (x+y^2,y).$$

- Kuiper (1954) Every complete affine closed orientable 2-manifold is equivalent to either:
 - Euclidean: ℝ²/Λ, where Λ is a lattice of translations (all are affinely equivalent);
 - Polynomial deformation $\mathbb{R}^2/(f \circ \Lambda \circ f^{-1})$, where

$$(x,y) \xrightarrow{f} (x+y^2,y).$$

- Kuiper (1954) Every complete affine closed orientable 2-manifold is equivalent to either:
 - Euclidean: ℝ²/Λ, where Λ is a lattice of translations (all are affinely equivalent);
 - Polynomial deformation $\mathbb{R}^2/(f \circ \Lambda \circ f^{-1})$, where

$$(x,y) \xrightarrow{f} (x+y^2,y).$$

- Kuiper (1954) Every complete affine closed orientable 2-manifold is equivalent to either:
 - Euclidean: ℝ²/Λ, where Λ is a lattice of translations (all are affinely equivalent);
 - Polynomial deformation $\mathbb{R}^2/(f \circ \Lambda \circ f^{-1})$, where

$$(x,y) \xrightarrow{f} (x+y^2,y).$$

- Kuiper (1954) Every complete affine closed orientable 2-manifold is equivalent to either:
 - Euclidean: ℝ²/Λ, where Λ is a lattice of translations (all are affinely equivalent);
 - Polynomial deformation $\mathbb{R}^2/(f \circ \Lambda \circ f^{-1})$, where

$$(x,y) \xrightarrow{f} (x+y^2,y).$$

- Kuiper (1954) Every complete affine closed orientable 2-manifold is equivalent to either:
 - Euclidean: ℝ²/Λ, where Λ is a lattice of translations (all are affinely equivalent);
 - Polynomial deformation $\mathbb{R}^2/(f \circ \Lambda \circ f^{-1})$, where

$$(x,y) \xrightarrow{f} (x+y^2,y).$$

- Kuiper (1954) Every complete affine closed orientable 2-manifold is equivalent to either:
 - Euclidean: ℝ²/Λ, where Λ is a lattice of translations (all are affinely equivalent);
 - Polynomial deformation $\mathbb{R}^2/(f \circ \Lambda \circ f^{-1})$, where

$$(x,y) \xrightarrow{f} (x+y^2,y).$$

- Kuiper (1954) Every complete affine closed orientable 2-manifold is equivalent to either:
 - Euclidean: ℝ²/Λ, where Λ is a lattice of translations (all are affinely equivalent);
 - Polynomial deformation $\mathbb{R}^2/(f \circ \Lambda \circ f^{-1})$, where

$$(x,y) \xrightarrow{f} (x+y^2,y).$$

- Usually $Mod(\Sigma)$ too dynamicly interesting to form a quotient.
- ► (Baues 2000) Deformation space homeomorphic R², where origin {(0,0)} corresponds to Euclidean structure;
- ▶ Mapping class group action is *linear* GL(2, Z)-action on R² chaotic!
- The orbit space the moduli space of complete affine compact orientable 2-manifolds is non-Hausdorff and intractable. (Even though the corresponding representations are discrete embeddings.)
- In contrast, Mod(Σ) can act properly discrete even for non-discrete representations: hyperbolic structures on T² with single cone point.

• Usually $Mod(\Sigma)$ too dynamicly interesting to form a quotient.

- ► (Baues 2000) Deformation space homeomorphic R², where origin {(0,0)} corresponds to Euclidean structure;
- ▶ Mapping class group action is *linear* GL(2, Z)-action on R² chaotic!
- The orbit space the moduli space of complete affine compact orientable 2-manifolds is non-Hausdorff and intractable. (Even though the corresponding representations are discrete embeddings.)
- In contrast, Mod(Σ) can act properly discrete even for non-discrete representations: hyperbolic structures on T² with single cone point.

- Usually Mod(Σ) too dynamicly interesting to form a quotient.
- ► (Baues 2000) Deformation space homeomorphic R², where origin {(0,0)} corresponds to Euclidean structure;
- ▶ Mapping class group action is *linear* GL(2, Z)-action on R² chaotic!
- The orbit space the moduli space of complete affine compact orientable 2-manifolds is non-Hausdorff and intractable. (Even though the corresponding representations are discrete embeddings.)
- In contrast, Mod(Σ) can act properly discrete even for non-discrete representations: hyperbolic structures on T² with single cone point.

- Usually Mod(Σ) too dynamicly interesting to form a quotient.
- ► (Baues 2000) Deformation space homeomorphic R², where origin {(0,0)} corresponds to Euclidean structure;
- ► Mapping class group action is *linear* GL(2, Z)-action on R² chaotic!
- The orbit space the moduli space of complete affine compact orientable 2-manifolds is non-Hausdorff and intractable. (Even though the corresponding representations are discrete embeddings.)
- In contrast, Mod(Σ) can act properly discrete even for non-discrete representations: hyperbolic structures on T² with single cone point.

- Usually $Mod(\Sigma)$ too dynamicly interesting to form a quotient.
- ► (Baues 2000) Deformation space homeomorphic R², where origin {(0,0)} corresponds to Euclidean structure;
- ► Mapping class group action is *linear* GL(2, Z)-action on R² chaotic!
- The orbit space the moduli space of complete affine compact orientable 2-manifolds is non-Hausdorff and intractable. (Even though the corresponding representations are discrete embeddings.)
- In contrast, Mod(Σ) can act properly discrete even for non-discrete representations: hyperbolic structures on T² with single cone point.

- Usually $Mod(\Sigma)$ too dynamicly interesting to form a quotient.
- ► (Baues 2000) Deformation space homeomorphic R², where origin {(0,0)} corresponds to Euclidean structure;
- ► Mapping class group action is *linear* GL(2, Z)-action on R² chaotic!
- The orbit space the moduli space of complete affine compact orientable 2-manifolds is non-Hausdorff and intractable. (Even though the corresponding representations are discrete embeddings.)
- In contrast, Mod(Σ) can act properly discrete even for non-discrete representations: hyperbolic structures on T² with single cone point.

Hyperbolic geometry: X = H² and G = lsom(X)
 D_(G,X)(Σ) is Fricke space 𝔅(Σ) of isotopy classes of marked hyperbolic structures Σ → M.

$$\mathfrak{F}(\Sigma) \stackrel{\mathsf{hol}}{\hookrightarrow} \mathsf{Hom}(\pi, G))/G$$

- lmage comprises *discrete embeddings* $\pi \stackrel{\rho}{\hookrightarrow} G$.
- Equivalently, $\rho(\gamma)$ is hyperbolic if $\gamma \neq 1$.
- (Fricke-Klein ?) $\mathfrak{F}(\Sigma)$ diffeomorphic to $\mathbb{R}^{-3\chi(\Sigma)}$.
- Uniformization:
 ^{*}
 ^{*}
 ^(Σ) corresponds to marked conformal structures: Teichmüller space.
 ^(Δ)
 ^(Δ)
- Mod(Σ) acts properly on 𝔅(Σ) with quotient Riemann's moduli space of Riemann surfaces of fixed topology Σ.

Hyperbolic geometry: X = H² and G = lsom(X)
 D_(G,X)(Σ) is Fricke space 𝔅(Σ) of isotopy classes of marked hyperbolic structures Σ → M.

$$\mathfrak{F}(\Sigma) \stackrel{\mathsf{hol}}{\hookrightarrow} \mathsf{Hom}(\pi,G))/G$$

- lmage comprises *discrete embeddings* $\pi \stackrel{\rho}{\hookrightarrow} G$.
- Equivalently, $\rho(\gamma)$ is hyperbolic if $\gamma \neq 1$.
- (Fricke-Klein ?) $\mathfrak{F}(\Sigma)$ diffeomorphic to $\mathbb{R}^{-3\chi(\Sigma)}$.
- Uniformization:
 ^{*}
 ^{*}
 ^(Σ) corresponds to marked conformal structures: Teichmüller space.
 ^{*}
 ^(Δ)
 ^(Δ)
- Mod(Σ) acts properly on 𝔅(Σ) with quotient Riemann's moduli space of Riemann surfaces of fixed topology Σ.

Hyperbolic geometry: X = H² and G = lsom(X)
 D_(G,X)(Σ) is Fricke space 𝔅(Σ) of isotopy classes of marked hyperbolic structures Σ → M.

$$\mathfrak{F}(\Sigma) \stackrel{\mathsf{hol}}{\hookrightarrow} \mathsf{Hom}(\pi, G))/G$$

- Image comprises discrete embeddings $\pi \stackrel{\rho}{\hookrightarrow} G$.
- Equivalently, $\rho(\gamma)$ is hyperbolic if $\gamma \neq 1$.
- (Fricke-Klein ?) $\mathfrak{F}(\Sigma)$ diffeomorphic to $\mathbb{R}^{-3\chi(\Sigma)}$.
- Uniformization:
 ^{*}
 ^{*}
 ^(Σ) corresponds to marked conformal structures: Teichmüller space.
 ^(Δ)
 ^(Δ)
- Mod(Σ) acts properly on
 ³(Σ) with quotient Riemann's *moduli space* of Riemann surfaces of fixed topology Σ.

Hyperbolic geometry: X = H² and G = lsom(X)
 D_(G,X)(Σ) is Fricke space 𝔅(Σ) of isotopy classes of marked hyperbolic structures Σ → M.

$$\mathfrak{F}(\Sigma) \stackrel{\mathsf{hol}}{\hookrightarrow} \mathsf{Hom}(\pi, G))/G$$

- Image comprises discrete embeddings $\pi \stackrel{\rho}{\hookrightarrow} G$.
- Equivalently, $\rho(\gamma)$ is hyperbolic if $\gamma \neq 1$.
- (Fricke-Klein ?) $\mathfrak{F}(\Sigma)$ diffeomorphic to $\mathbb{R}^{-3\chi(\Sigma)}$.
- Uniformization:
 ³(Σ) corresponds to marked conformal structures: Teichmüller space.
- Mod(Σ) acts properly on 𝔅(Σ) with quotient Riemann's moduli space of Riemann surfaces of fixed topology Σ.

Hyperbolic geometry: X = H² and G = lsom(X)
 D_(G,X)(Σ) is Fricke space 𝔅(Σ) of isotopy classes of marked hyperbolic structures Σ → M.

$$\mathfrak{F}(\Sigma)\stackrel{\mathsf{hol}}{\hookrightarrow}\mathsf{Hom}(\pi,G))/G$$

- Image comprises discrete embeddings $\pi \stackrel{\rho}{\hookrightarrow} G$.
- Equivalently, $\rho(\gamma)$ is hyperbolic if $\gamma \neq 1$.
- (Fricke-Klein ?) $\mathfrak{F}(\Sigma)$ diffeomorphic to $\mathbb{R}^{-3\chi(\Sigma)}$.
- Uniformization:
 ³(Σ) corresponds to marked conformal structures: Teichmüller space.
- Mod(Σ) acts properly on 𝔅(Σ) with quotient Riemann's moduli space of Riemann surfaces of fixed topology Σ.

Hyperbolic geometry: X = H² and G = lsom(X)
 D_(G,X)(Σ) is Fricke space 𝔅(Σ) of isotopy classes of marked hyperbolic structures Σ → M.

$$\mathfrak{F}(\Sigma)\stackrel{\mathsf{hol}}{\hookrightarrow}\mathsf{Hom}(\pi,G))/G$$

- Image comprises discrete embeddings $\pi \stackrel{\rho}{\hookrightarrow} G$.
- Equivalently, $\rho(\gamma)$ is hyperbolic if $\gamma \neq 1$.
- (Fricke-Klein ?) $\mathfrak{F}(\Sigma)$ diffeomorphic to $\mathbb{R}^{-3\chi(\Sigma)}$.
- Uniformization:
 ³(Σ) corresponds to marked conformal structures: Teichmüller space.
- Mod(Σ) acts properly on 𝔅(Σ) with quotient Riemann's moduli space of Riemann surfaces of fixed topology Σ.
Fricke spaces of hyperbolic structures

Hyperbolic geometry: X = H² and G = lsom(X)
 D_(G,X)(Σ) is Fricke space 𝔅(Σ) of isotopy classes of marked hyperbolic structures Σ → M.

$$\mathfrak{F}(\Sigma)\stackrel{\mathsf{hol}}{\hookrightarrow}\mathsf{Hom}(\pi,G))/G$$

embeds $\mathfrak{F}(\Sigma)$ as a connected component.

- Image comprises discrete embeddings $\pi \stackrel{\rho}{\hookrightarrow} G$.
- Equivalently, $\rho(\gamma)$ is hyperbolic if $\gamma \neq 1$.
- (Fricke-Klein ?) $\mathfrak{F}(\Sigma)$ diffeomorphic to $\mathbb{R}^{-3\chi(\Sigma)}$.
- Uniformization:
 ³(Σ) corresponds to marked conformal structures: Teichmüller space.
- Mod(Σ) acts properly on 𝔅(Σ) with quotient Riemann's moduli space of Riemann surfaces of fixed topology Σ.

Fricke spaces of hyperbolic structures

Hyperbolic geometry: X = H² and G = lsom(X)
 D_(G,X)(Σ) is Fricke space 𝔅(Σ) of isotopy classes of marked hyperbolic structures Σ → M.

$$\mathfrak{F}(\Sigma)\stackrel{\mathsf{hol}}{\hookrightarrow}\mathsf{Hom}(\pi,G))/G$$

embeds $\mathfrak{F}(\Sigma)$ as a connected component.

- Image comprises discrete embeddings $\pi \stackrel{\rho}{\hookrightarrow} G$.
- Equivalently, $\rho(\gamma)$ is hyperbolic if $\gamma \neq 1$.
- (Fricke-Klein ?) $\mathfrak{F}(\Sigma)$ diffeomorphic to $\mathbb{R}^{-3\chi(\Sigma)}$.
- Uniformization:
 ^{*}
 ^{*}
 ^(Σ) corresponds to marked conformal structures: Teichmüller space.
- Mod(Σ) acts properly on
 ³(Σ) with quotient Riemann's moduli space of Riemann surfaces of fixed topology Σ.

 $\mathfrak{C}(\Sigma) \approx \mathbb{R}^{-8\chi(\Sigma)}.$

- $Mod(\Sigma)$ acts properly on $\mathfrak{C}(\Sigma)$.
- (Choi-Goldman 1993, conjectured by Hitchin 1992)

$$\mathfrak{C}(\Sigma) \stackrel{\mathsf{hol}}{\hookrightarrow} \mathsf{Hom}(\pi, \mathsf{SL}(3, \mathbb{R}))/\mathsf{SL}(3, \mathbb{R}).$$

embedding onto connected component.

- (Choi 1986) *M* decomposes *canonically* into convex pieces with geodesic boundary.
- Complete and explicit description:

 $\mathfrak{D}_{(\mathsf{PGL}(3,\mathbb{R}),\mathbb{RP}^2)}(\Sigma) \ \approx \ \mathfrak{C}(\Sigma) \times \mathbb{Z} \ \approx \ \mathbb{R}^{-8\chi(\Sigma)} \times \mathbb{Z}$

 $\mathfrak{C}(\Sigma) \approx \mathbb{R}^{-8\chi(\Sigma)}.$

• $Mod(\Sigma)$ acts properly on $\mathfrak{C}(\Sigma)$.

(Choi-Goldman 1993, conjectured by Hitchin 1992)

 $\mathfrak{C}(\Sigma) \stackrel{\mathsf{hol}}{\hookrightarrow} \mathsf{Hom}(\pi, \mathsf{SL}(3, \mathbb{R}))/\mathsf{SL}(3, \mathbb{R}).$

embedding onto connected component.

- (Choi 1986) *M* decomposes *canonically* into convex pieces with geodesic boundary.
- Complete and explicit description:

 $\mathfrak{D}_{(\mathsf{PGL}(3,\mathbb{R}),\mathbb{RP}^2)}(\Sigma) \ \approx \ \mathfrak{C}(\Sigma) \times \mathbb{Z} \ \approx \ \mathbb{R}^{-8\chi(\Sigma)} \times \mathbb{Z}$

► (Goldman 1990) Isotopy classes of marked convex \mathbb{RP}^2 -structures on Σ form deformation space

 $\mathfrak{C}(\Sigma) \approx \mathbb{R}^{-8\chi(\Sigma)}.$

- $Mod(\Sigma)$ acts properly on $\mathfrak{C}(\Sigma)$.
- (Choi-Goldman 1993, conjectured by Hitchin 1992)

 $\mathfrak{C}(\Sigma) \stackrel{\mathsf{hol}}{\hookrightarrow} \mathsf{Hom}(\pi, \mathsf{SL}(3, \mathbb{R}))/\mathsf{SL}(3, \mathbb{R}).$

embedding onto connected component.

- (Choi 1986) *M* decomposes *canonically* into convex pieces with geodesic boundary.
- Complete and explicit description:

 $\mathfrak{D}_{(\mathsf{PGL}(3,\mathbb{R}),\mathbb{RP}^2)}(\Sigma) \;\approx\; \mathfrak{C}(\Sigma)\times\mathbb{Z} \;\approx\; \mathbb{R}^{-8\chi(\Sigma)}\times\mathbb{Z}$

 $\mathfrak{C}(\Sigma) \approx \mathbb{R}^{-8\chi(\Sigma)}.$

- Mod(Σ) acts properly on C(Σ).
- (Choi-Goldman 1993, conjectured by Hitchin 1992)

$$\mathfrak{C}(\Sigma) \stackrel{\mathsf{hol}}{\hookrightarrow} \mathsf{Hom}(\pi, \mathsf{SL}(3, \mathbb{R}))/\mathsf{SL}(3, \mathbb{R}).$$

embedding onto connected component.

- (Choi 1986) *M* decomposes *canonically* into convex pieces with geodesic boundary.
- Complete and explicit description:

 $\mathfrak{D}_{(\mathsf{PGL}(3,\mathbb{R}),\mathbb{RP}^2)}(\Sigma) \;\approx\; \mathfrak{C}(\Sigma)\times\mathbb{Z} \;\approx\; \mathbb{R}^{-8\chi(\Sigma)}\times\mathbb{Z}$

 $\mathfrak{C}(\Sigma) \approx \mathbb{R}^{-8\chi(\Sigma)}.$

- Mod(Σ) acts properly on C(Σ).
- (Choi-Goldman 1993, conjectured by Hitchin 1992)

$$\mathfrak{C}(\Sigma) \stackrel{\mathsf{hol}}{\hookrightarrow} \mathsf{Hom}(\pi, \mathsf{SL}(3, \mathbb{R}))/\mathsf{SL}(3, \mathbb{R}).$$

embedding onto connected component.

- (Choi 1986) *M* decomposes *canonically* into convex pieces with geodesic boundary.
- Complete and explicit description:

 $\mathfrak{D}_{(\mathsf{PGL}(3,\mathbb{R}),\mathbb{RP}^2)}(\Sigma) \;\approx\; \mathfrak{C}(\Sigma)\times\mathbb{Z} \;\approx\; \mathbb{R}^{-8\chi(\Sigma)}\times\mathbb{Z}$

 $\mathfrak{C}(\Sigma) \approx \mathbb{R}^{-8\chi(\Sigma)}.$

- Mod(Σ) acts properly on C(Σ).
- (Choi-Goldman 1993, conjectured by Hitchin 1992)

$$\mathfrak{C}(\Sigma) \stackrel{\mathsf{hol}}{\hookrightarrow} \mathsf{Hom}(\pi, \mathsf{SL}(3, \mathbb{R}))/\mathsf{SL}(3, \mathbb{R}).$$

embedding onto connected component.

- (Choi 1986) *M* decomposes *canonically* into convex pieces with geodesic boundary.
- Complete and explicit description:

$$\mathfrak{D}_{(\mathsf{PGL}(3,\mathbb{R}),\mathbb{RP}^2)}(\Sigma) \;\approx\; \mathfrak{C}(\Sigma)\times\mathbb{Z} \;\approx\; \mathbb{R}^{-8\chi(\Sigma)}\times\mathbb{Z}$$

► (Hitchin 1990) G split R-semisimple Lie group: Hom(π, G)/G always contains connected component

 $\mathfrak{H}_G(\Sigma) pprox \mathbb{R}^{-\dim(G)\chi(\Sigma)}.$

- ► (Labourie 2003) Every Hitchin representation is a quasi-isometric discrete embedding π → G.
- $Mod(\Sigma)$ acts properly on $\mathfrak{H}_G(\Sigma)$.
- $\forall \gamma \neq 1, \ \rho(\gamma)$ is positive hyperbolic.
- ► (Labourie, Guichard, Fock-Goncharov) Hitchin representations characterized by positivity condition. Limit set is a Hölder continuous closed curve in RPⁿ.
- (Benoist 2001) In all dimensions, geodesic flow of Hilbert metric of strictly convex projective structures is Anosov.

► (Hitchin 1990) G split ℝ-semisimple Lie group: Hom(π, G)/G always contains connected component

 $\mathfrak{H}_{G}(\Sigma) \approx \mathbb{R}^{-\dim(G)\chi(\Sigma)}.$

- ► (Labourie 2003) Every Hitchin representation is a quasi-isometric discrete embedding π → G.
- $Mod(\Sigma)$ acts properly on $\mathfrak{H}_G(\Sigma)$.
- $\forall \gamma \neq 1$, $\rho(\gamma)$ is positive hyperbolic.
- ► (Labourie, Guichard, Fock-Goncharov) Hitchin representations characterized by positivity condition. Limit set is a Hölder continuous closed curve in RPⁿ.
- (Benoist 2001) In all dimensions, geodesic flow of Hilbert metric of strictly convex projective structures is Anosov.

$$\mathfrak{H}_{G}(\Sigma) \approx \mathbb{R}^{-\dim(G)\chi(\Sigma)}.$$

- (Labourie 2003) Every Hitchin representation is a quasi-isometric discrete embedding π → G.
- $Mod(\Sigma)$ acts properly on $\mathfrak{H}_G(\Sigma)$.
- $\forall \gamma \neq 1$, $\rho(\gamma)$ is positive hyperbolic.
- ► (Labourie, Guichard, Fock-Goncharov) Hitchin representations characterized by positivity condition. Limit set is a Hölder continuous closed curve in RPⁿ.
- (Benoist 2001) In all dimensions, geodesic flow of Hilbert metric of strictly convex projective structures is Anosov.

$$\mathfrak{H}_{G}(\Sigma) \approx \mathbb{R}^{-\dim(G)\chi(\Sigma)}.$$

- (Labourie 2003) Every Hitchin representation is a quasi-isometric discrete embedding π → G.
- $Mod(\Sigma)$ acts properly on $\mathfrak{H}_G(\Sigma)$.
- $\forall \gamma \neq 1$, $\rho(\gamma)$ is positive hyperbolic.
- ► (Labourie, Guichard, Fock-Goncharov) Hitchin representations characterized by positivity condition. Limit set is a Hölder continuous closed curve in RPⁿ.
- (Benoist 2001) In all dimensions, geodesic flow of Hilbert metric of strictly convex projective structures is Anosov.

$$\mathfrak{H}_{G}(\Sigma) \approx \mathbb{R}^{-\dim(G)\chi(\Sigma)}.$$

- ► (Labourie 2003) Every Hitchin representation is a quasi-isometric discrete embedding π → G.
- $Mod(\Sigma)$ acts properly on $\mathfrak{H}_G(\Sigma)$.
- $\forall \gamma \neq 1$, $\rho(\gamma)$ is positive hyperbolic.
- ► (Labourie, Guichard, Fock-Goncharov) Hitchin representations characterized by positivity condition. Limit set is a Hölder continuous closed curve in RPⁿ.
- (Benoist 2001) In all dimensions, geodesic flow of Hilbert metric of strictly convex projective structures is Anosov.

$$\mathfrak{H}_{G}(\Sigma) \approx \mathbb{R}^{-\dim(G)\chi(\Sigma)}.$$

- (Labourie 2003) Every Hitchin representation is a quasi-isometric discrete embedding π → G.
- $Mod(\Sigma)$ acts properly on $\mathfrak{H}_G(\Sigma)$.
- $\forall \gamma \neq 1$, $\rho(\gamma)$ is positive hyperbolic.
- ► (Labourie, Guichard, Fock-Goncharov) Hitchin representations characterized by positivity condition. Limit set is a Hölder continuous closed curve in RPⁿ.
- (Benoist 2001) In all dimensions, geodesic flow of Hilbert metric of strictly convex projective structures is Anosov.

$$\mathfrak{H}_{G}(\Sigma) \approx \mathbb{R}^{-\dim(G)\chi(\Sigma)}.$$

- ► (Labourie 2003) Every Hitchin representation is a quasi-isometric discrete embedding π → G.
- $Mod(\Sigma)$ acts properly on $\mathfrak{H}_G(\Sigma)$.
- $\forall \gamma \neq 1$, $\rho(\gamma)$ is positive hyperbolic.
- ► (Labourie, Guichard, Fock-Goncharov) Hitchin representations characterized by positivity condition. Limit set is a Hölder continuous closed curve in RPⁿ.
- (Benoist 2001) In all dimensions, geodesic flow of Hilbert metric of strictly convex projective structures is Anosov.

Let π = ⟨X₁,...,X_n⟩ be finitely generated and G Lie group:.
 The set Hom(π, G) of homomorphisms

$$\pi \longrightarrow G$$

admits an action of $Aut(\pi) \times Aut(G)$:

$$\pi \xrightarrow{\phi} \pi \xrightarrow{\rho} G \xrightarrow{\alpha} G$$

where $(\phi, \alpha) \in Aut(\pi) \times Aut(G)$, $\rho \in Hom(\pi, G)$. \blacktriangleright The quotient

 $\operatorname{Hom}(\pi, G)/G := \operatorname{Hom}(\pi, G)/(\{1\} \times \operatorname{Inn}(G))$

under the subgroup

$$\{1\} \times \mathsf{Inn}(G) \subset \mathsf{Aut}(\pi) \times \mathsf{Aut}(G)$$

admits an action of

$$\operatorname{Out}(\pi) := \operatorname{Aut}(\pi) / \operatorname{Inn}(\pi)$$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Let π = ⟨X₁,...,X_n⟩ be finitely generated and G Lie group:.
 The set Hom(π, G) of homomorphisms

$$\pi \longrightarrow G$$

admits an action of $Aut(\pi) \times Aut(G)$:

$$\pi \xrightarrow{\phi} \pi \xrightarrow{\rho} G \xrightarrow{\alpha} G$$

where $(\phi, \alpha) \in Aut(\pi) \times Aut(G)$, $\rho \in Hom(\pi, G)$. \blacktriangleright The quotient

 $\operatorname{Hom}(\pi, G)/G := \operatorname{Hom}(\pi, G)/(\{1\} \times \operatorname{Inn}(G))$

under the subgroup

$$\{1\} \times \mathsf{Inn}(G) \subset \mathsf{Aut}(\pi) \times \mathsf{Aut}(G)$$

admits an action of

$$\operatorname{Out}(\pi) := \operatorname{Aut}(\pi) / \operatorname{Inn}(\pi)$$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

- Let $\pi = \langle X_1, \dots, X_n \rangle$ be finitely generated and *G* Lie group:
- The set Hom (π, G) of homomorphisms

$$\pi \longrightarrow G$$

admits an action of $Aut(\pi) \times Aut(G)$:

$$\pi \xrightarrow{\phi} \pi \xrightarrow{\rho} G \xrightarrow{\alpha} G$$

where $(\phi, \alpha) \in Aut(\pi) \times Aut(G)$, $\rho \in Hom(\pi, G)$. \blacktriangleright The quotient

 $\operatorname{Hom}(\pi, G)/G := \operatorname{Hom}(\pi, G)/(\{1\} \times \operatorname{Inn}(G))$

under the subgroup

$$\{1\} \times \mathsf{Inn}(G) \subset \mathsf{Aut}(\pi) \times \mathsf{Aut}(G)$$

admits an action of

$$\operatorname{Out}(\pi) := \operatorname{Aut}(\pi) / \operatorname{Inn}(\pi)$$

- Let $\pi = \langle X_1, \ldots, X_n \rangle$ be finitely generated and *G* Lie group:.
- The set Hom (π, G) of homomorphisms

$$\pi \longrightarrow G$$

admits an action of $Aut(\pi) \times Aut(G)$:

$$\pi \xrightarrow{\phi} \pi \xrightarrow{\rho} G \xrightarrow{\alpha} G$$

where $(\phi, \alpha) \in Aut(\pi) \times Aut(G)$, $\rho \in Hom(\pi, G)$. The quotient

 $\operatorname{Hom}(\pi,G)/G := \operatorname{Hom}(\pi,G)/(\{1\} \times \operatorname{Inn}(G))$

under the subgroup

$$\{1\} imes \mathsf{Inn}(G) \subset \mathsf{Aut}(\pi) imes \mathsf{Aut}(G)$$

admits an action of

$$\operatorname{Out}(\pi) := \operatorname{Aut}(\pi)/\operatorname{Inn}(\pi).$$

- ► *G*: *algebraic* Lie group.
- ▶ $\rho \mapsto (\rho(X_1) \dots \rho(X_n))$ embeds $\operatorname{Hom}(\pi, G)$ onto an algebraic subset of G^n .
- ► Algebraic structure is {X₁,...,X_n}-independent and Aut(π) × Aut(G)-invariant.
- Geometric Invariant Theory quotient Hom(π, G)//G is Out(π)-invariant.
- Coordinate ring is the invariant subring

 $\mathbb{C}[\operatorname{Hom}(\pi, G)//G] = \mathbb{C}[\operatorname{Hom}(\pi, G)]^G \subset \mathbb{C}[\operatorname{Hom}(\pi, G)].$

- Examples are functions f_{α} , associated to:
 - A conjugacy class $[\alpha]$, where $\alpha \in \pi$;
 - An Inn(G)-invariant function $G \xrightarrow{f} \mathbb{R}$.

► *G*: *algebraic* Lie group.

- ▶ $\rho \mapsto (\rho(X_1) \dots \rho(X_n))$ embeds $\operatorname{Hom}(\pi, G)$ onto an algebraic subset of G^n .
- ► Algebraic structure is {X₁,...,X_n}-independent and Aut(π) × Aut(G)-invariant.
- Geometric Invariant Theory quotient Hom(π, G)//G is Out(π)-invariant.
- Coordinate ring is the invariant subring

 $\mathbb{C}[\operatorname{Hom}(\pi, G)//G] = \mathbb{C}[\operatorname{Hom}(\pi, G)]^G \subset \mathbb{C}[\operatorname{Hom}(\pi, G)].$

- Examples are functions f_{α} , associated to:
 - A conjugacy class $[\alpha]$, where $\alpha \in \pi$;
 - An Inn(G)-invariant function $G \xrightarrow{f} \mathbb{R}$.

- ► *G*: *algebraic* Lie group.
- $\rho \mapsto (\rho(X_1) \dots \rho(X_n))$ embeds $\operatorname{Hom}(\pi, G)$ onto an algebraic subset of G^n .
- ► Algebraic structure is {X₁,...,X_n}-independent and Aut(π) × Aut(G)-invariant.
- ▶ Geometric Invariant Theory quotient Hom(π, G)//G is Out(π)-invariant.
- Coordinate ring is the invariant subring

 $\mathbb{C}[\operatorname{Hom}(\pi, G)//G] = \mathbb{C}[\operatorname{Hom}(\pi, G)]^G \subset \mathbb{C}[\operatorname{Hom}(\pi, G)].$

- Examples are functions f_{α} , associated to:
 - A conjugacy class $[\alpha]$, where $\alpha \in \pi$;
 - An Inn(G)-invariant function $G \xrightarrow{f} \mathbb{R}$.

• *G*: *algebraic* Lie group.

• $\rho \mapsto (\rho(X_1) \dots \rho(X_n))$ embeds $\operatorname{Hom}(\pi, G)$ onto an algebraic subset of G^n .

- ► Algebraic structure is {X₁,...,X_n}-independent and Aut(π) × Aut(G)-invariant.
- Geometric Invariant Theory quotient Hom(π, G)//G is Out(π)-invariant.
- Coordinate ring is the invariant subring

 $\mathbb{C}[\operatorname{Hom}(\pi, G)//G] = \mathbb{C}[\operatorname{Hom}(\pi, G)]^G \subset \mathbb{C}[\operatorname{Hom}(\pi, G)].$

- Examples are functions f_{α} , associated to:
 - A conjugacy class $[\alpha]$, where $\alpha \in \pi$;
 - An Inn(G)-invariant function $G \xrightarrow{f} \mathbb{R}$.

• *G*: *algebraic* Lie group.

• $\rho \mapsto (\rho(X_1) \dots \rho(X_n))$ embeds $\operatorname{Hom}(\pi, G)$ onto an algebraic subset of G^n .

- ► Algebraic structure is {X₁,...,X_n}-independent and Aut(π) × Aut(G)-invariant.
- ▶ Geometric Invariant Theory quotient Hom(π, G)//G is Out(π)-invariant.
- Coordinate ring is the invariant subring

 $\mathbb{C}[\operatorname{Hom}(\pi, G)//G] = \mathbb{C}[\operatorname{Hom}(\pi, G)]^G \subset \mathbb{C}[\operatorname{Hom}(\pi, G)].$

- Examples are functions f_{α} , associated to:
 - A conjugacy class $[\alpha]$, where $\alpha \in \pi$;
 - An Inn(G)-invariant function $G \xrightarrow{f} \mathbb{R}$.

• *G*: *algebraic* Lie group.

• $\rho \mapsto (\rho(X_1) \dots \rho(X_n))$ embeds $\operatorname{Hom}(\pi, G)$ onto an algebraic subset of G^n .

- ► Algebraic structure is {X₁,...,X_n}-independent and Aut(π) × Aut(G)-invariant.
- ▶ Geometric Invariant Theory quotient Hom(π, G)//G is Out(π)-invariant.
- Coordinate ring is the invariant subring

 $\mathbb{C}[\operatorname{Hom}(\pi, G)//G] = \mathbb{C}[\operatorname{Hom}(\pi, G)]^G \subset \mathbb{C}[\operatorname{Hom}(\pi, G)].$

• Examples are functions f_{α} , associated to:

- A conjugacy class $[\alpha]$, where $\alpha \in \pi$;
- An Inn(G)-invariant function $G \xrightarrow{f} \mathbb{R}$.

• *G*: *algebraic* Lie group.

• $\rho \mapsto (\rho(X_1) \dots \rho(X_n))$ embeds $\operatorname{Hom}(\pi, G)$ onto an algebraic subset of G^n .

- ► Algebraic structure is {X₁,...,X_n}-independent and Aut(π) × Aut(G)-invariant.
- Geometric Invariant Theory quotient Hom(π, G)//G is Out(π)-invariant.
- Coordinate ring is the invariant subring

 $\mathbb{C}[\operatorname{Hom}(\pi, G)//G] = \mathbb{C}[\operatorname{Hom}(\pi, G)]^G \subset \mathbb{C}[\operatorname{Hom}(\pi, G)].$

- Examples are functions f_{α} , associated to:
 - A conjugacy class $[\alpha]$, where $\alpha \in \pi$;
 - An Inn(G)-invariant function $G \xrightarrow{f} \mathbb{R}$.

▶ Invariant function $G \xrightarrow{f} \mathbb{R} \Longrightarrow$ Function f_{α} on Hom $(\pi, G)/G$

$$\operatorname{Hom}(\pi, G)/G \xrightarrow{f_{\alpha}} \mathbb{R}$$
$$[\rho] \longmapsto f(\rho(\alpha))$$

Conjugacy class of $\alpha \in \pi$ corresponds to free homotopy class of closed oriented loop $\alpha \subset \Sigma$.

- These functions generate the coordinate ring.
- ▶ Example: *Trace* $GL(n, \mathbb{R}) \xrightarrow{tr} \mathbb{R}$
- Another example: *Displacement length* on $SL(2, \mathbb{R})$:

$$\ell(A) := \min_{x \in \mathsf{H}^2} d(x, A(x))$$

▶ Invariant function $G \xrightarrow{f} \mathbb{R} \Longrightarrow$ Function f_{α} on Hom $(\pi, G)/G$

$$\mathsf{Hom}(\pi, \mathcal{G})/\mathcal{G} \xrightarrow{f_{\alpha}} \mathbb{R}$$
$$[\rho] \longmapsto f(\rho(\alpha))$$

Conjugacy class of $\alpha \in \pi$ corresponds to free homotopy class of closed oriented loop $\alpha \subset \Sigma$.

- These functions generate the coordinate ring.
- ▶ Example: *Trace* $GL(n, \mathbb{R}) \xrightarrow{tr} \mathbb{R}$
- Another example: *Displacement length* on $SL(2, \mathbb{R})$:

$$\ell(A) := \min_{x \in \mathsf{H}^2} d(x, A(x))$$

▶ Invariant function $G \xrightarrow{f} \mathbb{R} \Longrightarrow$ Function f_{α} on Hom $(\pi, G)/G$

$$\mathsf{Hom}(\pi, \mathcal{G})/\mathcal{G} \xrightarrow{f_{\alpha}} \mathbb{R}$$
$$[\rho] \longmapsto f(\rho(\alpha))$$

Conjugacy class of $\alpha \in \pi$ corresponds to free homotopy class of closed oriented loop $\alpha \subset \Sigma$.

- These functions generate the coordinate ring.
- ▶ Example: *Trace* $GL(n, \mathbb{R}) \xrightarrow{tr} \mathbb{R}$
- Another example: *Displacement length* on $SL(2, \mathbb{R})$:

$$\ell(A) := \min_{x \in \mathsf{H}^2} d(x, A(x))$$

▶ Invariant function $G \xrightarrow{f} \mathbb{R} \Longrightarrow$ Function f_{α} on Hom $(\pi, G)/G$

$$\mathsf{Hom}(\pi, \mathcal{G})/\mathcal{G} \xrightarrow{f_{\alpha}} \mathbb{R}$$
$$[\rho] \longmapsto f(\rho(\alpha))$$

Conjugacy class of $\alpha \in \pi$ corresponds to free homotopy class of closed oriented loop $\alpha \subset \Sigma$.

- These functions generate the coordinate ring.
- Example: *Trace* $GL(n, \mathbb{R}) \xrightarrow{tr} \mathbb{R}$
- Another example: *Displacement length* on $SL(2, \mathbb{R})$:

$$\ell(A) := \min_{x \in \mathsf{H}^2} d(x, A(x))$$

• Invariant function $G \xrightarrow{f} \mathbb{R} \Longrightarrow$ Function f_{α} on Hom $(\pi, G)/G$

$$\mathsf{Hom}(\pi, \mathcal{G})/\mathcal{G} \xrightarrow{f_{\alpha}} \mathbb{R}$$
$$[\rho] \longmapsto f(\rho(\alpha))$$

Conjugacy class of $\alpha \in \pi$ corresponds to free homotopy class of closed oriented loop $\alpha \subset \Sigma$.

- These functions generate the coordinate ring.
- Example: *Trace* $GL(n, \mathbb{R}) \xrightarrow{tr} \mathbb{R}$
- Another example: *Displacement length* on $SL(2, \mathbb{R})$:

$$\ell(A) := \min_{x \in \mathsf{H}^2} d(x, A(x))$$

• Invariant function $G \xrightarrow{f} \mathbb{R} \Longrightarrow$ Function f_{α} on Hom $(\pi, G)/G$

$$\mathsf{Hom}(\pi, \mathcal{G})/\mathcal{G} \xrightarrow{f_{\alpha}} \mathbb{R}$$
$$[\rho] \longmapsto f(\rho(\alpha))$$

Conjugacy class of $\alpha \in \pi$ corresponds to free homotopy class of closed oriented loop $\alpha \subset \Sigma$.

- These functions generate the coordinate ring.
- Example: *Trace* $GL(n, \mathbb{R}) \xrightarrow{tr} \mathbb{R}$
- Another example: *Displacement length* on $SL(2, \mathbb{R})$:

$$\ell(A) := \min_{x \in \mathsf{H}^2} d(x, A(x))$$

▶ Restrict to the subset Hyp₊ ⊂ SL(3, ℝ) consisting of *positive* hyperbolic elements (diagonalizable over ℝ):

$$A \sim \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}$$

where $\lambda_1 > \lambda_2 > \lambda_3 > 0$ and $\lambda_1 \lambda_2 \lambda_3 = 1$.

The Hilbert displacement corresponds to the invariant function

$$\ell(A) := \log(\lambda_1/\lambda_3) = \log(\lambda_1) - \log(\lambda_3)$$

▶ The *bulging parameter* is the invariant function

$$\beta(A) := \log(\lambda_2)$$

► Restrict to the subset Hyp₊ ⊂ SL(3, ℝ) consisting of *positive* hyperbolic elements (diagonalizable over ℝ):

$$A\sim egin{bmatrix} \lambda_1 & 0 & 0 \ 0 & \lambda_2 & 0 \ 0 & 0 & \lambda_3 \end{bmatrix}$$

where $\lambda_1 > \lambda_2 > \lambda_3 > 0$ and $\lambda_1 \lambda_2 \lambda_3 = 1$.

The Hilbert displacement corresponds to the invariant function

$$\ell(A) := \log(\lambda_1/\lambda_3) = \log(\lambda_1) - \log(\lambda_3)$$

The bulging parameter is the invariant function

$$\beta(A) := \log(\lambda_2)$$

A D M 4 目 M 4 E M 4 E M 4 E M 4 C M

► Restrict to the subset Hyp₊ ⊂ SL(3, ℝ) consisting of *positive* hyperbolic elements (diagonalizable over ℝ):

$$A \sim \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}$$

where $\lambda_1 > \lambda_2 > \lambda_3 > 0$ and $\lambda_1 \lambda_2 \lambda_3 = 1$.

The Hilbert displacement corresponds to the invariant function

$$\ell(A) := \log(\lambda_1/\lambda_3) = \log(\lambda_1) - \log(\lambda_3)$$

The bulging parameter is the invariant function

$$\beta(A) := \log(\lambda_2)$$

A D M 4 目 M 4 E M 4 E M 4 E M 4 C M

► Restrict to the subset Hyp₊ ⊂ SL(3, ℝ) consisting of *positive* hyperbolic elements (diagonalizable over ℝ):

$$A \sim \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}$$

where $\lambda_1 > \lambda_2 > \lambda_3 > 0$ and $\lambda_1 \lambda_2 \lambda_3 = 1$.

 The Hilbert displacement corresponds to the invariant function

$$\ell(A) := \log(\lambda_1/\lambda_3) = \log(\lambda_1) - \log(\lambda_3)$$

The bulging parameter is the invariant function

$$\beta(A) := \log(\lambda_2)$$

A D M 4 目 M 4 E M 4 E M 4 E M 4 C M
- On 𝔅(Σ), ℓ_α associates to a marked hyperbolic surface Σ ≈ M length of the unique closed geodesic homotopic to α in M.
- On C(Σ), ℓ_α associates to a marked convex ℝP²-surface Σ ≈ M the Hilbert length of the unique closed geodesic homotopic to α in M.
- ► (Fricke-Klein ?) The marked length spectrum characterizes hyperbolic structures in 𝔅(Σ).
- (Inkang Kim, 2001) The marked Hilbert length spectrum characterizes ℝP²-structures in 𝔅(Σ).

- On 𝔅(Σ), ℓ_α associates to a marked hyperbolic surface Σ ≈ M length of the unique closed geodesic homotopic to α in M.
- On C(Σ), ℓ_α associates to a marked convex ℝP²-surface Σ ≈ M the Hilbert length of the unique closed geodesic homotopic to α in M.
- ► (Fricke-Klein ?) The marked length spectrum characterizes hyperbolic structures in 𝔅(Σ).
- (Inkang Kim, 2001) The marked Hilbert length spectrum characterizes ℝP²-structures in 𝔅(Σ).

- On 𝔅(Σ), ℓ_α associates to a marked hyperbolic surface Σ ≈ M length of the unique closed geodesic homotopic to α in M.
- On 𝔅(Σ), ℓ_α associates to a marked convex ℝP²-surface Σ ≈ M the Hilbert length of the unique closed geodesic homotopic to α in M.
- ► (Fricke-Klein ?) The marked length spectrum characterizes hyperbolic structures in 𝔅(Σ).
- (Inkang Kim, 2001) The marked Hilbert length spectrum characterizes ℝP²-structures in 𝔅(Σ).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

- On 𝔅(Σ), ℓ_α associates to a marked hyperbolic surface Σ ≈ M length of the unique closed geodesic homotopic to α in M.
- On 𝔅(Σ), ℓ_α associates to a marked convex ℝP²-surface Σ ≈ M the Hilbert length of the unique closed geodesic homotopic to α in M.
- ► (Fricke-Klein ?) The marked length spectrum characterizes hyperbolic structures in 𝔅(Σ).
- (Inkang Kim, 2001) The marked Hilbert length spectrum characterizes ℝP²-structures in 𝔅(Σ).

- On 𝔅(Σ), ℓ_α associates to a marked hyperbolic surface Σ ≈ M length of the unique closed geodesic homotopic to α in M.
- On C(Σ), ℓ_α associates to a marked convex ℝP²-surface Σ ≈ M the Hilbert length of the unique closed geodesic homotopic to α in M.
- (Inkang Kim, 2001) The marked Hilbert length spectrum characterizes ℝP²-structures in 𝔅(Σ).

• Cut Σ along N simple closed curves σ_i into 3-holed spheres (pants). \Longrightarrow Explicit parametrization $\mathfrak{F}(\Sigma) \longrightarrow \mathbb{R}^{6g-6}$.

• $2g - 2 = \chi(\Sigma)/\chi(P)$ pants P_j and

$$N := 3/2(2g - 2) = 3g - 3.$$

For a marked hyperbolic surface Σ ≈ M, can represent each σ_i by a simple closed geodesic on M. All these σ_i are disjoint.

• Cut Σ along N simple closed curves σ_i into 3-holed spheres (pants). \Longrightarrow Explicit parametrization $\mathfrak{F}(\Sigma) \longrightarrow \mathbb{R}^{6g-6}$.

• $2g - 2 = \chi(\Sigma)/\chi(P)$ pants P_j and

$$N := 3/2(2g - 2) = 3g - 3.$$

For a marked hyperbolic surface Σ ≈ M, can represent each σ_i by a simple closed geodesic on M. All these σ_i are disjoint.

• Cut Σ along N simple closed curves σ_i into 3-holed spheres (pants). \Longrightarrow Explicit parametrization $\mathfrak{F}(\Sigma) \longrightarrow \mathbb{R}^{6g-6}$.

• $2g - 2 = \chi(\Sigma)/\chi(P)$ pants P_j and

$$N := 3/2(2g - 2) = 3g - 3.$$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

For a marked hyperbolic surface Σ ≈ M, can represent each σ_i by a simple closed geodesic on M. All these σ_i are disjoint.

• Cut Σ along N simple closed curves σ_i into 3-holed spheres (pants). \Longrightarrow Explicit parametrization $\mathfrak{F}(\Sigma) \longrightarrow \mathbb{R}^{6g-6}$.

• $2g - 2 = \chi(\Sigma)/\chi(P)$ pants P_j and

$$N := 3/2(2g - 2) = 3g - 3.$$

For a marked hyperbolic surface Σ ≈ M, can represent each σ_i by a simple closed geodesic on M. All these σ_i are disjoint.

- Let I_i be the length of the geodesic corresponding to σ_i . The hyperbolic structure on P_j is completely determined by the the three lengths of the components of ∂P_j .
- these length functions define a surjection

$$\mathfrak{F}(\Sigma) \xrightarrow{\ell} \mathbb{R}^N_+. \tag{1}$$

which describes the hyperbolic structure on $M|\sigma$.

- ▶ The components of $\partial(M|\sigma)$ are identified $\sigma_i^- \longleftrightarrow \sigma_i^+$, one pair for each component $\sigma_i \subset \sigma$.
- For each σ_i, choose τ_i ∈ ℝ and reidentify M|σ σ_i⁻ ←→ σ_i⁺, one pair for each σ_i, obtaining a new marked hyperbolic surface

$$S \approx M_{\tau_1,...,\tau_N}$$

- Let I_i be the length of the geodesic corresponding to σ_i . The hyperbolic structure on P_j is completely determined by the the three lengths of the components of ∂P_i .
- these length functions define a surjection

$$\mathfrak{F}(\Sigma) \xrightarrow{\ell} \mathbb{R}^N_+. \tag{1}$$

which describes the hyperbolic structure on $M|\sigma$.

- ▶ The components of $\partial(M|\sigma)$ are identified $\sigma_i^- \longleftrightarrow \sigma_i^+$, one pair for each component $\sigma_i \subset \sigma$.
- For each σ_i, choose τ_i ∈ ℝ and reidentify M|σ σ_i⁻ ←→ σ_i⁺, one pair for each σ_i, obtaining a new marked hyperbolic surface

$$S \approx M_{\tau_1,...,\tau_N}$$

- Let I_i be the length of the geodesic corresponding to σ_i . The hyperbolic structure on P_j is completely determined by the the three lengths of the components of ∂P_i .
- these length functions define a surjection

$$\mathfrak{F}(\Sigma) \xrightarrow{\ell} \mathbb{R}^N_+.$$
 (1)

which describes the hyperbolic structure on $M|\sigma$.

- ▶ The components of $\partial(M|\sigma)$ are identified $\sigma_i^- \longleftrightarrow \sigma_i^+$, one pair for each component $\sigma_i \subset \sigma$.
- For each σ_i, choose τ_i ∈ ℝ and reidentify M|σ σ_i⁻ ←→ σ_i⁺, one pair for each σ_i, obtaining a new marked hyperbolic surface

$$S \approx M_{\tau_1,...,\tau_N}$$

- Let I_i be the length of the geodesic corresponding to σ_i . The hyperbolic structure on P_j is completely determined by the the three lengths of the components of ∂P_i .
- these length functions define a surjection

$$\mathfrak{F}(\Sigma) \xrightarrow{\ell} \mathbb{R}^N_+.$$
 (1)

which describes the hyperbolic structure on $M|\sigma$.

- ► The components of $\partial(M|\sigma)$ are identified $\sigma_i^- \longleftrightarrow \sigma_i^+$, one pair for each component $\sigma_i \subset \sigma$.
- For each σ_i, choose τ_i ∈ ℝ and reidentify M|σ σ_i⁻ ←→ σ_i⁺, one pair for each σ_i, obtaining a new marked hyperbolic surface

$$S \approx M_{\tau_1,...,\tau_N}$$

- Let I_i be the length of the geodesic corresponding to σ_i . The hyperbolic structure on P_j is completely determined by the the three lengths of the components of ∂P_i .
- these length functions define a surjection

$$\mathfrak{F}(\Sigma) \xrightarrow{\ell} \mathbb{R}^N_+.$$
 (1)

which describes the hyperbolic structure on $M|\sigma$.

- ▶ The components of $\partial(M|\sigma)$ are identified $\sigma_i^- \longleftrightarrow \sigma_i^+$, one pair for each component $\sigma_i \subset \sigma$.
- For each σ_i, choose τ_i ∈ ℝ and reidentify M|σ σ_i⁻ ←→ σ_i⁺, one pair for each σ_i, obtaining a new marked hyperbolic surface

$$S \approx M_{\tau_1,...,\tau_N}$$

- Defines an ℝ^N-action which is simply transitive on the fibers of 𝔅(Σ) ^ℓ→ ℝ^N₊.
- (Wolpert 1977) The symplectic form is

$$\sum_{i=1}^N d\ell_i \wedge d\tau_i$$

► Completely integrable Hamiltonian system: *l* is a Cartesian projection for symplectomorphism.

$$\mathfrak{F}(\Sigma) \longrightarrow \mathbb{R}^N \times \mathbb{R}^N_+$$

and ℓ is a *moment map* for a free, proper Hamiltonian \mathbb{R}^N -action.

- Defines an ℝ^N-action which is simply transitive on the fibers of 𝔅(Σ) ^ℓ→ ℝ^N₊.
- (Wolpert 1977) The symplectic form is

$$\sum_{i=1}^N d\ell_i \wedge d\tau_i$$

► Completely integrable Hamiltonian system: *l* is a Cartesian projection for symplectomorphism.

$$\mathfrak{F}(\Sigma) \longrightarrow \mathbb{R}^N \times \mathbb{R}^N_+$$

and ℓ is a *moment map* for a free, proper Hamiltonian \mathbb{R}^N -action.

- ▶ Defines an \mathbb{R}^N -action which is simply transitive on the fibers of $\mathfrak{F}(\Sigma) \xrightarrow{\ell} \mathbb{R}^N_+$.
- (Wolpert 1977) The symplectic form is

$$\sum_{i=1}^N d\ell_i \wedge d\tau_i$$

► Completely integrable Hamiltonian system: *l* is a Cartesian projection for symplectomorphism.

$$\mathfrak{F}(\Sigma) \longrightarrow \mathbb{R}^N \times \mathbb{R}^N_+$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

and ℓ is a *moment map* for a free, proper Hamiltonian \mathbb{R}^N -action.

- ▶ Defines an \mathbb{R}^N -action which is simply transitive on the fibers of $\mathfrak{F}(\Sigma) \xrightarrow{\ell} \mathbb{R}^N_+$.
- (Wolpert 1977) The symplectic form is

$$\sum_{i=1}^N d\ell_i \wedge d\tau_i$$

► Completely integrable Hamiltonian system: l is a Cartesian projection for symplectomorphism.

$$\mathfrak{F}(\Sigma) \longrightarrow \mathbb{R}^N imes \mathbb{R}^N_+$$

and ℓ is a moment map for a free, proper Hamiltonian $\mathbb{R}^N\text{-}\mathsf{action}.$

Some earthquake deformations in the universal covering

 Hong Chan Kim (1999) generalized Wolpert's theorem to define a a symplectomorphism

$$\mathfrak{C}(\Sigma) \longrightarrow \mathbb{R}^{16g-6}$$

- ▶ ∃ *natural* completely integrable system in this case?
- (Labourie 1997, Loftin 1999) Mod(Σ)-invariant fibration of C(Σ) as holomorphic vector bundle over Teichmüller space.
- The fiber over a marked Riemann surface $\Sigma \longrightarrow X$ equals $H^0(X; \kappa_X^3)$ comprising holomorphic cubic differentials on X.

 Hong Chan Kim (1999) generalized Wolpert's theorem to define a a symplectomorphism

 $\mathfrak{C}(\Sigma) \longrightarrow \mathbb{R}^{16g-6}$

- ▶ ∃ *natural* completely integrable system in this case?
- (Labourie 1997, Loftin 1999) Mod(Σ)-invariant fibration of C(Σ) as holomorphic vector bundle over Teichmüller space.
- The fiber over a marked Riemann surface $\Sigma \longrightarrow X$ equals $H^0(X; \kappa_X^3)$ comprising holomorphic cubic differentials on X.

 Hong Chan Kim (1999) generalized Wolpert's theorem to define a a symplectomorphism

$$\mathfrak{C}(\Sigma) \longrightarrow \mathbb{R}^{16g-6}$$

- ▶ \exists natural completely integrable system in this case?
- The fiber over a marked Riemann surface $\Sigma \longrightarrow X$ equals $H^0(X; \kappa_X^3)$ comprising holomorphic cubic differentials on X.

 Hong Chan Kim (1999) generalized Wolpert's theorem to define a a symplectomorphism

$$\mathfrak{C}(\Sigma) \longrightarrow \mathbb{R}^{16g-6}$$

- $\blacktriangleright \exists$ natural completely integrable system in this case?
- (Labourie 1997, Loftin 1999) Mod(Σ)-invariant fibration of C(Σ) as holomorphic vector bundle over Teichmüller space.
- The fiber over a marked Riemann surface $\Sigma \longrightarrow X$ equals $H^0(X; \kappa_X^3)$ comprising holomorphic cubic differentials on X.

 Hong Chan Kim (1999) generalized Wolpert's theorem to define a a symplectomorphism

$$\mathfrak{C}(\Sigma) \longrightarrow \mathbb{R}^{16g-6}$$

- \blacktriangleright \exists *natural* completely integrable system in this case?
- The fiber over a marked Riemann surface Σ → X equals H⁰(X; κ³_X) comprising holomorphic cubic differentials on X.

 Hong Chan Kim (1999) generalized Wolpert's theorem to define a a symplectomorphism

$$\mathfrak{C}(\Sigma) \longrightarrow \mathbb{R}^{16g-6}$$

- \blacktriangleright \exists *natural* completely integrable system in this case?
- (Labourie 1997, Loftin 1999) Mod(Σ)-invariant fibration of C(Σ) as holomorphic vector bundle over Teichmüller space.
- The fiber over a marked Riemann surface Σ → X equals H⁰(X; κ³_X) comprising holomorphic cubic differentials on X.

- Σ oriented closed surface and B Ad-invariant nondegeneate symmetric pairing on g.
- For $\rho \in \operatorname{Hom}(\pi, G)$, the composition

$$\pi \xrightarrow{\rho} G \xrightarrow{\operatorname{Ad}} \operatorname{Aut}(\mathfrak{g})$$

defines a *local coefficient system* g_{Adρ} over Σ,
 inheriting a symmetric nondegenerate pairing

$$\mathfrak{g}_{\mathsf{Ad}\rho} \times \mathfrak{g}_{\mathsf{Ad}\rho} \xrightarrow{\mathbb{B}} \mathbb{R}$$

- $[\rho]$ smooth point $\Rightarrow T_{[\rho]}$ Hom $(\pi, G)/G = H^1(\Sigma, \mathfrak{g}_{Ad\rho}).$
- ► Cup-product + coefficient pairing B + orientation ⇒ bilinear pairing

$$H^1(\Sigma, \mathfrak{g}_{\mathrm{Ad}
ho}) imes H^1(\Sigma, \mathfrak{g}_{\mathrm{Ad}
ho}) \xrightarrow{\omega_{
ho}} H^2(\Sigma, \mathbb{R}) \cong \mathbb{R}$$

- Σ oriented closed surface and B Ad-invariant nondegeneate symmetric pairing on g.
- For $\rho \in \operatorname{Hom}(\pi, G)$, the composition

$$\pi \xrightarrow{\rho} G \xrightarrow{\operatorname{Ad}} \operatorname{Aut}(\mathfrak{g})$$

defines a *local coefficient system* g_{Adρ} over Σ,
 inheriting a symmetric nondegenerate pairing

$$\mathfrak{g}_{\mathrm{Ad}\rho} \times \mathfrak{g}_{\mathrm{Ad}\rho} \xrightarrow{\mathbb{B}} \mathbb{R}$$

- $[\rho]$ smooth point $\Rightarrow T_{[\rho]}$ Hom $(\pi, G)/G = H^1(\Sigma, \mathfrak{g}_{Ad\rho}).$
- ► Cup-product + coefficient pairing B + orientation ⇒ bilinear pairing

$$H^1(\Sigma, \mathfrak{g}_{\mathrm{Ad}
ho}) imes H^1(\Sigma, \mathfrak{g}_{\mathrm{Ad}
ho}) \xrightarrow{\omega_{
ho}} H^2(\Sigma, \mathbb{R}) \cong \mathbb{R}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Σ oriented closed surface and B Ad-invariant nondegeneate symmetric pairing on g.
- For $\rho \in \operatorname{Hom}(\pi, G)$, the composition

$$\pi \xrightarrow{\rho} G \xrightarrow{\mathsf{Ad}} \mathsf{Aut}(\mathfrak{g})$$

defines a *local coefficient system* g_{Adρ} over Σ,
 inheriting a symmetric nondegenerate pairing

$$\mathfrak{g}_{\mathrm{Ad}\rho} \times \mathfrak{g}_{\mathrm{Ad}\rho} \xrightarrow{\mathbb{B}} \mathbb{R}$$

- $[\rho]$ smooth point $\Rightarrow T_{[\rho]}$ Hom $(\pi, G)/G = H^1(\Sigma, \mathfrak{g}_{Ad\rho}).$
- ► Cup-product + coefficient pairing B + orientation ⇒ bilinear pairing

$$H^1(\Sigma, \mathfrak{g}_{\mathrm{Ad}
ho}) imes H^1(\Sigma, \mathfrak{g}_{\mathrm{Ad}
ho}) \xrightarrow{\omega_{
ho}} H^2(\Sigma, \mathbb{R}) \cong \mathbb{R}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ► Σ oriented closed surface and B Ad-invariant nondegeneate symmetric pairing on g.
- For $\rho \in \operatorname{Hom}(\pi, G)$, the composition

$$\pi \xrightarrow{\rho} G \xrightarrow{\operatorname{\mathsf{Ad}}} \operatorname{\mathsf{Aut}}(\mathfrak{g})$$

defines a *local coefficient system* $\mathfrak{g}_{Ad\rho}$ over Σ ,

inheriting a symmetric nondegenerate pairing

$$\mathfrak{g}_{\mathsf{Ad}\rho} \times \mathfrak{g}_{\mathsf{Ad}\rho} \xrightarrow{\mathbb{B}} \mathbb{R}$$

- $[\rho]$ smooth point $\Rightarrow T_{[\rho]}$ Hom $(\pi, G)/G = H^1(\Sigma, \mathfrak{g}_{Ad\rho}).$
- ► Cup-product + coefficient pairing B + orientation ⇒ bilinear pairing

$$H^1(\Sigma, \mathfrak{g}_{\mathrm{Ad}
ho}) imes H^1(\Sigma, \mathfrak{g}_{\mathrm{Ad}
ho}) \xrightarrow{\omega_{
ho}} H^2(\Sigma, \mathbb{R}) \cong \mathbb{R}$$

- Σ oriented closed surface and B Ad-invariant nondegeneate symmetric pairing on g.
- For $\rho \in \operatorname{Hom}(\pi, G)$, the composition

$$\pi \xrightarrow{\rho} G \xrightarrow{\operatorname{\mathsf{Ad}}} \operatorname{\mathsf{Aut}}(\mathfrak{g})$$

defines a local coefficient system $\mathfrak{g}_{Ad\rho}$ over Σ ,

inheriting a symmetric nondegenerate pairing

$$\mathfrak{g}_{\mathsf{Ad}\rho} \times \mathfrak{g}_{\mathsf{Ad}\rho} \xrightarrow{\mathbb{B}} \mathbb{R}$$

- $[\rho]$ smooth point $\Rightarrow T_{[\rho]}$ Hom $(\pi, G)/G = H^1(\Sigma, \mathfrak{g}_{Ad\rho}).$
- ▶ Cup-product + coefficient pairing B + orientation ⇒ bilinear pairing

$$H^1(\Sigma, \mathfrak{g}_{\mathrm{Ad}
ho}) imes H^1(\Sigma, \mathfrak{g}_{\mathrm{Ad}
ho}) \xrightarrow{\omega_{
ho}} H^2(\Sigma, \mathbb{R}) \cong \mathbb{R}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ► ∑ oriented closed surface and B Ad-invariant nondegeneate symmetric pairing on g.
- For $\rho \in \operatorname{Hom}(\pi, G)$, the composition

$$\pi \xrightarrow{\rho} G \xrightarrow{\operatorname{\mathsf{Ad}}} \operatorname{\mathsf{Aut}}(\mathfrak{g})$$

defines a local coefficient system $\mathfrak{g}_{Ad\rho}$ over Σ ,

inheriting a symmetric nondegenerate pairing

$$\mathfrak{g}_{\mathsf{Ad}\rho} \times \mathfrak{g}_{\mathsf{Ad}\rho} \xrightarrow{\mathbb{B}} \mathbb{R}$$

- $[\rho]$ smooth point $\Rightarrow T_{[\rho]}$ Hom $(\pi, G)/G = H^1(\Sigma, \mathfrak{g}_{Ad\rho}).$
- ► Cup-product + coefficient pairing B + orientation ⇒ bilinear pairing

$$H^1(\Sigma,\mathfrak{g}_{\operatorname{\mathsf{Ad}}
ho}) imes H^1(\Sigma,\mathfrak{g}_{\operatorname{\mathsf{Ad}}
ho}) \xrightarrow{\omega_
ho} H^2(\Sigma,\mathbb{R})\cong\mathbb{R}$$

- This pairing is skew-symmetric, and hence defines an exterior 2-form on the smooth part of Hom(π, G)/G.
- ▶ This 2-form is nondegenerate and *closed*.
- By Ehresmann-Thurston, this induces a symplectic structure on D_(G,X)(Σ).
- On a symplectic manifold (W, ω), functions φ induce vector fields Ham(φ).
- **b** Both the function ϕ and the 2-form ω are Ham(ϕ)-invariant.

- This pairing is skew-symmetric, and hence defines an exterior 2-form on the smooth part of Hom(π, G)/G.
- ▶ This 2-form is nondegenerate and *closed*.
- By Ehresmann-Thurston, this induces a symplectic structure on D_(G,X)(Σ).
- On a symplectic manifold (W, ω), functions φ induce vector fields Ham(φ).
- **b** Both the function ϕ and the 2-form ω are Ham(ϕ)-invariant.

- This pairing is skew-symmetric, and hence defines an exterior 2-form on the smooth part of Hom(π, G)/G.
- This 2-form is nondegenerate and closed.
- By Ehresmann-Thurston, this induces a symplectic structure on D_(G,X)(Σ).
- On a symplectic manifold (W, ω), functions φ induce vector fields Ham(φ).
- ▶ Both the function ϕ and the 2-form ω are Ham(ϕ)-invariant.

- This pairing is skew-symmetric, and hence defines an exterior 2-form on the smooth part of Hom(π, G)/G.
- This 2-form is nondegenerate and closed.
- By Ehresmann-Thurston, this induces a symplectic structure on D_(G,X)(Σ).
- On a symplectic manifold (W, ω), functions φ induce vector fields Ham(φ).
- ▶ Both the function ϕ and the 2-form ω are Ham(ϕ)-invariant.

- This pairing is skew-symmetric, and hence defines an exterior 2-form on the smooth part of Hom(π, G)/G.
- This 2-form is nondegenerate and closed.
- By Ehresmann-Thurston, this induces a symplectic structure on D_(G,X)(Σ).
- On a symplectic manifold (W, ω), functions φ induce vector fields Ham(φ).
- **b** Both the function ϕ and the 2-form ω are Ham(ϕ)-invariant.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <
Construction of symplectic structure

- This pairing is skew-symmetric, and hence defines an exterior 2-form on the smooth part of Hom(π, G)/G.
- This 2-form is nondegenerate and closed.
- By Ehresmann-Thurston, this induces a symplectic structure on D_(G,X)(Σ).
- On a symplectic manifold (W, ω), functions φ induce vector fields Ham(φ).
- ▶ Both the function ϕ and the 2-form ω are Ham(ϕ)-invariant.

Hamiltonian twist flows on Hom (π, G)

The Hamiltonian vector field Ham(f_α) associated to f and α assigns to a representation ρ in Hom(π, G) a tangent vector

 $\mathsf{Ham}(f_{\alpha})[\rho] \in T_{[\rho]}\mathsf{Hom}(\pi, G)/G = H^{1}(\Sigma, \mathfrak{g}_{\mathsf{Ad}\rho}).$

• It is represented by the (Poincaré dual) cycle-with-coefficient supported on α and with coefficient

 $F(\rho(\alpha)) \in \mathfrak{g}_{\mathrm{Ad}\rho}.$

▲日▼▲□▼▲□▼▲□▼ □ ののの

Hamiltonian twist flows on Hom (π, G)

The Hamiltonian vector field Ham(f_α) associated to f and α assigns to a representation ρ in Hom(π, G) a tangent vector

$$\mathsf{Ham}(f_{\alpha})[\rho] \in T_{[\rho]}\mathsf{Hom}(\pi,G)/G = H^1(\Sigma,\mathfrak{g}_{\mathsf{Ad}\rho}).$$

It is represented by the (Poincaré dual) cycle-with-coefficient supported on α and with coefficient

 $F(\rho(\alpha)) \in \mathfrak{g}_{\mathrm{Ad}\rho}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Hamiltonian twist flows on Hom (π, G)

 The Hamiltonian vector field Ham(f_α) associated to f and α assigns to a representation ρ in Hom(π, G) a tangent vector

$$\mathsf{Ham}(f_{lpha})[
ho] \in \mathcal{T}_{[
ho]}\mathsf{Hom}(\pi,G)/G = H^1(\Sigma,\mathfrak{g}_{\mathsf{Ad}
ho}).$$

It is represented by the (Poincaré dual) cycle-with-coefficient supported on α and with coefficient

$$F(\rho(\alpha)) \in \mathfrak{g}_{\mathrm{Ad}\rho}.$$

▲日▼▲□▼▲□▼▲□▼ □ ののの

Invariant function

 $G \xrightarrow{f} \mathbb{R}$

and $A \in G \Longrightarrow$ one-parameter subgroup

$$\zeta(t) = \exp(tF(A)) \in G,$$

where $F(A) \in \mathfrak{g}$.

• Centralizes *A*:

$$\zeta(t)A\zeta^{-1} = A$$

► *F*(*A*) is defined by duality:

$$df(A) \in T^*_A G \cong \mathfrak{g}^* \stackrel{\mathbb{B}}{\cong} \mathfrak{g}$$

▶ Alternatively, (where X is an arbitrary element of g):

$$\mathbb{B}(F(A), X) = \frac{d}{dt}\Big|_{t=0} f(A \exp(tX))$$

Invariant function

$$G \xrightarrow{f} \mathbb{R}$$

and $A \in G \Longrightarrow$ one-parameter subgroup $\zeta(t) = \exp \left(t F(A) \right) \in G,$

where $F(A) \in \mathfrak{g}$.

• Centralizes *A*:

$$\zeta(t)A\zeta^{-1} = A$$

► *F*(*A*) is defined by duality:

$$df(A) \in T^*_A G \cong \mathfrak{g}^* \stackrel{\mathbb{B}}{\cong} \mathfrak{g}$$

▶ Alternatively, (where X is an arbitrary element of g):

$$\mathbb{B}(F(A), X) = \frac{d}{dt}\Big|_{t=0} f(A \exp(tX))$$

Invariant function

$$G \xrightarrow{f} \mathbb{R}$$

and $A \in G \Longrightarrow$ one-parameter subgroup

$$\zeta(t) = \exp(tF(A)) \in G,$$

where $F(A) \in \mathfrak{g}$.

• Centralizes A:

$$\zeta(t)A\zeta^{-1}=A$$

► *F*(*A*) is defined by duality:

$$df(A) \in T^*_A G \cong \mathfrak{g}^* \stackrel{\mathbb{B}}{\cong} \mathfrak{g}$$

▶ Alternatively, (where X is an arbitrary element of g):

$$\mathbb{B}(F(A), X) = \frac{d}{dt}\Big|_{t=0} f(A \exp(tX))$$

Invariant function

$$G \xrightarrow{f} \mathbb{R}$$

and $A \in G \Longrightarrow$ one-parameter subgroup

$$\zeta(t) = \exp(tF(A)) \in G,$$

where $F(A) \in \mathfrak{g}$.

• Centralizes A:

$$\zeta(t)A\zeta^{-1}=A$$

F(A) is defined by duality:

$$df(A)\in T^*_AG\cong \mathfrak{g}^*\stackrel{\mathbb{B}}{\cong}\mathfrak{g}$$

▶ Alternatively, (where X is an arbitrary element of g):

$$\mathbb{B}(F(A), X) = \frac{d}{dt}\Big|_{t=0} f(A\exp(tX))$$

Invariant function

$$G \xrightarrow{f} \mathbb{R}$$

and $A \in G \Longrightarrow$ one-parameter subgroup

$$\zeta(t) = \exp(tF(A)) \in G,$$

where $F(A) \in \mathfrak{g}$.

• Centralizes A:

$$\zeta(t)A\zeta^{-1}=A$$

F(A) is defined by duality:

$$df(A)\in T^*_AG\cong \mathfrak{g}^*\stackrel{\mathbb{B}}{\cong}\mathfrak{g}$$

Alternatively, (where X is an arbitrary element of g):

$$\mathbb{B}(F(A), X) = \frac{d}{dt} \bigg|_{t=0} f(A \exp(tX))$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- When α is a simple closed curve, then a flow Φ_t on Hom(π, G) exists, which covers the (local) flow of the Hamiltonian vector field Ham(f_α).
- When α is, for example, the nonseparating curve A₁ in the standard presentation

$$\pi = \langle A_1, B_1, \dots, A_g, B_g \mid A_1 B_1 A_1^{-1} B_1^{-1} \dots, A_g B_g A_g^{-1} B_g^{-1} = 1 \rangle$$

this flow has the following description in terms of generators:.

- Φ_t(γ) = ρ(γ) is constant if γ is either A_i for 1 ≤ i ≤ g or B_i for 2 ≤ i ≤ g.
- $\blacktriangleright \Phi_t(B_1) = \rho(B_1)\zeta(t).$
- Similar construction when γ separates..

- When α is a simple closed curve, then a flow Φ_t on Hom(π, G) exists, which covers the (local) flow of the Hamiltonian vector field Ham(f_α).
- When α is, for example, the nonseparating curve A₁ in the standard presentation

$$\pi = \langle A_1, B_1, \dots, A_g, B_g \mid A_1 B_1 A_1^{-1} B_1^{-1} \dots, A_g B_g A_g^{-1} B_g^{-1} = 1 \rangle$$

this flow has the following description in terms of generators:.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Φ_t(γ) = ρ(γ) is constant if γ is either A_i for 1 ≤ i ≤ g or B_i for 2 ≤ i ≤ g.
- $\blacktriangleright \Phi_t(B_1) = \rho(B_1)\zeta(t).$
- Similar construction when γ separates..

- When α is a simple closed curve, then a flow Φ_t on Hom(π, G) exists, which covers the (local) flow of the Hamiltonian vector field Ham(f_α).
- When α is, for example, the nonseparating curve A₁ in the standard presentation

$$\pi = \langle A_1, B_1, \dots, A_g, B_g \mid A_1 B_1 A_1^{-1} B_1^{-1} \dots, A_g B_g A_g^{-1} B_g^{-1} = 1 \rangle$$

this flow has the following description in terms of generators:.

- Φ_t(γ) = ρ(γ) is constant if γ is either A_i for 1 ≤ i ≤ g or B_i for 2 ≤ i ≤ g.
- $\blacktriangleright \Phi_t(B_1) = \rho(B_1)\zeta(t).$
- Similar construction when γ separates..

- When α is a simple closed curve, then a flow Φ_t on Hom(π, G) exists, which covers the (local) flow of the Hamiltonian vector field Ham(f_α).
- When α is, for example, the nonseparating curve A₁ in the standard presentation

$$\pi = \langle A_1, B_1, \dots, A_g, B_g \mid A_1 B_1 A_1^{-1} B_1^{-1} \dots, A_g B_g A_g^{-1} B_g^{-1} = 1 \rangle$$

this flow has the following description in terms of generators:.

- Φ_t(γ) = ρ(γ) is constant if γ is either A_i for 1 ≤ i ≤ g or B_i for 2 ≤ i ≤ g.
- $\blacktriangleright \Phi_t(B_1) = \rho(B_1)\zeta(t).$
- Similar construction when γ separates..

- When α is a simple closed curve, then a flow Φ_t on Hom(π, G) exists, which covers the (local) flow of the Hamiltonian vector field Ham(f_α).
- When α is, for example, the nonseparating curve A₁ in the standard presentation

$$\pi = \langle A_1, B_1, \dots, A_g, B_g \mid A_1 B_1 A_1^{-1} B_1^{-1} \dots, A_g B_g A_g^{-1} B_g^{-1} = 1 \rangle$$

this flow has the following description in terms of generators:.

- Φ_t(γ) = ρ(γ) is constant if γ is either A_i for 1 ≤ i ≤ g or B_i for 2 ≤ i ≤ g.
- $\Phi_t(B_1) = \rho(B_1)\zeta(t).$

Similar construction when γ separates..

- When α is a simple closed curve, then a flow Φ_t on Hom(π, G) exists, which covers the (local) flow of the Hamiltonian vector field Ham(f_α).
- When α is, for example, the nonseparating curve A₁ in the standard presentation

$$\pi = \langle A_1, B_1, \dots, A_g, B_g \mid A_1 B_1 A_1^{-1} B_1^{-1} \dots, A_g B_g A_g^{-1} B_g^{-1} = 1 \rangle$$

this flow has the following description in terms of generators:.

Φ_t(γ) = ρ(γ) is constant if γ is either A_i for 1 ≤ i ≤ g or B_i for 2 ≤ i ≤ g.

•
$$\Phi_t(B_1) = \rho(B_1)\zeta(t).$$

• Similar construction when γ separates..

Twist and bulging deformations for \mathbb{RP}^2 -structures

Apply the previous general construction to G = SL(3, ℝ) and the two invariant functions ℓ, β defined earlier:

$$\begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} \xrightarrow{(\ell,\beta)} \begin{pmatrix} \log(\lambda_1) - \log(\lambda_3) \\ \log(\lambda_2) \end{pmatrix}$$

• The corresponding one-parameter subgroups in $PGL(3, \mathbb{R})$ are:

$$\zeta_{\ell}(t) := \begin{bmatrix} e^t & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{-t} \end{bmatrix}, \ \zeta_{\beta}(t) := e^{-t/3} \begin{bmatrix} 1 & 0 & 0 \\ 0 & e^t & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Twist and bulging deformations for \mathbb{RP}^2 -structures

Apply the previous general construction to G = SL(3, ℝ) and the two invariant functions ℓ, β defined earlier:

$$\begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} \xrightarrow{(\ell,\beta)} \begin{pmatrix} \log(\lambda_1) - \log(\lambda_3) \\ \log(\lambda_2) \end{pmatrix}$$

• The corresponding one-parameter subgroups in $PGL(3, \mathbb{R})$ are:

$$\zeta_\ell(t) := egin{bmatrix} e^t & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & e^{-t} \end{bmatrix}, \ \zeta_eta(t) := e^{-t/3} egin{bmatrix} 1 & 0 & 0 \ 0 & e^t & 0 \ 0 & 0 & 1 \end{bmatrix}$$

Twist and bulging deformations for \mathbb{RP}^2 -structures

Apply the previous general construction to G = SL(3, ℝ) and the two invariant functions ℓ, β defined earlier:

$$\begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} \xrightarrow{(\ell,\beta)} \begin{pmatrix} \log(\lambda_1) - \log(\lambda_3) \\ \log(\lambda_2) \end{pmatrix}$$

• The corresponding one-parameter subgroups in $PGL(3, \mathbb{R})$ are:

$$\zeta_\ell(t) := egin{bmatrix} e^t & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & e^{-t} \end{bmatrix}, \ \zeta_eta(t) := e^{-t/3} egin{bmatrix} 1 & 0 & 0 \ 0 & e^t & 0 \ 0 & 0 & 1 \end{bmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Bulging conics along a triangle in \mathbb{RP}^2

- When applied to a hyperbolic structure, the flow of Ham(ℓ_α) is just the ordinary Fenchel-Nielsen earthquake deformation and the developing image Ω is unchanged.
- However, the flow of Ham(β_α) changes Ω by *bulging* it along a triangle tangent to ∂Ω.

Bulging conics along a triangle in \mathbb{RP}^2

- When applied to a hyperbolic structure, the flow of Ham(ℓ_α) is just the ordinary Fenchel-Nielsen earthquake deformation and the developing image Ω is unchanged.
- However, the flow of Ham(β_α) changes Ω by *bulging* it along a triangle tangent to ∂Ω.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○

Bulging conics along a triangle in \mathbb{RP}^2

- When applied to a hyperbolic structure, the flow of Ham(ℓ_α) is just the ordinary Fenchel-Nielsen earthquake deformation and the developing image Ω is unchanged.
- However, the flow of Ham(β_α) changes Ω by *bulging* it along a triangle tangent to ∂Ω.

- Start with a properly domain Ω whose boundary ∂Ω is strictly convex and C¹. (For example, ∂Ω a conic.) Each geodesic embeds in a triangle tangent to ∂Ω.
- Choose a collection Λ of disjoint lines in Ω, with instructions how to deform along Λ (for each λ ∈ Λ, a one-parameter subgroup of SL(3, ℝ) preserving λ.
- Fixing a basepoint in the complement of Λ , bulge/earthquake the curve inside the triangles tangent to $\partial \Omega$.
- Obtain a sequence of *piecewise conics* converging to the limit curve.

- Start with a properly domain Ω whose boundary ∂Ω is strictly convex and C¹. (For example, ∂Ω a conic.) Each geodesic embeds in a triangle tangent to ∂Ω.
- Choose a collection Λ of disjoint lines in Ω, with instructions how to deform along Λ (for each λ ∈ Λ, a one-parameter subgroup of SL(3, ℝ) preserving λ.
- Fixing a basepoint in the complement of Λ, bulge/earthquake the curve inside the triangles tangent to ∂Ω.
- Obtain a sequence of *piecewise conics* converging to the limit curve.

- Start with a properly domain Ω whose boundary ∂Ω is strictly convex and C¹. (For example, ∂Ω a conic.) Each geodesic embeds in a triangle tangent to ∂Ω.
- Choose a collection Λ of disjoint lines in Ω, with instructions how to deform along Λ (for each λ ∈ Λ, a one-parameter subgroup of SL(3, ℝ) preserving λ.
- Fixing a basepoint in the complement of Λ , bulge/earthquake the curve inside the triangles tangent to $\partial \Omega$.
- Obtain a sequence of *piecewise conics* converging to the limit curve.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○

- Start with a properly domain Ω whose boundary ∂Ω is strictly convex and C¹. (For example, ∂Ω a conic.) Each geodesic embeds in a triangle tangent to ∂Ω.
- Choose a collection Λ of disjoint lines in Ω, with instructions how to deform along Λ (for each λ ∈ Λ, a one-parameter subgroup of SL(3, ℝ) preserving λ.
- Fixing a basepoint in the complement of Λ , bulge/earthquake the curve inside the triangles tangent to $\partial \Omega$.
- Obtain a sequence of *piecewise conics* converging to the limit curve.

- Start with a properly domain Ω whose boundary ∂Ω is strictly convex and C¹. (For example, ∂Ω a conic.) Each geodesic embeds in a triangle tangent to ∂Ω.
- Choose a collection Λ of disjoint lines in Ω, with instructions how to deform along Λ (for each λ ∈ Λ, a one-parameter subgroup of SL(3, ℝ) preserving λ.
- Fixing a basepoint in the complement of Λ , bulge/earthquake the curve inside the triangles tangent to $\partial\Omega$.
- Obtain a sequence of *piecewise conics* converging to the limit curve.

A domain in \mathbb{RP}^2 covering a closed surface

- If Ω covers a closed convex ℝP²-surface with χ < 0, then ∂Ω is obtained from a conic by iterated bulgings and earthquakes.</p>
- Is every properly convex domain Ω ⊂ ℝP² with strictly convex C¹ boundary obtained by iterated bulging-earthquaking?
- Thurston proved that any two marked hyperbolic structures on Σ can be related by (left)-earthquake along a unique measured geodesic lamination. Generalize this to convex RP²-structures.

- If Ω covers a closed convex ℝP²-surface with χ < 0, then ∂Ω is obtained from a conic by iterated bulgings and earthquakes.</p>
- Is every properly convex domain Ω ⊂ ℝP² with strictly convex C¹ boundary obtained by iterated bulging-earthquaking?
- Thurston proved that any two marked hyperbolic structures on Σ can be related by (left)-earthquake along a unique measured geodesic lamination. Generalize this to convex RP²-structures.

- If Ω covers a closed convex ℝP²-surface with χ < 0, then ∂Ω is obtained from a conic by iterated bulgings and earthquakes.</p>
- Is every properly convex domain Ω ⊂ ℝP² with strictly convex C¹ boundary obtained by iterated bulging-earthquaking?
- Thurston proved that any two marked hyperbolic structures on Σ can be related by (left)-earthquake along a unique measured geodesic lamination. Generalize this to convex RP²-structures.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

- If Ω covers a closed convex ℝP²-surface with χ < 0, then ∂Ω is obtained from a conic by iterated bulgings and earthquakes.</p>
- Is every properly convex domain Ω ⊂ ℝP² with strictly convex C¹ boundary obtained by iterated bulging-earthquaking?
- Thurston proved that any two marked hyperbolic structures on Σ can be related by (left)-earthquake along a unique measured geodesic lamination. Generalize this to convex RP²-structures.

▲日 → ▲園 → ▲目 → ▲目 → ▲日 →