Deformations of geometric structures and representations of fundamental groups

William M. Goldman
Department of Mathematics University of Maryland
Seventh KAIST Geometric Topology Fair Gyeongju, Korea July 9-11, 2007

http://www.math.umd.edu/~wmg/kaist.pdf

Enhancing Topology with Geometry

Deformations of geometric structure

Real projective structures

Representation varieties and character varieties

Hamiltonian flows of real projective structures

Geometry through symmetry

- In his 1872 Erlangen Program, Felix Klein proposed that a geometry is the study of properties of an abstract space X which are invariant under a transitive group G of transformations of X.
- Klein was heavily influenced by Sophus Lie, who was trying to develop a theory of continuous groups, to exploit infinitesimal symmetry to study differential equations, similar to how Galois exploited symmetry to study algebraic equations.

Geometry through symmetry

- In his 1872 Erlangen Program, Felix Klein proposed that a geometry is the study of properties of an abstract space X which are invariant under a transitive group G of transformations of X.
- Klein was heavily influenced by Sophus Lie, who was trying to develop a theory of continuous groups, to exploit infinitesimal symmetry to study differential equations, similar to how Galois exploited symmetry to study algebraic equations.

Geometry through symmetry

- In his 1872 Erlangen Program, Felix Klein proposed that a geometry is the study of properties of an abstract space X which are invariant under a transitive group G of transformations of X.
- Klein was heavily influenced by Sophus Lie, who was trying to develop a theory of continuous groups, to exploit infinitesimal symmetry to study differential equations, similar to how Galois exploited symmetry to study algebraic equations.

Euclidean to affine to projective geometry

- Euclidean geometry: $X=\mathbb{R}^{n}$ Euclidean space and $G=\operatorname{Isom}(X)$ the group of rigid motions:
- A rigid motion is a map $x \mapsto A x+b$ where $A \in O(n)$ is orthogonal and $b \in \mathbb{R}^{n}$ is a translation vector.
- Invariant notions: Distance, angle, parallel, area, lines,
- Euclidean geometry: special case of affine geometry wheree $X=\mathbb{R}^{n}$ and $G=\operatorname{Aff}(X)$, where $A \in G L(n, \mathbb{R})$ is only required to be linear.
- Only parallelism, lines preserved.
- Affine geometry: special case of projective geometry, when parallelism abandoned. $G=\operatorname{PGL}(n+1, \mathbb{R}), X=\mathbb{R} \mathbb{P}^{n}$.
- But the space must be enlarged: $\mathbb{R}^{n} \varsubsetneqq \mathbb{R} \mathbb{P}^{n}$

Euclidean to affine to projective geometry

- Euclidean geometry: $X=\mathbb{R}^{n}$ Euclidean space and $G=\operatorname{Isom}(X)$ the group of rigid motions:
- A rigid motion is a map $x \mapsto A x+b$ where $A \in O(n)$ is orthogonal and $b \in \mathbb{R}^{n}$ is a translation vector.
- Invariant notions: Distance, angle, parallel, area, lines,
- Euclidean geometry: special case of affine geometry wheree $X=\mathbb{R}^{n}$ and $G=\operatorname{Aff}(X)$, where $A \in G L(n, \mathbb{R})$ is only required to be linear.
- Only parallelism, lines preserved.
- Affine geometry: special case of projective geometry, when parallelism abandoned. $G=\operatorname{PGL}(n+1, \mathbb{R}), X=\mathbb{R} \mathbb{P}^{n}$
- But the space must be enlarged: $\mathbb{R}^{n} \varsubsetneqq \mathbb{R} \mathbb{P}^{n}$

Euclidean to affine to projective geometry

- Euclidean geometry: $X=\mathbb{R}^{n}$ Euclidean space and $G=\operatorname{Isom}(X)$ the group of rigid motions:
- A rigid motion is a map $x \mapsto A x+b$ where $A \in O(n)$ is orthogonal and $b \in \mathbb{R}^{n}$ is a translation vector.
- Invariant notions: Distance, angle, parallel, area, lines,
- Euclidean geometry: special case of affine geometry wheree $X=\mathbb{R}^{n}$ and $G=\operatorname{Aff}(X)$, where $A \in G L(n, \mathbb{R})$ is only required to be linear
- Only parallelism, lines preserved.
- Affine geometry: special case of projective geometry, when parallelism abandoned. $G=P G L(n+1, \mathbb{R}), X=\mathbb{R P}^{n}$

Euclidean to affine to projective geometry

- Euclidean geometry: $X=\mathbb{R}^{n}$ Euclidean space and $G=\operatorname{Isom}(X)$ the group of rigid motions:
- A rigid motion is a map $x \mapsto A x+b$ where $A \in O(n)$ is orthogonal and $b \in \mathbb{R}^{n}$ is a translation vector.
- Invariant notions: Distance, angle, parallel, area, lines, ...
- Euclidean geometry: special case of affine geometry wheree $X=\mathbb{R}^{n}$ and $G=\operatorname{Aff}(X)$, where $A \in G L(n, \mathbb{R})$ is only required to be linear
- Only parallelism, lines preserved.
- Affine geometry: special case of projective geometry, when parallelism abandoned. $G=\operatorname{PGL}(n+1, \mathbb{R}), X=\mathbb{R} \mathbb{P}^{n}$.

Euclidean to affine to projective geometry

- Euclidean geometry: $X=\mathbb{R}^{n}$ Euclidean space and $G=\operatorname{Isom}(X)$ the group of rigid motions:
- A rigid motion is a map $x \mapsto A x+b$ where $A \in O(n)$ is orthogonal and $b \in \mathbb{R}^{n}$ is a translation vector.
- Invariant notions: Distance, angle, parallel, area, lines, ...
- Euclidean geometry: special case of affine geometry wheree $X=\mathbb{R}^{n}$ and $G=\operatorname{Aff}(X)$, where $A \in G L(n, \mathbb{R})$ is only required to be linear.
- Only parallelism, lines preserved.
- Affine geometry: special case of projective geometry, when parallelism abandoned. $G=\operatorname{PGL}(n+1, \mathbb{R}), X=\mathbb{R} \mathbb{P}^{n}$.

Euclidean to affine to projective geometry

- Euclidean geometry: $X=\mathbb{R}^{n}$ Euclidean space and $G=\operatorname{Isom}(X)$ the group of rigid motions:
- A rigid motion is a map $x \mapsto A x+b$ where $A \in O(n)$ is orthogonal and $b \in \mathbb{R}^{n}$ is a translation vector.
- Invariant notions: Distance, angle, parallel, area, lines, ...
- Euclidean geometry: special case of affine geometry wheree $X=\mathbb{R}^{n}$ and $G=\operatorname{Aff}(X)$, where $A \in G L(n, \mathbb{R})$ is only required to be linear.
- Only parallelism, lines preserved.
- Affine geometry: special case of projective geometry, when parallelism abandoned. $G=\operatorname{PGL}(n+1, \mathbb{R}), X=\mathbb{R} \mathbb{P}^{n}$.

Euclidean to affine to projective geometry

- Euclidean geometry: $X=\mathbb{R}^{n}$ Euclidean space and $G=\operatorname{Isom}(X)$ the group of rigid motions:
- A rigid motion is a map $x \mapsto A x+b$ where $A \in O(n)$ is orthogonal and $b \in \mathbb{R}^{n}$ is a translation vector.
- Invariant notions: Distance, angle, parallel, area, lines, ...
- Euclidean geometry: special case of affine geometry wheree $X=\mathbb{R}^{n}$ and $G=\operatorname{Aff}(X)$, where $A \in G L(n, \mathbb{R})$ is only required to be linear.
- Only parallelism, lines preserved.
- Affine geometry: special case of projective geometry, when parallelism abandoned. $G=\operatorname{PGL}(n+1, \mathbb{R}), X=\mathbb{R} \mathbb{P}^{n}$.

Euclidean to affine to projective geometry

- Euclidean geometry: $X=\mathbb{R}^{n}$ Euclidean space and $G=\operatorname{Isom}(X)$ the group of rigid motions:
- A rigid motion is a map $x \mapsto A x+b$ where $A \in O(n)$ is orthogonal and $b \in \mathbb{R}^{n}$ is a translation vector.
- Invariant notions: Distance, angle, parallel, area, lines, ...
- Euclidean geometry: special case of affine geometry wheree $X=\mathbb{R}^{n}$ and $G=\operatorname{Aff}(X)$, where $A \in G L(n, \mathbb{R})$ is only required to be linear.
- Only parallelism, lines preserved.
- Affine geometry: special case of projective geometry, when parallelism abandoned. $G=\operatorname{PGL}(n+1, \mathbb{R}), X=\mathbb{R} \mathbb{P}^{n}$.
- But the space must be enlarged: $\mathbb{R}^{n} \varsubsetneqq \mathbb{R P}^{n}$

Other subgeometries of projective geometry

- Hyperbolic geometry: $X=\mathrm{H}^{n} \subset \mathbb{R P}^{n} G=\mathrm{O}(n, 1)$ the subset of $\operatorname{PGL}(n+1, \mathbb{R})$ stabilizing X;
- (Beltrami - Hilbert) Define the hyperbolic metric on X projectively in terms of cross-ratios:

Distance $d(x, y)=\log [A, x, y, B]$

- More generally, one obtains a projectively invariant distance on any properly convex domain (Hilbert).

Other subgeometries of projective geometry

- Hyperbolic geometry: $X=\mathrm{H}^{n} \subset \mathbb{R} \mathbb{P}^{n} G=\mathrm{O}(n, 1)$ the subset of $\operatorname{PGL}(n+1, \mathbb{R})$ stabilizing X;
- (Beltrami - Hilbert) Define the hyperbolic metric on X projectively in terms of cross-ratios:

Distance $d(x, y)=\log [A, x, y, B]$

- More generally, one ohtains a projectively invariant distance on any properly convex domain (Hilbert).

Other subgeometries of projective geometry

- Hyperbolic geometry: $X=\mathrm{H}^{n} \subset \mathbb{R} \mathbb{P}^{n} G=\mathrm{O}(n, 1)$ the subset of $\operatorname{PGL}(n+1, \mathbb{R})$ stabilizing X;
- (Beltrami - Hilbert) Define the hyperbolic metric on X projectively in terms of cross-ratios:

$$
\text { Distance } d(x, y)=\log [A, x, y, B]
$$

> More generally, one obtains a projectively invariant distance on any properly convex domain (Hilbert).

Other subgeometries of projective geometry

- Hyperbolic geometry: $X=\mathrm{H}^{n} \subset \mathbb{R} \mathbb{P}^{n} G=\mathrm{O}(n, 1)$ the subset of $\operatorname{PGL}(n+1, \mathbb{R})$ stabilizing X;
- (Beltrami - Hilbert) Define the hyperbolic metric on X projectively in terms of cross-ratios:

$$
\text { Distance } d(x, y)=\log [A, x, y, B]
$$

- More generally, one obtains a projectively invariant distance on any properly convex domain (Hilbert).

Putting geometric structure on a topological space

- Topology: Smooth manifold Σ with coordinate patches U_{α};
- Charts - diffeomorphisms

$$
U_{\alpha} \xrightarrow{\psi_{\alpha}} \psi_{\alpha}\left(U_{\alpha}\right) \subset X
$$

- For each component $C \subset U_{\alpha} \cap U_{\beta}, \exists g=g(C) \in G$ such that

$$
\left.g \circ \psi_{\alpha}\right|_{C}=\psi_{\beta} \mid c
$$

- Local (G, X)-geometry defined by ψ_{α} independent of patch.
- (Ehresmann 1936) Σ acquires geometric structure M modeled on (G, X).

Putting geometric structure on a topological space

- Topology: Smooth manifold Σ with coordinate patches U_{α};
- Charts - diffeomorphisms
- For each component $C \subset U_{\alpha} \cap U_{\beta}, \exists g=g(C) \in G$ such that $g \circ \psi_{\alpha}\left|c=\psi_{\beta}\right| c$.
- Local (G, X)-geometry defined by ψ_{α} independent of patch.
- (Ehresmann 1936) Σ acquires geometric structure M modeled on (G, X).

Putting geometric structure on a topological space

- Topology: Smooth manifold Σ with coordinate patches U_{α};
- Charts - diffeomorphisms

$$
U_{\alpha} \xrightarrow{\psi_{\alpha}} \psi_{\alpha}\left(U_{\alpha}\right) \subset X
$$

- For each component $C \subset U_{\alpha} \cap U_{\beta}, \exists g=g(C) \in G$ such that $g \circ \psi_{\alpha}\left|c=\psi_{\beta}\right| c$.
- Local (G, X)-geometry defined by ψ_{a} independent of patch.
- (Ehresmann 1936) Σ acquires geometric structure M modeled on (G, X).

Putting geometric structure on a topological space

- Topology: Smooth manifold Σ with coordinate patches U_{α};
- Charts - diffeomorphisms

$$
U_{\alpha} \xrightarrow{\psi_{\alpha}} \psi_{\alpha}\left(U_{\alpha}\right) \subset X
$$

- For each component $C \subset U_{\alpha} \cap U_{\beta}, \exists g=g(C) \in G$ such that

$$
\left.g \circ \psi_{\alpha}\right|_{C}=\psi_{\beta} \mid c .
$$

- Local (G, X)-geometry defined by ψ_{α} independent of patch.
- (Ehresmann 1936) Σ acquires geometric structure M modeled on (G, X).

Putting geometric structure on a topological space

- Topology: Smooth manifold Σ with coordinate patches U_{α};
- Charts - diffeomorphisms

$$
U_{\alpha} \xrightarrow{\psi_{\alpha}} \psi_{\alpha}\left(U_{\alpha}\right) \subset X
$$

- For each component $C \subset U_{\alpha} \cap U_{\beta}, \exists g=g(C) \in G$ such that

$$
\left.g \circ \psi_{\alpha}\right|_{c}=\psi_{\beta} \mid c .
$$

- Local (G, X)-geometry defined by ψ_{α} independent of patch.
- (Ehresmann 1936) Σ acquires geometric structure M modeled on (G, X).

Putting geometric structure on a topological space

- Topology: Smooth manifold Σ with coordinate patches U_{α};
- Charts - diffeomorphisms

$$
U_{\alpha} \xrightarrow{\psi_{\alpha}} \psi_{\alpha}\left(U_{\alpha}\right) \subset X
$$

- For each component $C \subset U_{\alpha} \cap U_{\beta}, \exists g=g(C) \in G$ such that

$$
\left.g \circ \psi_{\alpha}\right|_{C}=\psi_{\beta} \mid c
$$

- Local (G, X)-geometry defined by ψ_{α} independent of patch.
- (Ehresmann 1936) Σ acquires geometric structure M modeled on (G, X).

Quotients of domains

- Suppose that $\Omega \subset X$ is an open subset invariant under a subgroup $\Gamma \subset G$ such that:
- Then $M=\Omega / \Gamma$ is a (G, X)-manifold
- The covering space $\Omega \longrightarrow M$ is a (G, X)-morphism.
- Complete affine structures: Ω entire affine patch $\mathbb{R}^{n} \subset \mathbb{R} \mathbb{P}^{n}$.
- Convex $\mathbb{R} \mathbb{P}^{n}$-structures: $\Omega \subset \mathbb{R} \mathbb{P}^{n}$ convex domain containing no affine line (properly convex).

Quotients of domains

- Suppose that $\Omega \subset X$ is an open subset invariant under a subgroup $\Gamma \subset G$ such that:
- 「 is discrete;
- Γ acts properly on Ω
- 「 acts freely on Ω.
\Rightarrow Then $M=\Omega / \Gamma$ is a (G, X)-manifold
- The covering space $\Omega \longrightarrow M$ is a (G, X)-morphism.
- Complete affine structures: Ω entire affine natch $\mathbb{R}^{n} \subset \mathbb{R P}^{n}$
- Convex $\mathbb{R P}^{n}$-structures: $\Omega \subset \mathbb{R P}^{n}$ convex domain containing no affine line (properly convex).

Quotients of domains

－Suppose that $\Omega \subset X$ is an open subset invariant under a subgroup $\Gamma \subset G$ such that：

- 「 is discrete；
- 「 acts properly on Ω
- 「 acts freely on Ω ．
＊Then $M=\Omega / \Gamma$ is a（ G ．X）－manifold
－The covering space $\Omega \longrightarrow M$ is a（ G, X ）－morphism．
－Complete affine structures：Ω entire affine patch $\mathbb{R}^{n} \subset \mathbb{R} \mathbb{P}^{n}$
－Convex $\mathbb{R} \mathbb{P}^{n}$－structures：$\Omega \subset \mathbb{R} \mathbb{P}^{n}$ convex domain containing no affine line（properly convex）．

Quotients of domains

- Suppose that $\Omega \subset X$ is an open subset invariant under a subgroup $\Gamma \subset G$ such that:
- 「 is discrete;- 「 acts properly on Ω
- Then $M=\Omega / \Gamma$ is a (G, X)-manifold
- The covering space $\Omega \longrightarrow M$ is a (G, X)-morphism.
- Complete affine structures: Ω entire affine patch $\mathbb{R}^{n} \subset \mathbb{R P}^{n}$
- Convex $\mathbb{R} \mathbb{P}^{n}$-structures: $\Omega \subset \mathbb{R} \mathbb{P}^{n}$ convex domain containing no affine line (properly convex).

Quotients of domains

－Suppose that $\Omega \subset X$ is an open subset invariant under a subgroup $\Gamma \subset G$ such that：

- 「 is discrete；
- 「 acts properly on Ω
- 「 acts freely on Ω ．
－Then $M=\Omega / \Gamma$ is a (G, X)－manifold
－The covering space $\Omega \longrightarrow M$ is a（ G, X ）－morphism．
－Complete affine structures：Ω entire affine patch $\mathbb{R}^{n} \subset \mathbb{R P}^{n}$
－Convex $\mathbb{R} \mathbb{P}^{n}$－structures：$\Omega \subset \mathbb{R} \mathbb{P}^{n}$ convex domain containing
no affine line（properly convex）

Quotients of domains

－Suppose that $\Omega \subset X$ is an open subset invariant under a subgroup $\Gamma \subset G$ such that：

- 「 is discrete；
- 「 acts properly on Ω
- 「 acts freely on Ω ．
－Then $M=\Omega / \Gamma$ is a (G, X)－manifold
－The covering space $\Omega \longrightarrow M$ is a（ G, X ）－morphism．
－Complete affine structures：Ω entire affine patch $\mathbb{R}^{n} \subset \mathbb{R P}^{n}$ ．
－Convex $\mathbb{R} \mathbb{P}^{n}$－structures：$\Omega \subset \mathbb{R} \mathbb{P}^{n}$ convex domain containing
no affine line（properly convex）．

Quotients of domains

－Suppose that $\Omega \subset X$ is an open subset invariant under a subgroup $\Gamma \subset G$ such that：

- 「 is discrete；
- 「 acts properly on Ω
- 「 acts freely on Ω ．
－Then $M=\Omega / \Gamma$ is a (G, X)－manifold
－The covering space $\Omega \longrightarrow M$ is a (G, X)－morphism．
－Complete affine structures：Ω entire affine patch $\mathbb{R}^{n} \subset \mathbb{R} \mathbb{P}^{n}$ ．
－Convex $\mathbb{R}^{\mathbb{P}^{n}}$－structures：$\Omega \subset \mathbb{R} \mathbb{P}^{n}$ convex domain containing
no affine line（properly convex）

Quotients of domains

－Suppose that $\Omega \subset X$ is an open subset invariant under a subgroup $\Gamma \subset G$ such that：

- 「 is discrete；
- 「 acts properly on Ω
- 「 acts freely on Ω ．
－Then $M=\Omega / \Gamma$ is a (G, X)－manifold
－The covering space $\Omega \longrightarrow M$ is a (G, X)－morphism．
－Complete affine structures：Ω entire affine patch $\mathbb{R}^{n} \subset \mathbb{R P}^{n}$ ．
－Convex $\mathbb{R P}^{n}$－structures：$\Omega \subset \mathbb{R} \mathbb{P}^{n}$ convex domain containing no affine line（properly convex）．

Quotients of domains

－Suppose that $\Omega \subset X$ is an open subset invariant under a subgroup $\Gamma \subset G$ such that：

- 「 is discrete；
- 「 acts properly on Ω
- 「 acts freely on Ω ．
－Then $M=\Omega / \Gamma$ is a (G, X)－manifold
－The covering space $\Omega \longrightarrow M$ is a（ G, X ）－morphism．
－Complete affine structures：Ω entire affine patch $\mathbb{R}^{n} \subset \mathbb{R P}^{n}$ ．
－Convex $\mathbb{R} \mathbb{P}^{n}$－structures：$\Omega \subset \mathbb{R} \mathbb{P}^{n}$ convex domain containing no affine line（properly convex）．

A projective $(3,3,3)$ triangle tesselation

This tesselation of the open triangular region is equivalent to the tiling of the Euclidean plane by equilateral triangles.

Examples of incomplete quotient affine structures

Hyperbolic structures as $\mathbb{R P}^{2}$-structures

- Using the Klein-Beltrami model of hyperbolic geometry, the convex domain Ω bounded by a conic inherits a projectively invariant hyperbolic geometry.
- The charts for the hyperbolic structure determine charts for an $\mathbb{R} \mathbb{P}^{2}$-structure.
- Every hyperbolic manifold is convex $\mathbb{R P}^{2}$-manifold.
\Rightarrow A tiling of $\Omega=\mathrm{H}^{2}$ in the projective model by triangles with angles $\pi / 3, \pi / 3, \pi / 4$. The corresponding Coxeter group contains a finite index subgroup Γ such that Ω / Γ is a closed hyperbolic (and hence convex $\mathbb{R P}^{2}$-) surface.

Hyperbolic structures as $\mathbb{R P}^{2}$-structures

- Using the Klein-Beltrami model of hyperbolic geometry, the convex domain Ω bounded by a conic inherits a projectively invariant hyperbolic geometry.
- The charts for the hyperbolic structure determine charts for an $\mathbb{R} \mathbb{P}^{2}$-structure.
- Every hyperbolic manifold is convex $\mathbb{R P}^{2}$-manifold.
- A tiling of $\Omega=\mathrm{H}^{2}$ in the projective model by triangles with angles $\pi / 3, \pi / 3, \pi / 4$. The corresponding Coxeter group contains a finite index subgroup Γ such that Ω / Γ is a closed hyperbolic (and hence convex $\mathbb{R P}^{2}$-) surface.

Hyperbolic structures as $\mathbb{R P}^{2}$-structures

- Using the Klein-Beltrami model of hyperbolic geometry, the convex domain Ω bounded by a conic inherits a projectively invariant hyperbolic geometry.
- The charts for the hyperbolic structure determine charts for an $\mathbb{R} \mathbb{P}^{2}$-structure.
- Every hyperbolic manifold is convex $\mathbb{R P}^{2}$-manifold.
- A tiling of $\Omega=\mathrm{H}^{2}$ in the projective model by triangles with angles $\pi / 3, \pi / 3, \pi / 4$. The corresponding Coxeter group contains a finite index subgroup Γ such that Ω / Γ is a closed hyperbolic (and hence convex $\mathbb{R P}^{2}$-) surface.

Hyperbolic structures as $\mathbb{R P}^{2}$-structures

- Using the Klein-Beltrami model of hyperbolic geometry, the convex domain Ω bounded by a conic inherits a projectively invariant hyperbolic geometry.
- The charts for the hyperbolic structure determine charts for an $\mathbb{R} \mathbb{P}^{2}$-structure.
- Every hyperbolic manifold is convex $\mathbb{R P}^{2}$-manifold.
- A tiling of $\Omega=\mathrm{H}^{2}$ in the projective model by triangles with angles $\pi / 3, \pi / 3, \pi / 4$. The corresponding Coxeter group contains a finite index subgroup Γ such that Ω / Γ is a closed hyperbolic (and hence convex $\mathbb{R P}^{2}$-) surface.

Hyperbolic structures as $\mathbb{R P}^{2}$-structures

- Using the Klein-Beltrami model of hyperbolic geometry, the convex domain Ω bounded by a conic inherits a projectively invariant hyperbolic geometry.
- The charts for the hyperbolic structure determine charts for an $\mathbb{R} \mathbb{P}^{2}$-structure.
- Every hyperbolic manifold is convex $\mathbb{R P}^{2}$-manifold.
- A tiling of $\Omega=\mathrm{H}^{2}$ in the projective model by triangles with angles $\pi / 3, \pi / 3, \pi / 4$. The corresponding Coxeter group contains a finite index subgroup Γ such that Ω / Γ is a closed hyperbolic (and hence convex $\mathbb{R}^{2}{ }^{2}$-) surface.

Convex $\mathbb{R P}^{2}$-structures

- $\chi(\Sigma)<0$: there will be other domains with fractal boundary determining convex $\mathbb{R} \mathbb{P}^{2}$-structures M on Σ.
- (Kuiper 1954) $\partial \Omega$ is a conic and M is hyperbolic.
- (Benzécri 1960) $\partial \Omega$ is a C^{1} convex curve.
- (Vinberg-Kac 1968) A triangle tiling, arising from a Kac-Moody Lie algebra. The corresponding discrete group lies in $\operatorname{SL}(3, \mathbb{Z})$.

Convex $\mathbb{R P}^{2}$-structures

- $\chi(\Sigma)<0$: there will be other domains with fractal boundary determining convex $\mathbb{R} \mathbb{P}^{2}$-structures M on Σ.
- (Kuiper 1954) $\partial \Omega$ is a conic and M is hyperbolic.
- (Benzécri 1960) $\partial \Omega$ is a C^{1} convex curve.
- (Vinberg-Kac 1968) A triangle tiling, arising from a Kac-Moody Lie algebra. The corresponding discrete group lies in $\operatorname{SL}(3, \mathbb{Z})$.

Convex $\mathbb{R P}^{2}$-structures

- $\chi(\Sigma)<0$: there will be other domains with fractal boundary determining convex $\mathbb{R}^{2} \mathbb{P}^{2}$-structures M on Σ.
- (Kuiper 1954) $\partial \Omega$ is a conic and M is hyperbolic.
- (Benzécri 1960) $\partial \Omega$ is a C^{1} convex curve.
- (Vinberg-Kac 1968) A triangle tiling, arising from a Kac-Moody Lie algebra. The corresponding discrete group lies in SL(3, $\mathbb{Z})$.

Convex $\mathbb{R P}^{2}$-structures

- $\chi(\Sigma)<0$: there will be other domains with fractal boundary determining convex $\mathbb{R}^{2} \mathbb{P}^{2}$-structures M on Σ.
- (Kuiper 1954) $\partial \Omega$ is a conic and M is hyperbolic.
- (Benzécri 1960) $\partial \Omega$ is a C^{1} convex curve.

Convex $\mathbb{R} \mathbb{P}^{2}$-structures

- $\chi(\Sigma)<0$: there will be other domains with fractal boundary determining convex \mathbb{R}^{2}-structures M on Σ.
- (Kuiper 1954) $\partial \Omega$ is a conic and M is hyperbolic.
- (Benzécri 1960) $\partial \Omega$ is a C^{1} convex curve.
- (Vinberg-Kac 1968) A triangle tiling, arising from a Kac-Moody Lie algebra. The corresponding discrete group lies in $\operatorname{SL}(3, \mathbb{Z})$.

Globalizing the coordinate atlas

- Coordinate changes $g(C)$, for $C \subset U \alpha \cap U_{\beta}$, define fibration $E \xrightarrow{\square} M$, fiber X, structure group G;
- Product fibration over U_{α} :

$$
E_{\alpha}:=U_{\alpha} \times X \xrightarrow{\Pi_{\alpha}} U_{\alpha}:
$$

- Since $C \longmapsto g(C) \in G$ is constant, the foliations of E_{α} defined by projections $E_{\alpha} \longrightarrow X$ define foliation \mathfrak{F} of E;
- Each leaf L of \mathfrak{F} is transverse to Π;
- The restriction Π_{L} is a covering space $L \longrightarrow M$.

Globalizing the coordinate atlas

- Coordinate changes $g(C)$, for $C \subset U \alpha \cap U_{\beta}$, define fibration $E \xrightarrow{\Pi} M$, fiber X, structure group G;
- Product fibration over U_{α} :

$$
E_{\alpha}:=U_{\alpha} \times X \xrightarrow{\Pi_{\alpha}} U_{\alpha}:
$$

- Since $C \longmapsto g(C) \in G$ is constant, the foliations of E_{α} defined by projections $E_{\alpha} \longrightarrow X$ define foliation \mathfrak{F} of E;
- Each leaf L of \mathfrak{F} is transverse to Π;
- The restriction $\left.\Pi\right|_{L}$ is a covering space $L \longrightarrow M$.

Globalizing the coordinate atlas

- Coordinate changes $g(C)$, for $C \subset U \alpha \cap U_{\beta}$, define fibration $E \xrightarrow{\square} M$, fiber X, structure group G;
- Product fibration over U_{α} :

$$
E_{\alpha}:=U_{\alpha} \times X \xrightarrow{\Pi_{\alpha}} U_{\alpha}:
$$

- Since $C \longmapsto g(C) \in G$ is constant, the foliations of E_{α} defined by projections $E_{\alpha} \longrightarrow X$ define foliation \mathfrak{F} of E;
- Each leaf L of \mathfrak{F} is transverse to Π;
- The restriction $\left.\Pi\right|_{L}$ is a covering space $L \longrightarrow M$.

Globalizing the coordinate atlas

- Coordinate changes $g(C)$, for $C \subset U_{\alpha} \cap U_{\beta}$, define fibration $E \xrightarrow{\square} M$, fiber X, structure group G;
- Product fibration over U_{α} :

$$
E_{\alpha}:=U_{\alpha} \times X \xrightarrow{\Pi_{\alpha}} U_{\alpha}:
$$

- Since $C \longmapsto g(C) \in G$ is constant, the foliations of E_{α} defined by projections $E_{\alpha} \longrightarrow X$ define foliation \mathfrak{F} of E;
- Each leaf L of \mathfrak{F} is transverse to Π;
- The restriction $\left.\Pi\right|_{L}$ is a covering space $L \longrightarrow M$.

Globalizing the coordinate atlas

- Coordinate changes $g(C)$, for $C \subset U_{\alpha} \cap U_{\beta}$, define fibration $E \xrightarrow{\Pi} M$, fiber X, structure group G;
- Product fibration over U_{α} :

$$
E_{\alpha}:=U_{\alpha} \times X \xrightarrow{\Pi_{\alpha}} U_{\alpha}:
$$

- Since $C \longmapsto g(C) \in G$ is constant, the foliations of E_{α} defined by projections $E_{\alpha} \longrightarrow X$ define foliation \mathfrak{F} of E;
- Each leaf L of \mathfrak{F} is transverse to Π;
- The restriction Π_{L} is a covering space $L \longrightarrow M$.

Globalizing the coordinate atlas

- Coordinate changes $g(C)$, for $C \subset U_{\alpha} \cap U_{\beta}$, define fibration $E \xrightarrow{\square} M$, fiber X, structure group G;
- Product fibration over U_{α} :

$$
E_{\alpha}:=U_{\alpha} \times X \xrightarrow{\Pi_{\alpha}} U_{\alpha}:
$$

- Since $C \longmapsto g(C) \in G$ is constant, the foliations of E_{α} defined by projections $E_{\alpha} \longrightarrow X$ define foliation \mathfrak{F} of E;
- Each leaf L of \mathfrak{F} is transverse to Π;
- The restriction $\left.\Pi\right|_{L}$ is a covering space $L \longrightarrow M$.

The tangent flat (G, X)-bundle

The developing section

- Graph the coordinate charts $U_{\alpha} \xrightarrow{\psi_{\alpha}} X$ to obtain sections of $E_{\alpha}:=\Pi^{-1}\left(U_{\alpha}\right)=U_{\alpha} \times X$:

$$
U_{\alpha} \xrightarrow{\operatorname{dev}_{\alpha}} U_{\alpha} \times X
$$

- The local sections $\operatorname{dev}_{\alpha}$ extend to a global section dev transverse both to Π and \mathfrak{F}.
- Such a structure is equivalent to a (G, X)-atlas.

The developing section

- Graph the coordinate charts $U_{\alpha} \xrightarrow{\psi_{\alpha}} X$ to obtain sections of $E_{\alpha}:=\Pi^{-1}\left(U_{\alpha}\right)=U_{\alpha} \times X$:

$$
U_{\alpha} \xrightarrow{\operatorname{dev}_{\alpha}} U_{\alpha} \times X
$$

- The local sections $\operatorname{dev}_{\alpha}$ extend to a global section dev transverse both to Π and \mathfrak{F}.
- Such a structure is equivalent to a (G, X)-atlas.

The developing section

- Graph the coordinate charts $U_{\alpha} \xrightarrow{\psi_{\alpha}} X$ to obtain sections of $E_{\alpha}:=\Pi^{-1}\left(U_{\alpha}\right)=U_{\alpha} \times X$:

$$
U_{\alpha} \xrightarrow{\operatorname{dev}_{\alpha}} U_{\alpha} \times X
$$

- The local sections $\operatorname{dev}_{\alpha}$ extend to a global section dev transverse both to Π and \mathfrak{F}.
- Such a structure is equivalent to a (G, X)-atlas.

The developing section

- Graph the coordinate charts $U_{\alpha} \xrightarrow{\psi_{\alpha}} X$ to obtain sections of $E_{\alpha}:=\Pi^{-1}\left(U_{\alpha}\right)=U_{\alpha} \times X$:

$$
U_{\alpha} \xrightarrow{\operatorname{dev}_{\alpha}} U_{\alpha} \times X
$$

- The local sections $\operatorname{dev}_{\alpha}$ extend to a global section dev transverse both to Π and \mathfrak{F}.
- Such a structure is equivalent to a (G, X)-atlas.

The developing section of a (G, X)-structure

The developing section of a (G, X)-structure

Development, holonomy

- Let $\widetilde{M} \longrightarrow M$ be a universal covering with deck group $\pi_{1}(M)$.
- This structure (E, \mathfrak{F}) is equivalent to a representation

$$
\pi_{1}(M) \xrightarrow{\rho} G:
$$

- $\widetilde{E}=\widetilde{M} \times X$, with $\pi_{\mathbb{1}}(M)$-action defined by deck transformations on \widetilde{M} and by ρ on G.
- $E=\widetilde{E} / \pi_{1}(M)$
- $\widetilde{\mathfrak{F}}$ is the foliation defined by $\widetilde{E} \longrightarrow X$.
- Sections of Π correspond to ρ-equivariant maps

\checkmark dev is \mathfrak{F}-transverse $\Longleftrightarrow \widetilde{\operatorname{dev}}$ is a local diffeomorphism.

Development, holonomy

- Let $\widetilde{M} \longrightarrow M$ be a universal covering with deck group $\pi_{1}(M)$.
- This structure (E, \mathcal{F}) is equivalent to a representation

$$
\pi_{1}(M) \xrightarrow{\rho} G:
$$

- $\widetilde{E}=\widetilde{M} \times X$, with $\pi_{1}(M)$-action defined by deck transformations on M and by ρ on G.
- $E=\widetilde{E} / \pi_{1}(M)$
- $\widetilde{\mathfrak{F}}$ is the foliation defined by $\widetilde{E} \longrightarrow X$.
- Sections of Π correspond to ρ-equivariant maps

dev is \mathfrak{F}-transverse \Longleftrightarrow dev is a local diffeomorphism.

Development, holonomy

- Let $\widetilde{M} \longrightarrow M$ be a universal covering with deck group $\pi_{1}(M)$.
- This structure (E, \mathfrak{F}) is equivalent to a representation

$$
\pi_{1}(M) \xrightarrow{\rho} G:
$$

- $\widetilde{E}=\widetilde{M} \times X$, with $\pi_{1}(M)$-action defined by deck transformations on \widetilde{M} and by ρ on G.
- $E=\widetilde{E} / \pi_{1}(M)$
- \widetilde{F} is the foliation defined by $\widetilde{E} \longrightarrow X$.
- Sections of Π correspond to ρ-equivariant maps

\checkmark dev is \mathfrak{F}-transverse \Longleftrightarrow dev is a local diffeomorphism.

Development, holonomy

- Let $\widetilde{M} \longrightarrow M$ be a universal covering with deck group $\pi_{1}(M)$.
- This structure (E, \mathfrak{F}) is equivalent to a representation

$$
\pi_{1}(M) \xrightarrow{\rho} G:
$$

 transformations on M and by ρ on G.

- $E=E / \pi_{1}(M)$
- $\widetilde{\mathfrak{F}}$ is the foliation defined by $\widetilde{E} \longrightarrow X$.
- Sections of Π correspond to ρ-equivariant maps

\rightarrow dev is \mathfrak{F}-transverse \Longleftrightarrow dev is a local diffeomorphism.

Development, holonomy

- Let $\widetilde{M} \longrightarrow M$ be a universal covering with deck group $\pi_{1}(M)$.
- This structure (E, \mathfrak{F}) is equivalent to a representation

$$
\pi_{1}(M) \xrightarrow{\rho} G:
$$

 transformations on M and by ρ on G.

- $E=\widetilde{E} / \pi_{1}(M)$
- \widetilde{F} is the foliation defined by $\widetilde{E} \longrightarrow X$.
- Sections of Π correspond to ρ-equivariant maps

\rightarrow dev is \mathfrak{F}-transverse \Longleftrightarrow dev is a local diffeomorphism.

Development, holonomy

- Let $\widetilde{M} \longrightarrow M$ be a universal covering with deck group $\pi_{1}(M)$.
- This structure (E, \mathfrak{F}) is equivalent to a representation

$$
\pi_{1}(M) \xrightarrow{\rho} G:
$$

- $\widetilde{E}=\widetilde{M} \times X$, with $\pi_{工}(M)$-action defined by deck transformations on \widetilde{M} and by ρ on G.
- $E=\widetilde{E} / \pi_{1}(M)$
- $\widetilde{\mathfrak{F}}$ is the foliation defined by $\widetilde{E} \longrightarrow X$.
- Sections of Π correspond to ρ-equivariant maps
- dev is \mathfrak{F}-transverse $\Longleftrightarrow \operatorname{dev}$ is a local diffeomorphism.

Development, holonomy

- Let $\widetilde{M} \longrightarrow M$ be a universal covering with deck group $\pi_{1}(M)$.
- This structure (E, \mathfrak{F}) is equivalent to a representation

$$
\pi_{1}(M) \xrightarrow{\rho} G:
$$

- $\widetilde{E}=\widetilde{M} \times X$, with $\pi_{\widetilde{1}}(M)$-action defined by deck transformations on \widetilde{M} and by ρ on G.
- $E=\widetilde{E} / \pi_{1}(M)$
- $\widetilde{\mathfrak{F}}$ is the foliation defined by $\widetilde{E} \longrightarrow X$.
- Sections of Π correspond to ρ-equivariant maps

$$
\widetilde{M} \xrightarrow{\widetilde{\operatorname{dev}}} X
$$

- dev is \mathfrak{F}-transverse $\Longleftrightarrow \widetilde{\operatorname{dev}}$ is a local diffeomorphism.

Development, holonomy

- Let $\widetilde{M} \longrightarrow M$ be a universal covering with deck group $\pi_{1}(M)$.
- This structure (E, \mathfrak{F}) is equivalent to a representation

$$
\pi_{1}(M) \xrightarrow{\rho} G:
$$

- $\widetilde{E}=\widetilde{M} \times X$, with $\pi_{\widetilde{1}}(M)$-action defined by deck transformations on \mathcal{M} and by ρ on G.
- $E=\widetilde{E} / \pi_{1}(M)$
- $\widetilde{\mathfrak{F}}$ is the foliation defined by $\widetilde{E} \longrightarrow X$.
- Sections of Π correspond to ρ-equivariant maps

$$
\widetilde{M} \xrightarrow{\widetilde{\operatorname{dev}}} X
$$

- dev is \mathfrak{F}-transverse $\Longleftrightarrow \operatorname{dev}$ is a local diffeomorphism.

The Ehresmann-Thurston Theorem

- Assume \sum compact. Two nearby structures with same holonomy are isotopic: equivalent by a diffeo in $\operatorname{Diff}(M)^{0}$
- The holonomy representation ρ of a (G, X)-manifold M has an open neighborhood in $\operatorname{Hom}\left(\pi_{1}, G\right)$ of holonomy representations of nearby (G, X)-manifolds.

The Ehresmann-Thurston Theorem

- Assume Σ compact. Two nearby structures with same holonomy are isotopic: equivalent by a diffeo in $\operatorname{Diff}(M)^{0}$,
- The holonomy representation ρ of a (G, X)-manifold M has an open neighborhood in $\operatorname{Hom}\left(\pi_{1}, G\right)$ of holonomy representations of nearby (G, X)-manifolds.

The Ehresmann-Thurston Theorem

- Assume Σ compact. Two nearby structures with same holonomy are isotopic: equivalent by a diffeo in $\operatorname{Diff}(M)^{0}$,
- The holonomy representation ρ of a (G, X)-manifold M has an open neighborhood in $\operatorname{Hom}\left(\pi_{1}, G\right)$ of holonomy representations of nearby (G, X)-manifolds.

Modeling structures on representations of π_{1}

- A marked (G, X)-structure on Σ is a diffeomorphism $\Sigma \stackrel{f}{\rightarrow} M$ where M is a (G, X)-manifold.
\Rightarrow Marked (G, X)-structures $\left(f_{i}, M_{i}\right)$ are isotopic $\Longleftrightarrow \exists$ isomorphism $M_{1} \xrightarrow{\phi} M_{2}$ with $\phi \circ f_{1} \simeq f_{2}$.
- Holonomy defines a local homeomorphism

$$
\begin{array}{r}
\mathfrak{D}_{(G, X)}(\Sigma):=\{\text { Marked }(G, X) \text {-structures on } \Sigma\} / \text { Isotopy } \\
\xrightarrow{\text { hol }} \operatorname{Hom}\left(\pi_{1}(\Sigma), G\right) / G
\end{array}
$$

Modeling structures on representations of π_{1}

- A marked (G, X)-structure on Σ is a diffeomorphism $\Sigma \xrightarrow{f} M$ where M is a (G, X)-manifold.
- Marked (G, X)-structures $\left(f_{i}, M_{i}\right)$ are isotopic $\Longleftrightarrow \exists$ isomorphism $M_{1} \xrightarrow{\phi} M_{2}$ with $\phi \circ f_{1} \simeq f_{2}$.
- Holonomy defines a local homeomorphism

Modeling structures on representations of π_{1}

- A marked (G, X)-structure on Σ is a diffeomorphism $\Sigma \xrightarrow{f} M$ where M is a (G, X)-manifold.
- Marked (G, X)-structures $\left(f_{i}, M_{i}\right)$ are isotopic $\Longleftrightarrow \exists$ isomorphism $M_{1} \xrightarrow{\phi} M_{2}$ with $\phi \circ f_{1} \simeq f_{2}$.
- Holonomy defines a local homeomorphism

Modeling structures on representations of π_{1}

- A marked (G, X)-structure on Σ is a diffeomorphism $\Sigma \xrightarrow{f} M$ where M is a (G, X)-manifold.
- Marked (G, X)-structures $\left(f_{i}, M_{i}\right)$ are isotopic $\Longleftrightarrow \exists$ isomorphism $M_{1} \xrightarrow{\phi} M_{2}$ with $\phi \circ f_{1} \simeq f_{2}$.
- Holonomy defines a local homeomorphism

$$
\begin{array}{r}
\mathfrak{D}_{(G, X)}(\Sigma):=\{\text { Marked }(G, X) \text {-structures on } \Sigma\} / \text { Isotopy } \\
\xrightarrow{\text { hol }} \operatorname{Hom}\left(\pi_{1}(\Sigma), G\right) / G
\end{array}
$$

Change the marking!

```
- Let \(\Sigma \xrightarrow{f} M\) be a marked \((G, X)\)-structure.
- \(\eta \in \operatorname{Diff}(\Sigma)\) acts: \((f, M) \longmapsto(f \circ \eta, M)\).
- Mapping class group
```

$$
\operatorname{Mod}(\Sigma):=\pi_{0}(\operatorname{Diff}(\Sigma))
$$

acts on $\mathfrak{D}_{(G, X)}(\Sigma)$.

- hol equivariant respecting

$$
\operatorname{Mod}(\Sigma) \longrightarrow \operatorname{Out}\left(\pi_{1}(\Sigma)\right):=\operatorname{Aut}\left(\pi_{1}(\Sigma)\right) / \operatorname{Inn}\left(\pi_{1}(\Sigma)\right)
$$

- When Σ is a closed surface (or a one-holed torus), then $\pi_{0} \operatorname{Diff}(\Sigma) \cong \operatorname{Out}\left(\pi_{1}(\Sigma)\right)$ (Nielsen 1918).

Change the marking!

- Let $\Sigma \xrightarrow{f} M$ be a marked (G, X)-structure.
$\Rightarrow \eta \in \operatorname{Diff}(\Sigma)$ acts: $(f, M) \longmapsto(f \circ \eta, M)$.
- Mapping class group

$$
\operatorname{Mod}(\Sigma):=\pi_{0}(\operatorname{Diff}(\Sigma))
$$

acts on $\mathfrak{D}_{(G, X)}(\Sigma)$

- hol equivariant respecting
$\operatorname{Mod}(\Sigma) \longrightarrow \operatorname{Out}\left(\pi_{1}(\Sigma)\right):=\operatorname{Aut}\left(\pi_{1}(\Sigma)\right) / \operatorname{Inn}\left(\pi_{1}(\Sigma)\right)$
- When Σ is a closed surface (or a one-holed torus), then $\pi_{0} \operatorname{Diff}(\Sigma) \cong \operatorname{Out}\left(\pi_{1}(\Sigma)\right)$ (Nielsen 1918).

Change the marking!

- Let $\Sigma \xrightarrow{f} M$ be a marked (G, X)-structure.
- $\eta \in \operatorname{Diff}(\Sigma)$ acts: $(f, M) \longmapsto(f \circ \eta, M)$.
- Mapping class group

$$
\operatorname{Mod}(\Sigma):=\pi_{0}(\operatorname{Diff}(\Sigma))
$$

acts on $\mathfrak{D}_{(G, X)}(\Sigma)$

- hol equivariant respecting
$\operatorname{Mod}(\Sigma) \longrightarrow \operatorname{Out}\left(\pi_{1}(\Sigma)\right):=\operatorname{Aut}\left(\pi_{1}(\Sigma)\right) / \operatorname{Inn}\left(\pi_{1}(\Sigma)\right)$
- When Σ is a closed surface (or a one-holed torus), then $\pi_{0} \operatorname{Diff}(\Sigma) \cong \operatorname{Out}\left(\pi_{1}(\Sigma)\right)$ (Nielsen 1918).

Change the marking!

- Let $\Sigma \xrightarrow{f} M$ be a marked (G, X)-structure.
- $\eta \in \operatorname{Diff}(\Sigma)$ acts: $(f, M) \longmapsto(f \circ \eta, M)$.
- Mapping class group

$$
\operatorname{Mod}(\Sigma):=\pi_{0}(\operatorname{Diff}(\Sigma))
$$

acts on $\mathfrak{D}_{(G, X)}(\Sigma)$.

- hol equivariant respecting
$\operatorname{Mod}(\Sigma) \longrightarrow \operatorname{Out}\left(\pi_{1}(\Sigma)\right):=\operatorname{Aut}\left(\pi_{1}(\Sigma)\right) / \operatorname{Inn}\left(\pi_{1}(\Sigma)\right)$
- When Σ is a closed surface (or a one-holed torus), then $\pi_{0} \operatorname{Diff}(\Sigma) \cong \operatorname{Out}\left(\pi_{1}(\Sigma)\right)($ Nielsen 1918) .

Change the marking!

- Let $\Sigma \xrightarrow{f} M$ be a marked (G, X)-structure.
- $\eta \in \operatorname{Diff}(\Sigma)$ acts: $(f, M) \longmapsto(f \circ \eta, M)$.
- Mapping class group

$$
\operatorname{Mod}(\Sigma):=\pi_{0}(\operatorname{Diff}(\Sigma))
$$

acts on $\mathfrak{D}_{(G, X)}(\Sigma)$.

- hol equivariant respecting

$$
\operatorname{Mod}(\Sigma) \longrightarrow \operatorname{Out}\left(\pi_{1}(\Sigma)\right):=\operatorname{Aut}\left(\pi_{1}(\Sigma)\right) / \operatorname{Inn}\left(\pi_{1}(\Sigma)\right)
$$

- When Σ is a closed surface (or a one-holed torus), then $\pi_{0} \operatorname{Diff}(\Sigma) \cong \operatorname{Out}\left(\pi_{1}(\Sigma)\right)$ (Nielsen 1918).

Change the marking!

- Let $\Sigma \xrightarrow{f} M$ be a marked (G, X)-structure.
- $\eta \in \operatorname{Diff}(\Sigma)$ acts: $(f, M) \longmapsto(f \circ \eta, M)$.
- Mapping class group

$$
\operatorname{Mod}(\Sigma):=\pi_{0}(\operatorname{Diff}(\Sigma))
$$

acts on $\mathfrak{D}_{(G, X)}(\Sigma)$.

- hol equivariant respecting

$$
\operatorname{Mod}(\Sigma) \longrightarrow \operatorname{Out}\left(\pi_{1}(\Sigma)\right):=\operatorname{Aut}\left(\pi_{1}(\Sigma)\right) / \operatorname{Inn}\left(\pi_{1}(\Sigma)\right)
$$

- When Σ is a closed surface (or a one-holed torus), then $\pi_{0} \operatorname{Diff}(\Sigma) \cong \operatorname{Out}\left(\pi_{1}(\Sigma)\right)$ (Nielsen 1918).

Marked Euclidean structures on the T^{2}

Marked Euclidean structures on the T^{2}

- Euclidean geometry: $X=\mathbb{R}^{2}$ and $G=\operatorname{Isom}(X)$ $\mathfrak{D}_{(G, X)}(\Sigma)$ identifies with the upper half-plane H^{2} :
- The marking is the choice of basis $1, \tau$ for $\pi_{1}(M)$.
- Changing the marking is the usual action of $\operatorname{PGL}(2, \mathbb{Z})$ on H^{2} by linear fractional transformations which is properly discrete!

Marked Euclidean structures on the T^{2}

- Euclidean geometry: $X=\mathbb{R}^{2}$ and $G=\operatorname{Isom}(X)$ $\mathfrak{D}_{(G, X)}(\Sigma)$ identifies with the upper half-plane H^{2} :
- Point $\tau \in \mathrm{H}^{2} \longleftrightarrow$ Euclidean manifold $\mathbb{C} /\langle 1, \tau\rangle$.
- Changing the marking is the usual action of $\operatorname{PGL}(2, \mathbb{Z})$ on H^{2} by linear fractional transformations which is properly discrete!

Marked Euclidean structures on the T^{2}

- Euclidean geometry: $X=\mathbb{R}^{2}$ and $G=\operatorname{Isom}(X)$ $\mathfrak{D}_{(G, X)}(\Sigma)$ identifies with the upper half-plane H^{2} :
- Point $\tau \in \mathrm{H}^{2} \longleftrightarrow$ Euclidean manifold $\mathbb{C} /\langle 1, \tau\rangle$.
- The marking is the choice of basis $1, \tau$ for $\pi_{1}(M)$.

Marked Euclidean structures on the T^{2}

- Euclidean geometry: $X=\mathbb{R}^{2}$ and $G=\operatorname{Isom}(X)$ $\mathfrak{D}_{(G, X)}(\Sigma)$ identifies with the upper half-plane H^{2} :
- Point $\tau \in \mathrm{H}^{2} \longleftrightarrow$ Euclidean manifold $\mathbb{C} /\langle 1, \tau\rangle$.
- The marking is the choice of basis $1, \tau$ for $\pi_{1}(M)$.
- Changing the marking is the usual action of $\operatorname{PGL}(2, \mathbb{Z})$ on H^{2} by linear fractional transformations which is properly discrete!.

Complete affine structures on the 2-torus

- Kuiper (1954) Every complete affine closed orientable 2-manifold is equivalent to either:
- Euclidean: \mathbb{R}^{2} / Λ, where Λ is a lattice of translations (all are affinely equivalent);
- Polynomial deformation $\mathbb{R}^{2} /\left(f \circ \wedge \circ f^{-1}\right)$, where

$$
(x, y) \xrightarrow{f}\left(x+y^{2}, y\right) .
$$

Complete affine structures on the 2-torus

- Kuiper (1954) Every complete affine closed orientable 2-manifold is equivalent to either:
- Euclidean: \mathbb{R}^{2} / Λ, where Λ is a lattice of translations (all are affinely equivalent);
- Polynomial deformation $\mathbb{R}^{2} /\left(f \circ \wedge \circ f^{-1}\right)$, where

Complete affine structures on the 2-torus

- Kuiper (1954) Every complete affine closed orientable 2-manifold is equivalent to either:
- Euclidean: \mathbb{R}^{2} / Λ, where Λ is a lattice of translations (all are affinely equivalent);
- Polynomial deformation $\mathbb{R}^{2} /\left(f \circ \wedge \circ f^{-1}\right)$, where

Complete affine structures on the 2-torus

- Kuiper (1954) Every complete affine closed orientable 2-manifold is equivalent to either:
- Euclidean: \mathbb{R}^{2} / Λ, where Λ is a lattice of translations (all are affinely equivalent);
- Polynomial deformation $\mathbb{R}^{2} /\left(f \circ \Lambda \circ f^{-1}\right)$, where

$$
(x, y) \xrightarrow{f}\left(x+y^{2}, y\right) .
$$

Complete affine structures on the 2-torus

- Kuiper (1954) Every complete affine closed orientable 2-manifold is equivalent to either:
- Euclidean: \mathbb{R}^{2} / Λ, where Λ is a lattice of translations (all are affinely equivalent);
- Polynomial deformation $\mathbb{R}^{2} /\left(f \circ \Lambda \circ f^{-1}\right)$, where

$$
(x, y) \xrightarrow{f}\left(x+y^{2}, y\right) .
$$

Complete affine structures on the 2-torus

- Kuiper (1954) Every complete affine closed orientable 2-manifold is equivalent to either:
- Euclidean: \mathbb{R}^{2} / Λ, where Λ is a lattice of translations (all are affinely equivalent);
- Polynomial deformation $\mathbb{R}^{2} /\left(f \circ \Lambda \circ f^{-1}\right)$, where

$$
(x, y) \xrightarrow{f}\left(x+y^{2}, y\right) .
$$

Complete affine structures on the 2-torus

- Kuiper (1954) Every complete affine closed orientable 2-manifold is equivalent to either:
- Euclidean: \mathbb{R}^{2} / Λ, where Λ is a lattice of translations (all are affinely equivalent);
- Polynomial deformation $\mathbb{R}^{2} /\left(f \circ \Lambda \circ f^{-1}\right)$, where

$$
(x, y) \xrightarrow{f}\left(x+y^{2}, y\right)
$$

Complete affine structures on the 2-torus

- Kuiper (1954) Every complete affine closed orientable 2-manifold is equivalent to either:
- Euclidean: \mathbb{R}^{2} / Λ, where Λ is a lattice of translations (all are affinely equivalent);
- Polynomial deformation $\mathbb{R}^{2} /\left(f \circ \Lambda \circ f^{-1}\right)$, where

$$
(x, y) \xrightarrow{f}\left(x+y^{2}, y\right) .
$$

Complete affine structures on the 2-torus

- Kuiper (1954) Every complete affine closed orientable 2-manifold is equivalent to either:
- Euclidean: \mathbb{R}^{2} / Λ, where Λ is a lattice of translations (all are affinely equivalent);
- Polynomial deformation $\mathbb{R}^{2} /\left(f \circ \Lambda \circ f^{-1}\right)$, where

$$
(x, y) \xrightarrow{f}\left(x+y^{2}, y\right) .
$$

Complete affine structures on the 2-torus

- Kuiper (1954) Every complete affine closed orientable 2-manifold is equivalent to either:
- Euclidean: \mathbb{R}^{2} / Λ, where Λ is a lattice of translations (all are affinely equivalent);
- Polynomial deformation $\mathbb{R}^{2} /\left(f \circ \Lambda \circ f^{-1}\right)$, where

$$
(x, y) \xrightarrow{f}\left(x+y^{2}, y\right) .
$$

Complete affine structures on the 2-torus

- Kuiper (1954) Every complete affine closed orientable 2-manifold is equivalent to either:
- Euclidean: \mathbb{R}^{2} / Λ, where Λ is a lattice of translations (all are affinely equivalent);
- Polynomial deformation $\mathbb{R}^{2} /\left(f \circ \Lambda \circ f^{-1}\right)$, where

$$
(x, y) \xrightarrow{f}\left(x+y^{2}, y\right) .
$$

Complete affine structures on the 2-torus

- Kuiper (1954) Every complete affine closed orientable 2-manifold is equivalent to either:
- Euclidean: \mathbb{R}^{2} / Λ, where Λ is a lattice of translations (all are affinely equivalent);
- Polynomial deformation $\mathbb{R}^{2} /\left(f \circ \Lambda \circ f^{-1}\right)$, where

$$
(x, y) \xrightarrow{f}\left(x+y^{2}, y\right) .
$$

Complete affine structures on the 2-torus

- Kuiper (1954) Every complete affine closed orientable 2-manifold is equivalent to either:
- Euclidean: \mathbb{R}^{2} / Λ, where Λ is a lattice of translations (all are affinely equivalent);
- Polynomial deformation $\mathbb{R}^{2} /\left(f \circ \Lambda \circ f^{-1}\right)$, where

$$
(x, y) \xrightarrow{f}\left(x+y^{2}, y\right) .
$$

Chaotic dynamics on the deformation space

- Usually $\operatorname{Mod}(\Sigma)$ too dynamicly interesting to form a quotient.
- (Baues 2000) Deformation space homeomorphic \mathbb{R}^{2}, where origin $\{(0,0)\}$ corresponds to Euclidean structure;
- Mapping class group action is linear $\mathrm{GL}(2, \mathbb{Z})$-action on \mathbb{R}^{2} chaotic!
- The orbit space - the moduli space of complete affine compact orientable 2-manifolds is non-Hausdorff and intractable. (Even though the corresponding representations are discrete embeddings.)
- In contrast, $\operatorname{Mod}(\Sigma)$ can act properly discrete even for non-discrete representations: hyperbolic structures on T^{2} with single cone point.

Chaotic dynamics on the deformation space

- Usually $\operatorname{Mod}(\Sigma)$ too dynamicly interesting to form a quotient.
- (Baues 2000) Deformation space homeomorphic \mathbb{R}^{2}, where origin $\{(0,0)\}$ corresponds to Euclidean structure;
- Mapping class group action is linear $\mathrm{GL}(2, \mathbb{Z})$-action on \mathbb{R}^{2} chaotic!
- The orbit space - the moduli space of complete affine compact orientable 2-manifolds is non-Hausdorff and intractable. (Even though the corresponding representations are discrete embeddings.)
- In contrast, $\operatorname{Mod}(\Sigma)$ can act properly discrete even for non-discrete representations: hyperbolic structures on T^{2} with single cone point.

Chaotic dynamics on the deformation space

- Usually $\operatorname{Mod}(\Sigma)$ too dynamicly interesting to form a quotient.
- (Baues 2000) Deformation space homeomorphic \mathbb{R}^{2}, where origin $\{(0,0)\}$ corresponds to Euclidean structure;
- Mapping class group action is linear $\mathrm{GL}(2, \mathbb{Z})$-action on \mathbb{R}^{2} -
- The orbit space - the moduli space of complete affine compact orientable 2-manifolds is non-Hausdorff and intractable. (Even though the corresponding representations are discrete embeddings.)
- In contrast, $\operatorname{Mod}(\Sigma)$ can act properly discrete even for non-discrete representations: hyperbolic structures on T^{2} with single cone point.

Chaotic dynamics on the deformation space

- Usually $\operatorname{Mod}(\Sigma)$ too dynamicly interesting to form a quotient.
- (Baues 2000) Deformation space homeomorphic \mathbb{R}^{2}, where origin $\{(0,0)\}$ corresponds to Euclidean structure;
- Mapping class group action is linear $\mathrm{GL}(2, \mathbb{Z})$-action on \mathbb{R}^{2} chaotic!
- The orbit space - the moduli space of complete affine compact orientable 2-manifolds is non-Hausdorff and intractable. (Even though the corresponding representations are discrete embeddings.)
- In contrast, $\operatorname{Mod}(\Sigma)$ can act properly discrete even for non-discrete representations: hyperbolic structures on T^{2} with single cone point.

Chaotic dynamics on the deformation space

- Usually $\operatorname{Mod}(\Sigma)$ too dynamicly interesting to form a quotient.
- (Baues 2000) Deformation space homeomorphic \mathbb{R}^{2}, where origin $\{(0,0)\}$ corresponds to Euclidean structure;
- Mapping class group action is linear $\mathrm{GL}(2, \mathbb{Z})$-action on \mathbb{R}^{2} chaotic!
- The orbit space - the moduli space of complete affine compact orientable 2-manifolds is non-Hausdorff and intractable. (Even though the corresponding representations are discrete embeddings.)
- In contrast, Mod (Σ) can act properly discrete even for non-discrete representations: hyperbolic structures on T^{2} with single cone point.

Chaotic dynamics on the deformation space

- Usually $\operatorname{Mod}(\Sigma)$ too dynamicly interesting to form a quotient.
- (Baues 2000) Deformation space homeomorphic \mathbb{R}^{2}, where origin $\{(0,0)\}$ corresponds to Euclidean structure;
- Mapping class group action is linear $\mathrm{GL}(2, \mathbb{Z})$-action on \mathbb{R}^{2} chaotic!
- The orbit space - the moduli space of complete affine compact orientable 2-manifolds is non-Hausdorff and intractable. (Even though the corresponding representations are discrete embeddings.)
- In contrast, $\operatorname{Mod}(\Sigma)$ can act properly discrete even for non-discrete representations: hyperbolic structures on T^{2} with single cone point.

Fricke spaces of hyperbolic structures

- Hyperbolic geometry: $X=\mathrm{H}^{2}$ and $G=\operatorname{Isom}(X)$
$\mathfrak{D}_{(G, X)}(\Sigma)$ is Fricke space $\mathfrak{F}(\Sigma)$ of isotopy classes of marked hyperbolic structures $\Sigma \longrightarrow M$.

$$
\mathfrak{F}(\Sigma) \stackrel{\text { hol }}{\hookrightarrow} \operatorname{Hom}(\pi, G)) / G
$$

embeds $\mathfrak{F}(\Sigma)$ as a connected component.

- Image comprises discrete embeddings $\pi \stackrel{\rho}{\hookrightarrow} G$.
- Equivalently, $\rho(\gamma)$ is hyperbolic if $\gamma \neq 1$.
- (Fricke-Klein ?) $\mathfrak{F}(\Sigma)$ diffeomorphic to $\mathbb{R}^{-3 \chi}(\Sigma)$
- Uniformization: $\mathfrak{F}(\Sigma)$ corresponds to marked conformal structures: Teichmüller space.
- $\operatorname{Mod}(\Sigma)$ acts properly on $\mathfrak{F}(\Sigma)$ with quotient Riemann's moduli space of Riemann surfaces of fixed topology Σ.

Fricke spaces of hyperbolic structures

- Hyperbolic geometry: $X=\mathrm{H}^{2}$ and $G=\operatorname{Isom}(X)$
$\mathfrak{D}_{(G, X)}(\Sigma)$ is Fricke space $\mathfrak{F}(\Sigma)$ of isotopy classes of marked hyperbolic structures $\Sigma \longrightarrow M$.

embeds $\mathfrak{F}(\Sigma)$ as a connected component.
- Image comprises discrete embeddings $\pi \stackrel{\rho}{\hookrightarrow} G$.
- Equivalently, $\rho(\gamma)$ is hyperbolic if $\gamma \neq 1$.
- (Fricke-Klein ?) $\mathfrak{F}(\Sigma)$ diffeomorphic to $\mathbb{R}^{-3 \chi}(\Sigma)$
- Uniformization: $\mathfrak{F}(\Sigma)$ corresponds to marked conformal structures: Teichmüller space.
- $\operatorname{Mod}(\Sigma)$ acts properly on $\mathfrak{F}(\Sigma)$ with quotient Riemann's moduli space of Riemann surfaces of fixed topology Σ.

Fricke spaces of hyperbolic structures

- Hyperbolic geometry: $X=\mathrm{H}^{2}$ and $G=\operatorname{Isom}(X)$
$\mathfrak{D}_{(G, X)}(\Sigma)$ is Fricke space $\mathfrak{F}(\Sigma)$ of isotopy classes of marked hyperbolic structures $\Sigma \longrightarrow M$.

$$
\mathfrak{F}(\Sigma) \stackrel{\text { hol }}{\hookrightarrow} \operatorname{Hom}(\pi, G)) / G
$$

embeds $\mathfrak{F}(\Sigma)$ as a connected component.

- Image comprises discrete embeddings $\pi \stackrel{p}{\hookrightarrow} G$.
- Equivalently, $\rho(\gamma)$ is hyperbolic if $\gamma \neq 1$.
- (Fricke-Klein ?) $\mathfrak{F}(\Sigma)$ diffeomorphic to $\mathbb{R}^{-3 X}(\Sigma)$
- Uniformization: $\mathfrak{F}(\Sigma)$ corresponds to marked conformal structures: Teichmüller space.
- $\operatorname{Mod}(\Sigma)$ acts properly on $\mathfrak{F}(\Sigma)$ with quotient Riemann's moduli space of Riemann surfaces of fixed topology Σ.

Fricke spaces of hyperbolic structures

- Hyperbolic geometry: $X=\mathrm{H}^{2}$ and $G=\operatorname{Isom}(X)$
$\mathfrak{D}_{(G, X)}(\Sigma)$ is Fricke space $\mathfrak{F}(\Sigma)$ of isotopy classes of marked hyperbolic structures $\Sigma \longrightarrow M$.

$$
\mathfrak{F}(\Sigma) \stackrel{\text { hol }}{\hookrightarrow} \operatorname{Hom}(\pi, G)) / G
$$

embeds $\mathfrak{F}(\Sigma)$ as a connected component.

- Image comprises discrete embeddings $\pi \stackrel{\rho}{\hookrightarrow} G$.
- Equivalently, $\rho(\gamma)$ is hyperbolic if $\gamma \neq 1$.
- (Fricke-Klein ?) $\mathfrak{F}(\Sigma)$ diffeomorphic to $\mathbb{R}^{-3 \chi}(\Sigma)$
- Uniformization: $\mathfrak{F}(\Sigma)$ corresponds to marked conformal structures: Teichmüller space.
- $\operatorname{Mod}(\Sigma)$ acts properly on $\mathfrak{F}(\Sigma)$ with quotient Riemann's moduli space of Riemann surfaces of fixed topology Σ.

Fricke spaces of hyperbolic structures

- Hyperbolic geometry: $X=\mathrm{H}^{2}$ and $G=\operatorname{Isom}(X)$
$\mathfrak{D}_{(G, X)}(\Sigma)$ is Fricke space $\mathfrak{F}(\Sigma)$ of isotopy classes of marked hyperbolic structures $\Sigma \longrightarrow M$.

$$
\mathfrak{F}(\Sigma) \stackrel{\text { hol }}{\hookrightarrow} \operatorname{Hom}(\pi, G)) / G
$$

embeds $\mathfrak{F}(\Sigma)$ as a connected component.

- Image comprises discrete embeddings $\pi \stackrel{\rho}{\hookrightarrow} G$.
- Equivalently, $\rho(\gamma)$ is hyperbolic if $\gamma \neq 1$.
- (Fricke-Klein ?) $\mathfrak{F}(\Sigma)$ diffeomorphic to $\mathbb{R}^{-3 \chi(\Sigma)}$.
- Uniformization: $\mathfrak{F}(\Sigma)$ corresponds to marked conformal structures: Teichmüller space.
- $\operatorname{Mod}(\Sigma)$ acts properly on $\mathfrak{F}(\Sigma)$ with quotient Riemann's moduli space of Riemann surfaces of fixed topology Σ.

Fricke spaces of hyperbolic structures

- Hyperbolic geometry: $X=\mathrm{H}^{2}$ and $G=\operatorname{Isom}(X)$
$\mathfrak{D}_{(G, X)}(\Sigma)$ is Fricke space $\mathfrak{F}(\Sigma)$ of isotopy classes of marked hyperbolic structures $\Sigma \longrightarrow M$.

$$
\mathfrak{F}(\Sigma) \stackrel{\text { hol }}{\hookrightarrow} \operatorname{Hom}(\pi, G)) / G
$$

embeds $\mathfrak{F}(\Sigma)$ as a connected component.

- Image comprises discrete embeddings $\pi \stackrel{\rho}{\hookrightarrow} G$.
- Equivalently, $\rho(\gamma)$ is hyperbolic if $\gamma \neq 1$.
- (Fricke-Klein ?) $\mathfrak{F}(\Sigma)$ diffeomorphic to $\mathbb{R}^{-3 \chi(\Sigma)}$.
- Uniformization: $\mathfrak{F}(\Sigma)$ corresponds to marked conformal structures: Teichmüller space.
- $\operatorname{Mod}(\Sigma)$ acts properly on $\mathfrak{F}(\Sigma)$ with quotient Riemann's moduli space of Riemann surfaces of fixed topology Σ.

Fricke spaces of hyperbolic structures

- Hyperbolic geometry: $X=\mathrm{H}^{2}$ and $G=\operatorname{Isom}(X)$ $\mathfrak{D}_{(G, X)}(\Sigma)$ is Fricke space $\mathfrak{F}(\Sigma)$ of isotopy classes of marked hyperbolic structures $\Sigma \longrightarrow M$.

$$
\mathfrak{F}(\Sigma) \stackrel{\text { hol }}{\hookrightarrow} \operatorname{Hom}(\pi, G)) / G
$$

embeds $\mathfrak{F}(\Sigma)$ as a connected component.

- Image comprises discrete embeddings $\pi \stackrel{\rho}{\hookrightarrow} G$.
- Equivalently, $\rho(\gamma)$ is hyperbolic if $\gamma \neq 1$.
- (Fricke-Klein ?) $\mathfrak{F}(\Sigma)$ diffeomorphic to $\mathbb{R}^{-3 \chi(\Sigma)}$.
- Uniformization: $\mathfrak{F}(\Sigma)$ corresponds to marked conformal structures: Teichmüller space.
$\begin{aligned} & \operatorname{Mod}(\Sigma) \text { acts properly on } \mathfrak{F}(\Sigma) \text { with quotient Riemann's } \\ & \text { moduli space of Riemann surfaces of fixed topology } \Sigma \text {. }\end{aligned}$

Fricke spaces of hyperbolic structures

- Hyperbolic geometry: $X=\mathrm{H}^{2}$ and $G=\operatorname{Isom}(X)$ $\mathfrak{D}_{(G, X)}(\Sigma)$ is Fricke space $\mathfrak{F}(\Sigma)$ of isotopy classes of marked hyperbolic structures $\Sigma \longrightarrow M$.

$$
\mathfrak{F}(\Sigma) \stackrel{\text { hol }}{\hookrightarrow} \operatorname{Hom}(\pi, G)) / G
$$

embeds $\mathfrak{F}(\Sigma)$ as a connected component.

- Image comprises discrete embeddings $\pi \stackrel{\rho}{\hookrightarrow} G$.
- Equivalently, $\rho(\gamma)$ is hyperbolic if $\gamma \neq 1$.
- (Fricke-Klein ?) $\mathfrak{F}(\Sigma)$ diffeomorphic to $\mathbb{R}^{-3 \chi(\Sigma)}$.
- Uniformization: $\mathfrak{F}(\Sigma)$ corresponds to marked conformal structures: Teichmüller space.
- $\operatorname{Mod}(\Sigma)$ acts properly on $\mathfrak{F}(\Sigma)$ with quotient Riemann's moduli space of Riemann surfaces of fixed topology Σ.

Classification of $\mathbb{R} \mathbb{P}^{2}$-surfaces

- (Goldman 1990) Isotopy classes of marked convex $\mathbb{R} \mathbb{P}^{2}$-structures on Σ form deformation space

$$
\mathbb{C}(\Sigma) \approx \mathbb{R}^{-8 \chi(\Sigma)}
$$

- $\operatorname{Mod}(\Sigma)$ acts properly on $\mathfrak{C}(\Sigma)$.
- (Choi-Goldman 1993, conjectured by Hitchin 1992)

$$
\mathfrak{C}(\Sigma) \stackrel{\text { hol }}{\hookrightarrow} \operatorname{Hom}(\pi, \operatorname{SL}(3, \mathbb{R})) / \operatorname{SL}(3, \mathbb{R}) .
$$

embedding onto connected component.

- (Choi 1986) M decomposes canonically into convex pieces with geodesic boundary.
- Complete and explicit description:

$$
D_{\left(\operatorname{PGL}(3, \mathbb{R}), \mathbb{R P}^{2}\right)}(\Sigma) \approx \mathbb{C}(\Sigma) \times \mathbb{Z} \approx \mathbb{R}^{-8 \chi(\Sigma)} \times \mathbb{Z}
$$

Classification of $\mathbb{R} \mathbb{P}^{2}$-surfaces

- (Goldman 1990) Isotopy classes of marked convex $\mathbb{R} \mathbb{P}^{2}$-structures on Σ form deformation space

$$
\mathfrak{C}(\Sigma) \approx \mathbb{R}^{-8 \chi(\Sigma)} .
$$

- $\operatorname{Mod}(\Sigma)$ acts properly on $\mathfrak{C}(\Sigma)$
- (Choi-Goldman 1993, conjectured by Hitchin 1992)

$$
\mathbb{C}(\Sigma)^{\text {hol }} \operatorname{Hom}(\pi, \operatorname{SL}(3, \mathbb{R})) / \operatorname{SL}(3, \mathbb{R}) .
$$

embedding onto connected component.

- (Choi 1986) M decomposes canonically into convex pieces with geodesic boundary.
- Complete and explicit description

Classification of $\mathbb{R} \mathbb{P}^{2}$-surfaces

- (Goldman 1990) Isotopy classes of marked convex $\mathbb{R} \mathbb{P}^{2}$-structures on Σ form deformation space

$$
\mathfrak{C}(\Sigma) \approx \mathbb{R}^{-8 \chi(\Sigma)} .
$$

- $\operatorname{Mod}(\Sigma)$ acts properly on $\mathfrak{C}(\Sigma)$.
- (Choi-Goldman 1993, conjectured by Hitchin 1992)

$$
\mathfrak{C}(\Sigma) \stackrel{\text { hol }}{\hookrightarrow} \operatorname{Hom}(\pi, \operatorname{SL}(3, \mathbb{R})) / \operatorname{SL}(3, \mathbb{R})
$$

embedding onto connected component.

- (Choi 1986) M decomposes canonically into convex pieces with geodesic boundary.
- Complete and explicit description.

Classification of $\mathbb{R P}^{2}$-surfaces

- (Goldman 1990) Isotopy classes of marked convex $\mathbb{R} \mathbb{P}^{2}$-structures on Σ form deformation space

$$
\mathfrak{C}(\Sigma) \approx \mathbb{R}^{-8 \chi(\Sigma)} .
$$

- $\operatorname{Mod}(\Sigma)$ acts properly on $\mathfrak{C}(\Sigma)$.
- (Choi-Goldman 1993, conjectured by Hitchin 1992)

$$
\mathfrak{C}(\Sigma) \stackrel{\text { hol }}{\hookrightarrow} \operatorname{Hom}(\pi, \operatorname{SL}(3, \mathbb{R})) / \mathrm{SL}(3, \mathbb{R})
$$

embedding onto connected component.

- (Choi 1986) M decomposes canonically into convex pieces with geodesic boundary.
- Complete and explicit description.

Classification of $\mathbb{R P}^{2}$-surfaces

- (Goldman 1990) Isotopy classes of marked convex $\mathbb{R P}^{2}$-structures on Σ form deformation space

$$
\mathfrak{C}(\Sigma) \approx \mathbb{R}^{-8 \chi(\Sigma)}
$$

- $\operatorname{Mod}(\Sigma)$ acts properly on $\mathfrak{C}(\Sigma)$.
- (Choi-Goldman 1993, conjectured by Hitchin 1992)

$$
\mathfrak{C}(\Sigma) \stackrel{\text { hol }}{\hookrightarrow} \operatorname{Hom}(\pi, \operatorname{SL}(3, \mathbb{R})) / \mathrm{SL}(3, \mathbb{R})
$$

embedding onto connected component.

- (Choi 1986) M decomposes canonically into convex pieces with geodesic boundary.

Classification of $\mathbb{R P}^{2}$-surfaces

- (Goldman 1990) Isotopy classes of marked convex $\mathbb{R} \mathbb{P}^{2}$-structures on Σ form deformation space

$$
\mathfrak{C}(\Sigma) \approx \mathbb{R}^{-8 \chi(\Sigma)}
$$

- $\operatorname{Mod}(\Sigma)$ acts properly on $\mathfrak{C}(\Sigma)$.
- (Choi-Goldman 1993, conjectured by Hitchin 1992)

$$
\mathfrak{C}(\Sigma) \stackrel{\text { hol }}{\hookrightarrow} \operatorname{Hom}(\pi, \operatorname{SL}(3, \mathbb{R})) / \operatorname{SL}(3, \mathbb{R})
$$

embedding onto connected component.

- (Choi 1986) M decomposes canonically into convex pieces with geodesic boundary.
- Complete and explicit description:

$$
\mathfrak{D}_{\left(\operatorname{PGL}(3, \mathbb{R}), \mathbb{R P}^{2}\right)}(\Sigma) \approx \mathfrak{C}(\Sigma) \times \mathbb{Z} \approx \mathbb{R}^{-8 \chi(\Sigma)} \times \mathbb{Z}
$$

Recent developments

- (Hitchin 1990) G split \mathbb{R}-semisimple Lie group: $\operatorname{Hom}(\pi, G) / G$ always contains connected component

$$
\mathfrak{H}_{G}(\Sigma) \approx \mathbb{R}^{-\operatorname{dim}(G) \chi(\Sigma)} .
$$

- (Labourie 2003) Every Hitchin representation is a quasi-isometric discrete embedding $\pi \longrightarrow G$.
- $\operatorname{Mod}(\Sigma)$ acts properly on $\mathfrak{H}_{G}(\Sigma)$.
- $\forall \gamma \neq 1, \rho(\gamma)$ is positive hyperbolic.
- (Labourie, Guichard, Fock-Goncharov) Hitchin representations characterized by positivity condition. Limit set is a Hölder continuous closed curve in $\mathbb{R} \mathbb{P}^{n}$.
- (Benoist 2001) In all dimensions, geodesic flow of Hilbert metric of strictly convex projective structures is Anosov.

Recent developments

- (Hitchin 1990) G split \mathbb{R}-semisimple Lie group: $\operatorname{Hom}(\pi, G) / G$ always contains connected component

$$
\mathfrak{H}_{G}(\Sigma) \approx \mathbb{R}^{-\operatorname{dim}(G) \chi(\Sigma)} .
$$

- (Labourie 2003) Every Hitchin representation is a quasi-isometric discrete embedding $\pi \longrightarrow G$.
- $\operatorname{Mod}(\Sigma)$ acts properly on $\mathfrak{H}_{G}(\Sigma)$.
- $\forall \gamma \neq 1, \rho(\gamma)$ is positive hyperbolic.
- (Labourie, Guichard, Fock-Goncharov) Hitchin representations characterized by positivity condition. Limit set is a Hölder continuous closed curve in $\mathbb{R P}^{n}$
- (Benoist 2001) In all dimensions, geodesic flow of Hilbert metric of strictly convex projective structures is Anosov.

Recent developments

- (Hitchin 1990) G split \mathbb{R}-semisimple Lie group: $\operatorname{Hom}(\pi, G) / G$ always contains connected component

$$
\mathfrak{H}_{G}(\Sigma) \approx \mathbb{R}^{-\operatorname{dim}(G) \chi(\Sigma)} .
$$

- (Labourie 2003) Every Hitchin representation is a quasi-isometric discrete embedding $\pi \longrightarrow G$.
- $\operatorname{Mod}(\Sigma)$ acts properly on $\mathfrak{H}_{G}(\Sigma)$
- $\forall \gamma \neq 1, \rho(\gamma)$ is positive hyperbolic.
- (Labourie, Guichard, Fock-Goncharov) Hitchin representations characterized by positivity condition. Limit set is a Hölder continuous closed curve in $\mathbb{R P}^{n}$
- (Benoist 2001) In all dimensions, geodesic flow of Hilbert metric of strictly convex projective structures is Anosov.

Recent developments

- (Hitchin 1990) G split \mathbb{R}-semisimple Lie group: $\operatorname{Hom}(\pi, G) / G$ always contains connected component

$$
\mathfrak{H}_{G}(\Sigma) \approx \mathbb{R}^{-\operatorname{dim}(G) \chi(\Sigma)} .
$$

- (Labourie 2003) Every Hitchin representation is a quasi-isometric discrete embedding $\pi \longrightarrow G$.
- $\operatorname{Mod}(\Sigma)$ acts properly on $\mathfrak{H}_{G}(\Sigma)$.
- $\forall \gamma \neq 1, \rho(\gamma)$ is positive hyperbolic.
- (Labourie, Guichard, Fock-Goncharov) Hitchin representations characterized by positivity condition. Limit set is a Hölder continuous closed curve in $\mathbb{R P}^{n}$.
- (Benoist 2001) In all dimensions, geodesic flow of Hilbert metric of strictly convex projective structures is Anosov.

Recent developments

- (Hitchin 1990) G split \mathbb{R}-semisimple Lie group: $\operatorname{Hom}(\pi, G) / G$ always contains connected component

$$
\mathfrak{H}_{G}(\Sigma) \approx \mathbb{R}^{-\operatorname{dim}(G) \chi(\Sigma)} .
$$

- (Labourie 2003) Every Hitchin representation is a quasi-isometric discrete embedding $\pi \longrightarrow G$.
- $\operatorname{Mod}(\Sigma)$ acts properly on $\mathfrak{H}_{G}(\Sigma)$.
- $\forall \gamma \neq 1, \rho(\gamma)$ is positive hyperbolic.
- (Labourie, Guichard, Fock-Goncharov) Hitchin representations characterized by positivity condition. Limit set is a Hölder continuous closed curve in $\mathbb{R P}^{n}$.
- (Benoist 2001) In all dimensions, geodesic flow of Hilbert metric of strictly convex projective structures is Anosov.

Recent developments

- (Hitchin 1990) G split \mathbb{R}-semisimple Lie group: $\operatorname{Hom}(\pi, G) / G$ always contains connected component

$$
\mathfrak{H}_{G}(\Sigma) \approx \mathbb{R}^{-\operatorname{dim}(G) \chi(\Sigma)} .
$$

- (Labourie 2003) Every Hitchin representation is a quasi-isometric discrete embedding $\pi \longrightarrow G$.
- $\operatorname{Mod}(\Sigma)$ acts properly on $\mathfrak{H}_{G}(\Sigma)$.
- $\forall \gamma \neq 1, \rho(\gamma)$ is positive hyperbolic.
- (Labourie, Guichard, Fock-Goncharov) Hitchin representations characterized by positivity condition. Limit set is a Hölder continuous closed curve in $\mathbb{R} \mathbb{P}^{n}$.
- (Benoist 2001) In all dimensions, geodesic flow of Hilbert metric of strictly convex projective structures is Anosov.

Recent developments

- (Hitchin 1990) G split \mathbb{R}-semisimple Lie group: $\operatorname{Hom}(\pi, G) / G$ always contains connected component

$$
\mathfrak{H}_{G}(\Sigma) \approx \mathbb{R}^{-\operatorname{dim}(G) \chi(\Sigma)}
$$

- (Labourie 2003) Every Hitchin representation is a quasi-isometric discrete embedding $\pi \longrightarrow G$.
- $\operatorname{Mod}(\Sigma)$ acts properly on $\mathfrak{H}_{G}(\Sigma)$.
- $\forall \gamma \neq 1, \rho(\gamma)$ is positive hyperbolic.
- (Labourie, Guichard, Fock-Goncharov) Hitchin representations characterized by positivity condition. Limit set is a Hölder continuous closed curve in $\mathbb{R} \mathbb{P}^{n}$.
- (Benoist 2001) In all dimensions, geodesic flow of Hilbert metric of strictly convex projective structures is Anosov.

Representations and their symmetries

- Let $\pi=\left\langle X_{1}, \ldots, X_{n}\right\rangle$ be finitely generated and G Lie group:
- The set $\operatorname{Hom}(\pi, G)$ of homomorphisms

admits an action of $\operatorname{Aut}(\pi) \times \operatorname{Aut}(G)$:

$$
\pi \xrightarrow{\phi} \pi \xrightarrow{\rho} G \xrightarrow{\alpha} G
$$

where $(\phi, \alpha) \in \operatorname{Aut}(\pi) \times \operatorname{Aut}(G), \rho \in \operatorname{Hom}(\pi, G)$.

- The quotient

$$
\operatorname{Hom}(\pi, G) / G:=\operatorname{Hom}(\pi, G) /(\{1\} \times \operatorname{Inn}(G))
$$

under the subgroup

$$
\{1\} \times \ln n(G) \subset \operatorname{Aut}(\pi) \times \operatorname{Aut}(G)
$$

admits an action of

$$
\operatorname{Out}(\pi):=\operatorname{Aut}(\pi) / \operatorname{lnn}(\pi)
$$

Representations and their symmetries

- Let $\pi=\left\langle X_{1}, \ldots, X_{n}\right\rangle$ be finitely generated and G Lie group:.
- The set $\operatorname{Hom}(\pi, G)$ of homomorphisms

admits an action of $\operatorname{Aut}(\pi) \times \operatorname{Aut}(G)$:

where $(\phi, \alpha) \in \operatorname{Aut}(\pi) \times \operatorname{Aut}(G), \rho \in \operatorname{Hom}(\pi, G)$.
- The quotient

$$
\operatorname{Hom}(\pi, G) / G:=\operatorname{Hom}(\pi, G) /(\{1\} \times \operatorname{Inn}(G))
$$

under the subgroup

$$
\{1\} \times \operatorname{Inn}(G) \subset \operatorname{Aut}(\pi) \times \operatorname{Aut}(G)
$$

admits an action of

$$
\operatorname{Out}(\pi):=\operatorname{Aut}(\pi) / \operatorname{lnn}(\pi) .
$$

Representations and their symmetries

- Let $\pi=\left\langle X_{1}, \ldots, X_{n}\right\rangle$ be finitely generated and G Lie group:.
- The set $\operatorname{Hom}(\pi, G)$ of homomorphisms

$$
\pi \longrightarrow G
$$

admits an action of $\operatorname{Aut}(\pi) \times \operatorname{Aut}(G)$:

$$
\pi \xrightarrow{\phi} \pi \xrightarrow{\rho} G \xrightarrow{\alpha} G
$$

where $(\phi, \alpha) \in \operatorname{Aut}(\pi) \times \operatorname{Aut}(G), \rho \in \operatorname{Hom}(\pi, G)$.

$$
\operatorname{Hom}(\pi, G) / G:=\operatorname{Hom}(\pi, G) /(\{1\} \times \operatorname{Inn}(G))
$$

under the subgroup

$$
\{1\} \times \operatorname{Inn}(G) \subset \operatorname{Aut}(\pi) \times \operatorname{Aut}(G)
$$

admits an action of

Representations and their symmetries

- Let $\pi=\left\langle X_{1}, \ldots, X_{n}\right\rangle$ be finitely generated and G Lie group:.
- The set $\operatorname{Hom}(\pi, G)$ of homomorphisms

$$
\pi \longrightarrow G
$$

admits an action of $\operatorname{Aut}(\pi) \times \operatorname{Aut}(G)$:

$$
\pi \xrightarrow{\phi} \pi \xrightarrow{\rho} G \xrightarrow{\alpha} G
$$

where $(\phi, \alpha) \in \operatorname{Aut}(\pi) \times \operatorname{Aut}(G), \rho \in \operatorname{Hom}(\pi, G)$.

- The quotient

$$
\operatorname{Hom}(\pi, G) / G:=\operatorname{Hom}(\pi, G) /(\{1\} \times \operatorname{Inn}(G))
$$

under the subgroup

$$
\{1\} \times \operatorname{Inn}(G) \subset \operatorname{Aut}(\pi) \times \operatorname{Aut}(G)
$$

admits an action of

$$
\operatorname{Out}(\pi):=\operatorname{Aut}(\pi) / \operatorname{lnn}(\pi)
$$

Algebraic structure of representation spaces

- G: algebraic Lie group.
$\triangleright \rho \longmapsto\left(\rho\left(X_{1}\right) \ldots \rho\left(X_{n}\right)\right)$ embeds $\operatorname{Hom}(\pi, G)$ onto an algebraic subset of G^{n}
- Algebraic structure is $\left\{X_{1}, \ldots, X_{n}\right\}$-independent and Aut $(\pi) \times \operatorname{Aut}(G)$-invariant.
- Geometric Invariant Theory quotient $\operatorname{Hom}(\pi, G) / / G$ is Out (π)-invariant.
- Coordinate ring is the invariant subring

$$
\mathbb{C}[\operatorname{Hom}(\pi, G) / / G]=\mathbb{C}[\operatorname{Hom}(\pi, G)]^{G} \subset \mathbb{C}[\operatorname{Hom}(\pi, G)]
$$

- Examples are functions f_{α}, associated to:
- A conjugacy class $[\alpha]$, where $\alpha \in \pi$;
- An $\operatorname{Inn}(G)$-invariant function $G \xrightarrow{f} \mathbb{R}$.

Algebraic structure of representation spaces

- G: algebraic Lie group.
$\downarrow \rho \longmapsto\left(\rho\left(X_{1}\right) \ldots \rho\left(X_{n}\right)\right)$ embeds Hom (π, G) onto an algebraic subset of G^{n}
- Algebraic structure is $\left\{X_{1}, \ldots, X_{n}\right\}$-independent and Aut $(\pi) \times$ Aut (G)-invariant.
- Geometric Invariant Theory quotient $\operatorname{Hom}(\pi, G) / / G$ is Out (π)-invariant.
- Coordinate ring is the invariant subring

$$
\mathbb{C}[\operatorname{Hom}(\pi, G) / / G]=\mathbb{C}[\operatorname{Hom}(\pi, G)]^{G} \subset \mathbb{C}[\operatorname{Hom}(\pi, G)] .
$$

- Examples are functions f_{α}, associated to:
- A conjugacy class [α], where $\alpha \in \pi$;
- An $\operatorname{Inn}(G)$-invariant function $G \xrightarrow{f} \mathbb{R}$.

Algebraic structure of representation spaces

- G: algebraic Lie group.
- $\rho \longmapsto\left(\rho\left(X_{1}\right) \ldots \rho\left(X_{n}\right)\right)$ embeds $\operatorname{Hom}(\pi, G)$ onto an algebraic subset of G^{n}.
- Algebraic structure is $\left\{X_{1}, \ldots, X_{n}\right\}$-independent and Aut $(\pi) \times$ Aut (G)-invariant.
- Geometric Invariant Theory quotient Hom $(\pi, G) / / G$ is Out(π)-invariant.
- Coordinate ring is the invariant subring

$$
\mathbb{C}[\operatorname{Hom}(\pi, G) / / G]=\mathbb{C}[\operatorname{Hom}(\pi, G)]^{G} \subset \mathbb{C}[\operatorname{Hom}(\pi, G)] .
$$

- Examples are functions f_{α}, associated to:
- A conjugacy class [α], where $\alpha \in \pi$;
- An $\operatorname{Inn}(G)$-invariant function $G \xrightarrow{t} \mathbb{R}$

Algebraic structure of representation spaces

- G: algebraic Lie group.
- $\rho \longmapsto\left(\rho\left(X_{1}\right) \ldots \rho\left(X_{n}\right)\right)$ embeds $\operatorname{Hom}(\pi, G)$ onto an algebraic subset of G^{n}.
- Algebraic structure is $\left\{X_{1}, \ldots, X_{n}\right\}$-independent and Aut $(\pi) \times \operatorname{Aut}(G)$-invariant.
- Geometric Invariant Theory quotient $\operatorname{Hom}(\pi, G) / / G$ is Out (π)-invariant.
- Coordinate ring is the invariant subring

$$
\mathbb{C}[\operatorname{Hom}(\pi, G) / / G]=\mathbb{C}[\operatorname{Hom}(\pi, G)]^{G} \subset \mathbb{C}[\operatorname{Hom}(\pi, G)] .
$$

- Examples are functions f_{α}, associated to: - A conjugacy class [α], where $\alpha \in \pi$; - An $\operatorname{Inn}(G)$-invariant function $G \xrightarrow{+} \mathbb{R}$.

Algebraic structure of representation spaces

- G: algebraic Lie group.
- $\rho \longmapsto\left(\rho\left(X_{1}\right) \ldots \rho\left(X_{n}\right)\right)$ embeds $\operatorname{Hom}(\pi, G)$ onto an algebraic subset of G^{n}.
- Algebraic structure is $\left\{X_{1}, \ldots, X_{n}\right\}$-independent and $\operatorname{Aut}(\pi) \times \operatorname{Aut}(G)$-invariant.
- Geometric Invariant Theory quotient $\operatorname{Hom}(\pi, G) / / G$ is Out (π)-invariant.
- Coordinate ring is the invariant subring

$$
\mathbb{C}[\operatorname{Hom}(\pi, G) / / G]=\mathbb{C}[\operatorname{Hom}(\pi, G)]^{G} \subset \mathbb{C}[\operatorname{Hom}(\pi, G)] .
$$

- Examples are functions f_{α}, associated to: - A conjugacy class [α], where $\alpha \in \pi$; - An $\operatorname{Inn}(G)$-invariant function $G \xrightarrow{t} \mathbb{R}$.

Algebraic structure of representation spaces

- G: algebraic Lie group.
- $\rho \longmapsto\left(\rho\left(X_{1}\right) \ldots \rho\left(X_{n}\right)\right)$ embeds $\operatorname{Hom}(\pi, G)$ onto an algebraic subset of G^{n}.
- Algebraic structure is $\left\{X_{1}, \ldots, X_{n}\right\}$-independent and $\operatorname{Aut}(\pi) \times \operatorname{Aut}(G)$-invariant.
- Geometric Invariant Theory quotient $\operatorname{Hom}(\pi, G) / / G$ is Out (π)-invariant.
- Coordinate ring is the invariant subring

$$
\mathbb{C}[\operatorname{Hom}(\pi, G) / / G]=\mathbb{C}[\operatorname{Hom}(\pi, G)]^{G} \subset \mathbb{C}[\operatorname{Hom}(\pi, G)]
$$

\Rightarrow Examples are functions f_{α}, associated to: - A conjugacy class [α], where $\alpha \in \pi$; - An $\operatorname{Inn}(G)$-invariant function $G \xrightarrow{f} \mathbb{R}$.

Algebraic structure of representation spaces

- G: algebraic Lie group.
- $\rho \longmapsto\left(\rho\left(X_{1}\right) \ldots \rho\left(X_{n}\right)\right)$ embeds $\operatorname{Hom}(\pi, G)$ onto an algebraic subset of G^{n}.
- Algebraic structure is $\left\{X_{1}, \ldots, X_{n}\right\}$-independent and $\operatorname{Aut}(\pi) \times \operatorname{Aut}(G)$-invariant.
- Geometric Invariant Theory quotient $\operatorname{Hom}(\pi, G) / / G$ is Out (π)-invariant.
- Coordinate ring is the invariant subring

$$
\mathbb{C}[\operatorname{Hom}(\pi, G) / / G]=\mathbb{C}[\operatorname{Hom}(\pi, G)]^{G} \subset \mathbb{C}[\operatorname{Hom}(\pi, G)]
$$

- Examples are functions f_{α}, associated to:
- A conjugacy class [α], where $\alpha \in \pi$;
- An $\operatorname{Inn}(G)$-invariant function $G \xrightarrow{f} \mathbb{R}$.

Character functions f_{α} on representation varieties

- Invariant function $G \xrightarrow{f} \mathbb{R} \Longrightarrow$ Function f_{α} on $\operatorname{Hom}(\pi, G) / G$

$$
\begin{aligned}
\operatorname{Hom}(\pi, G) / G & \xrightarrow{f_{\alpha}} \mathbb{R} \\
{[\rho] } & \longmapsto f(\rho(\alpha))
\end{aligned}
$$

Conjugacy class of $\alpha \in \pi$ corresponds to free homotopy class of closed oriented loop $\alpha \subset \Sigma$.

- These functions generate the coordinate ring.
- Example: Trace $\mathrm{GL}(n, \mathbb{R}) \xrightarrow{\mathrm{tr}} \mathbb{R}$
- Another example: Displacement length on SL(2, $\mathbb{R})$:

$$
\ell(A):=\min _{x \in \mathrm{H}^{2}} d(x, A(x))
$$

- If A is hyperbolic, $\operatorname{tr}(A)= \pm 2 \cosh (\ell(A) / 2)$.

Character functions f_{α} on representation varieties

- Invariant function $G \stackrel{f}{\rightarrow} \mathbb{R} \Longrightarrow$ Function f_{α} on $\operatorname{Hom}(\pi, G) / G$

$$
\begin{aligned}
\operatorname{Hom}(\pi, G) / G & \stackrel{f_{\alpha}}{\longrightarrow} \mathbb{R} \\
{[\rho] } & \longmapsto f(\rho(\alpha))
\end{aligned}
$$

Conjugacy class of $\alpha \in \pi$ corresponds to free homotopy class of closed oriented loop $\alpha \subset \Sigma$.

- These functions generate the coordinate ring.
- Example: Trace $\mathrm{GL}(n, \mathbb{R}) \xrightarrow{\mathrm{tr}} \mathbb{R}$
- Another example: Displacement length on SL(2, $\mathbb{R})$:

$$
\ell(A):=\min _{x \in \mathrm{H}^{2}} d(x, A(x))
$$

- If A is hyperbolic, $\operatorname{tr}(A)= \pm 2 \cosh (\ell(A) / 2)$.

Character functions f_{α} on representation varieties

- Invariant function $G \stackrel{f}{\rightarrow} \mathbb{R} \Longrightarrow$ Function f_{α} on $\operatorname{Hom}(\pi, G) / G$

$$
\begin{aligned}
\operatorname{Hom}(\pi, G) / G & \xrightarrow[f_{\alpha}]{\longrightarrow} \mathbb{R} \\
{[\rho] } & \longmapsto f(\rho(\alpha))
\end{aligned}
$$

Conjugacy class of $\alpha \in \pi$ corresponds to free homotopy class of closed oriented loop $\alpha \subset \Sigma$.

- These functions generate the coordinate ring.
- Example: Trace $\mathrm{GL}(n, \mathbb{R}) \xrightarrow{\mathrm{tr}} \mathbb{R}$
- Another example: Displacement length on $\operatorname{SL}(2, \mathbb{R})$:

$$
\ell(A):=\min _{x \in H^{2}} d^{\prime}(x, A(x))
$$

- If A is hyperbolic, $\operatorname{tr}(A)= \pm 2 \cosh (\ell(A) / 2)$.

Character functions f_{α} on representation varieties

- Invariant function $G \xrightarrow{f} \mathbb{R} \Longrightarrow$ Function f_{α} on $\operatorname{Hom}(\pi, G) / G$

$$
\begin{aligned}
\operatorname{Hom}(\pi, G) / G & \xrightarrow[f_{\alpha}]{\longrightarrow} \mathbb{R} \\
{[\rho] } & \longmapsto f(\rho(\alpha))
\end{aligned}
$$

Conjugacy class of $\alpha \in \pi$ corresponds to free homotopy class of closed oriented loop $\alpha \subset \Sigma$.

- These functions generate the coordinate ring.
- Example: Trace $\mathrm{GL}(n, \mathbb{R}) \xrightarrow{\mathrm{tr}} \mathbb{R}$
- Another example: Displacement length on SL(2, $\mathbb{R})$:

$$
\ell(A):=\min _{x \in \mathrm{H}^{2}} d(x, A(x))
$$

- If A is hyperbolic, $\operatorname{tr}(A)= \pm 2 \cosh (\ell(A) / 2)$.

Character functions f_{α} on representation varieties

- Invariant function $G \stackrel{f}{\rightarrow} \mathbb{R} \Longrightarrow$ Function f_{α} on $\operatorname{Hom}(\pi, G) / G$

$$
\begin{aligned}
\operatorname{Hom}(\pi, G) / G & \stackrel{f_{\alpha}}{\longrightarrow} \mathbb{R} \\
{[\rho] } & \longmapsto f(\rho(\alpha))
\end{aligned}
$$

Conjugacy class of $\alpha \in \pi$ corresponds to free homotopy class of closed oriented loop $\alpha \subset \Sigma$.

- These functions generate the coordinate ring.
- Example: Trace $G L(n, \mathbb{R}) \xrightarrow{\text { tr }} \mathbb{R}$
- Another example: Displacement length on $\operatorname{SL}(2, \mathbb{R})$:

$$
\ell(A):=\min _{x \in \mathrm{H}^{2}} d(x, A(x))
$$

- If A is hyperbolic, $\operatorname{tr}(A)= \pm 2 \cosh (\ell(A) / 2)$

Character functions f_{α} on representation varieties

- Invariant function $G \stackrel{f}{\rightarrow} \mathbb{R} \Longrightarrow$ Function f_{α} on $\operatorname{Hom}(\pi, G) / G$

$$
\begin{aligned}
\operatorname{Hom}(\pi, G) / G & \stackrel{f_{\alpha}}{\longrightarrow} \mathbb{R} \\
{[\rho] } & \longmapsto f(\rho(\alpha))
\end{aligned}
$$

Conjugacy class of $\alpha \in \pi$ corresponds to free homotopy class of closed oriented loop $\alpha \subset \Sigma$.

- These functions generate the coordinate ring.
- Example: Trace $G L(n, \mathbb{R}) \xrightarrow{\text { tr }} \mathbb{R}$
- Another example: Displacement length on $\operatorname{SL}(2, \mathbb{R})$:

$$
\ell(A):=\min _{x \in \mathrm{H}^{2}} d(x, A(x))
$$

- If A is hyperbolic, $\operatorname{tr}(A)= \pm 2 \cosh (\ell(A) / 2)$.

Invariant functions in $\operatorname{PGL}(3, \mathbb{R}) \cong \mathrm{SL}(3, \mathbb{R})$

- Restrict to the subset Hyp $\subset \subset(3, \mathbb{R})$ consisting of positive hyperbolic elements (diagonalizable over \mathbb{R}):

$$
A \sim\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right]
$$

where $\lambda_{1}>\lambda_{2}>\lambda_{3}>0$ and $\lambda_{1} \lambda_{2} \lambda_{3}=1$.

- The Hilbert displacement corresponds to the invariant function

$$
\ell(A):=\log \left(\lambda_{1} / \lambda_{3}\right)=\log \left(\lambda_{1}\right)-\log \left(\lambda_{3}\right)
$$

- The bulging parameter is the invariant function

$$
\beta(A):=\log \left(\lambda_{2}\right)
$$

Invariant functions in $\operatorname{PGL}(3, \mathbb{R}) \cong \mathrm{SL}(3, \mathbb{R})$

- Restrict to the subset $\mathrm{Hyp}_{+} \subset \mathrm{SL}(3, \mathbb{R})$ consisting of positive hyperbolic elements (diagonalizable over \mathbb{R}):

$$
A \sim\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right]
$$

where $\lambda_{1}>\lambda_{2}>\lambda_{3}>0$ and $\lambda_{1} \lambda_{2} \lambda_{3}=1$.

- The Hilbert displacement corresponds to the invariant function

$$
\ell(A):=\log \left(\lambda_{1} / \lambda_{3}\right)=\log \left(\lambda_{1}\right)-\log \left(\lambda_{3}\right)
$$

- The bulging parameter is the invariant function
\square

Invariant functions in $\operatorname{PGL}(3, \mathbb{R}) \cong \mathrm{SL}(3, \mathbb{R})$

- Restrict to the subset $\mathrm{Hyp}_{+} \subset \mathrm{SL}(3, \mathbb{R})$ consisting of positive hyperbolic elements (diagonalizable over \mathbb{R}):

$$
A \sim\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right]
$$

where $\lambda_{1}>\lambda_{2}>\lambda_{3}>0$ and $\lambda_{1} \lambda_{2} \lambda_{3}=1$.

- The Hilbert displacement corresponds to the invariant function

$$
\ell(A):=\log \left(\lambda_{1} / \lambda_{3}\right)=\log \left(\lambda_{1}\right)-\log \left(\lambda_{3}\right)
$$

- The bulging parameter is the invariant function

Invariant functions in $\operatorname{PGL}(3, \mathbb{R}) \cong \mathrm{SL}(3, \mathbb{R})$

- Restrict to the subset $\mathrm{Hyp}_{+} \subset \mathrm{SL}(3, \mathbb{R})$ consisting of positive hyperbolic elements (diagonalizable over \mathbb{R}):

$$
A \sim\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right]
$$

where $\lambda_{1}>\lambda_{2}>\lambda_{3}>0$ and $\lambda_{1} \lambda_{2} \lambda_{3}=1$.

- The Hilbert displacement corresponds to the invariant function

$$
\ell(A):=\log \left(\lambda_{1} / \lambda_{3}\right)=\log \left(\lambda_{1}\right)-\log \left(\lambda_{3}\right)
$$

- The bulging parameter is the invariant function

$$
\beta(A):=\log \left(\lambda_{2}\right)
$$

Marked length spectra in $\mathfrak{F}(\Sigma)$ and $\mathfrak{C}(\Sigma)$

- On $\mathfrak{F}(\Sigma), \ell_{\alpha}$ associates to a marked hyperbolic surface $\Sigma \approx M$ length of the unique closed geodesic homotopic to α in M .
- On $\mathbb{C}(\Sigma), \ell_{\alpha}$ associates to a marked convex $\mathbb{R P P}^{2}$-surface $\Sigma \approx M$ the Hilbert length of the unique closed geodesic homotopic to α in M.
- (Fricke-Klein ?) The marked length spectrum characterizes hyperbolic structures in $\mathfrak{F}(\Sigma)$.
- (Inkang Kim, 2001) The marked Hilbert length spectrum characterizes $\mathbb{R P}^{2}$-structures in $\mathbb{C}(\Sigma)$.

Marked length spectra in $\mathfrak{F}(\Sigma)$ and $\mathfrak{C}(\Sigma)$

- On $\mathfrak{F}(\Sigma), \ell_{\alpha}$ associates to a marked hyperbolic surface $\Sigma \approx M$ length of the unique closed geodesic homotopic to α in M .
- On $\mathbb{C}(\Sigma), \ell_{\alpha}$ associates to a marked convex $\mathbb{R P P}^{2}$-surface $\Sigma \approx M$ the Hilbert length of the unique closed geodesic homotopic to α in M.
- (Fricke-Klein ?) The marked length spectrum characterizes hyperbolic structures in $\mathfrak{F}(\Sigma)$
- (Inkang Kim, 2001) The marked Hilbert length spectrum characterizes $\mathbb{R P}^{2}$-structures in $\mathbb{C}(\Sigma)$.

Marked length spectra in $\mathfrak{F}(\Sigma)$ and $\mathfrak{C}(\Sigma)$

- On $\mathfrak{F}(\Sigma), \ell_{\alpha}$ associates to a marked hyperbolic surface $\Sigma \approx M$ length of the unique closed geodesic homotopic to α in M .
- On $\mathfrak{C}(\Sigma), \ell_{\alpha}$ associates to a marked convex $\mathbb{R P}^{2}$-surface $\Sigma \approx M$ the Hilbert length of the unique closed geodesic homotopic to α in M .
- (Fricke-Klein ?) The marked length spectrum characterizes hyperbolic structures in $\mathfrak{F}(\Sigma)$
- (Inkang Kim, 2001) The marked Hilbert length spectrum characterizes $\mathbb{R P}^{2}$-structures in $\mathfrak{C}(\Sigma)$

Marked length spectra in $\mathfrak{F}(\Sigma)$ and $\mathfrak{C}(\Sigma)$

- On $\mathfrak{F}(\Sigma), \ell_{\alpha}$ associates to a marked hyperbolic surface $\Sigma \approx M$ length of the unique closed geodesic homotopic to α in M .
- On $\mathfrak{C}(\Sigma), \ell_{\alpha}$ associates to a marked convex $\mathbb{R}^{2}{ }^{2}$-surface $\Sigma \approx M$ the Hilbert length of the unique closed geodesic homotopic to α in M.
- (Fricke-Klein ?) The marked length spectrum characterizes hyperbolic structures in $\mathfrak{F}(\Sigma)$.
- (Inkang Kim, 2001) The marked Hilbert length spectrum characterizes $\mathbb{R P}^{2}$-structures in $\mathfrak{C}(\Sigma)$

Marked length spectra in $\mathfrak{F}(\Sigma)$ and $\mathfrak{C}(\Sigma)$

- On $\mathfrak{F}(\Sigma), \ell_{\alpha}$ associates to a marked hyperbolic surface $\Sigma \approx M$ length of the unique closed geodesic homotopic to α in M .
- On $\mathfrak{C}(\Sigma), \ell_{\alpha}$ associates to a marked convex $\mathbb{R P}^{2}$-surface $\Sigma \approx M$ the Hilbert length of the unique closed geodesic homotopic to α in M.
- (Fricke-Klein ?) The marked length spectrum characterizes hyperbolic structures in $\mathfrak{F}(\Sigma)$.
- (Inkang Kim, 2001) The marked Hilbert length spectrum characterizes $\mathbb{R P}^{2}$-structures in $\mathfrak{C}(\Sigma)$.

Fenchel-Nielsen coordinates on the Fricke space $\mathfrak{F}(\Sigma)$

- Cut Σ along N simple closed curves σ_{i} into 3-holed spheres (pants). \Longrightarrow Explicit parametrization $\mathfrak{F}(\Sigma) \longrightarrow \mathbb{R}^{6 g-6}$.

- $2 g-2=\chi(\Sigma) / \chi(P)$ pants P_{j} and

$$
N:=3 / 2(2 g-2)=3 g-3 .
$$

- For a marked hyperbolic surface $\Sigma \approx M$, can represent each σ_{i} by a simple closed geodesic on M. All these σ_{i} are disjoint.

Fenchel-Nielsen coordinates on the Fricke space $\mathfrak{F}(\Sigma)$

- Cut Σ along N simple closed curves σ_{i} into 3 -holed spheres (pants). \Longrightarrow Explicit parametrization $\mathfrak{F}(\Sigma) \longrightarrow \mathbb{R}^{6 g-6}$.

- $2 g-2=\chi(\Sigma) / \chi(P)$ pants P_{j} and

$$
N:=3 / 2(2 g-2)=3 g-3 .
$$

- For a marked hyperbolic surface $\Sigma \approx M$, can represent each σ_{i} by a simple closed geodesic on M. All these σ_{i} are disjoint.

Fenchel-Nielsen coordinates on the Fricke space $\mathfrak{F}(\Sigma)$

- Cut Σ along N simple closed curves σ_{i} into 3 -holed spheres (pants). \Longrightarrow Explicit parametrization $\mathfrak{F}(\Sigma) \longrightarrow \mathbb{R}^{6 g-6}$.

- $2 g-2=\chi(\Sigma) / \chi(P)$ pants P_{j} and

$$
N:=3 / 2(2 g-2)=3 g-3 .
$$

- For a marked hyperbolic surface $\Sigma \approx M$, can represent each σ_{i} by a simple closed geodesic on M. All these σ_{i} are disjoint.

Fenchel-Nielsen coordinates on the Fricke space $\mathfrak{F}(\Sigma)$

- Cut Σ along N simple closed curves σ_{i} into 3-holed spheres (pants). \Longrightarrow Explicit parametrization $\mathfrak{F}(\Sigma) \longrightarrow \mathbb{R}^{6 g-6}$.

- $2 g-2=\chi(\Sigma) / \chi(P)$ pants P_{j} and

$$
N:=3 / 2(2 g-2)=3 g-3
$$

- For a marked hyperbolic surface $\Sigma \approx M$, can represent each σ_{i} by a simple closed geodesic on M. All these σ_{i} are disjoint.

Hyperbolic structures on three-holed spheres

- Let l_{i} be the length of the geodesic corresponding to σ_{i}. The hyperbolic structure on P_{j} is completely determined by the the three lengths of the components of ∂P_{j}.
- these length functions define a surjection

$$
\begin{equation*}
\mathfrak{F}(\Sigma) \xrightarrow{\ell} \mathbb{R}_{+}^{N} \tag{1}
\end{equation*}
$$

which describes the hyperbolic structure on $M \mid \sigma$.

- The components of $\partial(M \mid \sigma)$ are identified $\sigma_{i}^{-} \longleftrightarrow \sigma_{i}^{+}$, one pair for each component $\sigma_{i} \subset \sigma$.
\checkmark For each σ_{i}, choose $\tau_{i} \in \mathbb{R}$ and reidentify $M \mid \sigma \sigma_{i}^{-} \longleftrightarrow \sigma_{i}^{+}$ one pair for each σ_{i}, obtaining a new marked hyperbolic surface

$$
S \approx M_{\tau_{1}, \ldots, \tau_{N}}
$$

(Fenchel-Nielsen twists, Thurston earthquakes).

Hyperbolic structures on three-holed spheres

- Let l_{i} be the length of the geodesic corresponding to σ_{i}. The hyperbolic structure on P_{j} is completely determined by the the three lengths of the components of ∂P_{j}.
- these length functions define a surjection

$$
\mathfrak{F}(\Sigma) \xrightarrow{\ell} \mathbb{R}_{+}^{N}
$$

which describes the hyperbolic structure on $M \mid \sigma$.

- The components of $\partial(M \mid \sigma)$ are identified $\sigma_{i}^{-} \longleftrightarrow \sigma_{i}^{-}$, one pair for each component $\sigma_{i} \subset \sigma$.
- For each σ_{i}, choose $\tau_{i} \in \mathbb{R}$ and reidentify $M \mid \sigma \sigma_{i}^{-} \longleftrightarrow \sigma_{i}^{+}$ one pair for each σ_{i}, obtaining a new marked hyperbolic surface

$$
S \approx M_{\tau_{1}, \ldots, \tau_{N}}
$$

(Fenchel-Nielsen twists, Thurston earthquakes).

Hyperbolic structures on three-holed spheres

- Let l_{i} be the length of the geodesic corresponding to σ_{i}. The hyperbolic structure on P_{j} is completely determined by the the three lengths of the components of ∂P_{j}.
- these length functions define a surjection

$$
\begin{equation*}
\mathfrak{F}(\Sigma) \xrightarrow{\ell} \mathbb{R}_{+}^{N} . \tag{1}
\end{equation*}
$$

which describes the hyperbolic structure on $M \mid \sigma$.

(Fenchel-Nielsen twists, Thurston earthquakes).

Hyperbolic structures on three-holed spheres

- Let l_{i} be the length of the geodesic corresponding to σ_{i}. The hyperbolic structure on P_{j} is completely determined by the the three lengths of the components of ∂P_{j}.
- these length functions define a surjection

$$
\begin{equation*}
\mathfrak{F}(\Sigma) \xrightarrow{\ell} \mathbb{R}_{+}^{N} . \tag{1}
\end{equation*}
$$

which describes the hyperbolic structure on $M \mid \sigma$.

- The components of $\partial(M \mid \sigma)$ are identified $\sigma_{i}^{-} \longleftrightarrow \sigma_{i}^{+}$, one pair for each component $\sigma_{i} \subset \sigma$.
one pair for each σ_{i}, obtaining a new marked hyperbolic
surface
$S \approx M_{\tau_{1}, \ldots, \tau_{N}}$
(Fenchel-Nielsen twists, Thurston earthauakes).

Hyperbolic structures on three-holed spheres

- Let l_{i} be the length of the geodesic corresponding to σ_{i}. The hyperbolic structure on P_{j} is completely determined by the the three lengths of the components of ∂P_{j}.
- these length functions define a surjection

$$
\begin{equation*}
\mathfrak{F}(\Sigma) \xrightarrow{\ell} \mathbb{R}_{+}^{N} . \tag{1}
\end{equation*}
$$

which describes the hyperbolic structure on $M \mid \sigma$.

- The components of $\partial(M \mid \sigma)$ are identified $\sigma_{i}^{-} \longleftrightarrow \sigma_{i}^{+}$, one pair for each component $\sigma_{i} \subset \sigma$.
- For each σ_{i}, choose $\tau_{i} \in \mathbb{R}$ and reidentify $M \mid \sigma \sigma_{i}^{-} \longleftrightarrow \sigma_{i}^{+}$, one pair for each σ_{i}, obtaining a new marked hyperbolic surface

$$
S \approx M_{\tau_{1}, \ldots, \tau_{N}}
$$

(Fenchel-Nielsen twists, Thurston earthquakes).

Fenchel-Nielsen twists (earthquakes)

- Defines an \mathbb{R}^{N}-action which is simply transitive on the fibers of $\mathfrak{F}(\Sigma) \xrightarrow{\ell} \mathbb{R}_{+}^{N}$
- (Wolpert 1977) The symplectic form is

$$
\sum_{i=1}^{N} d \ell_{i} \wedge d \tau_{i}
$$

- Completely integrable Hamiltonian system: ℓ is a Cartesian projection for symplectomorphism.

$$
\mathfrak{F}(\Sigma) \longrightarrow \mathbb{R}^{N} \times \mathbb{R}_{+}^{N}
$$

and ℓ is a moment map for a free, proper Hamiltonian \mathbb{R}^{N}-action.

Fenchel-Nielsen twists (earthquakes)

- Defines an \mathbb{R}^{N}-action which is simply transitive on the fibers of $\mathfrak{F}(\Sigma) \xrightarrow{\ell} \mathbb{R}_{+}^{N}$.
- (Wolpert 1977) The symplectic form is

- Completely integrable Hamiltonian system: ℓ is a Cartesian projection for symplectomorphism.

and ℓ is a moment map for a free, proper Hamiltonian \mathbb{R}^{N}-action.

Fenchel-Nielsen twists (earthquakes)

- Defines an \mathbb{R}^{N}-action which is simply transitive on the fibers of $\mathfrak{F}(\Sigma) \xrightarrow{\ell} \mathbb{R}_{+}^{N}$.
- (Wolpert 1977) The symplectic form is

$$
\sum_{i=1}^{N} d \ell_{i} \wedge d \tau_{i}
$$

- Completely integrable Hamiltonian system: ℓ is a Cartesian projection for symplectomorphism.

and ℓ is a moment map for a free, proper Hamiltonian \mathbb{R}^{N}-action.

Fenchel-Nielsen twists (earthquakes)

- Defines an \mathbb{R}^{N}-action which is simply transitive on the fibers of $\mathfrak{F}(\Sigma) \xrightarrow{\ell} \mathbb{R}_{+}^{N}$.
- (Wolpert 1977) The symplectic form is

$$
\sum_{i=1}^{N} d \ell_{i} \wedge d \tau_{i}
$$

- Completely integrable Hamiltonian system: ℓ is a Cartesian projection for symplectomorphism.

$$
\mathfrak{F}(\Sigma) \longrightarrow \mathbb{R}^{N} \times \mathbb{R}_{+}^{N}
$$

and ℓ is a moment map for a free, proper Hamiltonian \mathbb{R}^{N}-action.

Some earthquake deformations in the universal covering

Geometry of $\mathfrak{C}(\Sigma)$

- Hong Chan Kim (1999) generalized Wolpert's theorem to define a a symplectomorphism

$$
\mathfrak{C}(\Sigma) \longrightarrow \mathbb{R}^{16 g-6}
$$

- \exists natural completely integrable system in this case?
- (Labourie 1997, Loftin 1999) $\operatorname{Mod}(\Sigma)$-invariant fibration of $\mathfrak{C}(\Sigma)$ as holomorphic vector bundle over Teichmüller space.
- The fiber over a marked Riemann surface $\Sigma \longrightarrow X$ equals $H^{0}\left(X ; \kappa_{X}^{3}\right)$ comprising holomorphic cubic differentials on X.
- The zero-section corresponds to $\mathfrak{F}(\Sigma)$.

Geometry of $\mathfrak{C}(\Sigma)$

- Hong Chan Kim (1999) generalized Wolpert's theorem to define a a symplectomorphism

$$
\mathfrak{C}(\Sigma) \longrightarrow \mathbb{R}^{16 g-6}
$$

- \exists natural completely integrable system in this case?
- (Labourie 1997, Loftin 1999) Mod(Σ)-invariant fibration of $\mathfrak{C}(\Sigma)$ as holomorphic vector bundle over Teichmüller space.
- The fiber over a marked Riemann surface $\Sigma \longrightarrow X$ equals $H^{0}\left(X ; \kappa_{X}^{3}\right)$ comprising holomorphic cubic differentials on X
- The zero-section corresponds to $\mathfrak{F}(\Sigma)$.

Geometry of $\mathfrak{C}(\Sigma)$

- Hong Chan Kim (1999) generalized Wolpert's theorem to define a a symplectomorphism

$$
\mathfrak{C}(\Sigma) \longrightarrow \mathbb{R}^{16 g-6}
$$

- \exists natural completely integrable system in this case?
- (Labourie 1997, Loftin 1999) Mod(Σ)-invariant fibration of $\mathfrak{C}(\Sigma)$ as holomorphic vector bundle over Teichmüller space.
- The fiber over a marked Riemann surface $\Sigma \longrightarrow X$ equals $H^{0}\left(X ; \kappa_{X}^{3}\right)$ comprising holomorphic cubic differentials on X
- The zero-section corresponds to $\mathfrak{F}(\Sigma)$.

Geometry of $\mathfrak{C}(\Sigma)$

- Hong Chan Kim (1999) generalized Wolpert's theorem to define a a symplectomorphism

$$
\mathfrak{C}(\Sigma) \longrightarrow \mathbb{R}^{16 g-6}
$$

- \exists natural completely integrable system in this case?
- (Labourie 1997, Loftin 1999) $\operatorname{Mod}(\Sigma)$-invariant fibration of $\mathfrak{C}(\Sigma)$ as holomorphic vector bundle over Teichmüller space.
- The fiber over a marked Riemann surface $\Sigma \longrightarrow X$ equals $H^{0}\left(X ; \kappa_{X}^{3}\right)$ comprising holomorphic cubic differentials on X.
- The zero-section corresponds to $\mathfrak{F}(\Sigma)$.

Geometry of $\mathfrak{C}(\Sigma)$

- Hong Chan Kim (1999) generalized Wolpert's theorem to define a a symplectomorphism

$$
\mathfrak{C}(\Sigma) \longrightarrow \mathbb{R}^{16 g-6}
$$

- \exists natural completely integrable system in this case?
- (Labourie 1997, Loftin 1999) $\operatorname{Mod}(\Sigma)$-invariant fibration of $\mathfrak{C}(\Sigma)$ as holomorphic vector bundle over Teichmüller space.
- The fiber over a marked Riemann surface $\Sigma \longrightarrow X$ equals $H^{0}\left(X ; \kappa_{X}^{3}\right)$ comprising holomorphic cubic differentials on X.
- The zero-section corresponds to $\mathfrak{F}(\Sigma)$.

Geometry of $\mathfrak{C}(\Sigma)$

- Hong Chan Kim (1999) generalized Wolpert's theorem to define a a symplectomorphism

$$
\mathfrak{C}(\Sigma) \longrightarrow \mathbb{R}^{16 g-6}
$$

- \exists natural completely integrable system in this case?
- (Labourie 1997, Loftin 1999) $\operatorname{Mod}(\Sigma)$-invariant fibration of $\mathfrak{C}(\Sigma)$ as holomorphic vector bundle over Teichmüller space.
- The fiber over a marked Riemann surface $\Sigma \longrightarrow X$ equals $H^{0}\left(X ; \kappa_{X}^{3}\right)$ comprising holomorphic cubic differentials on X.
- The zero-section corresponds to $\mathfrak{F}(\Sigma)$.

Ingredients of symplectic structure

- \sum oriented closed surface and \mathbb{B} Ad-invariant nondegeneate symmetric pairing on \mathfrak{g}.
\checkmark For $\rho \in \operatorname{Hom}(\pi, G)$, the composition

$$
\pi \xrightarrow{\rho} G \xrightarrow{\text { Ad }} \operatorname{Aut}(\mathfrak{g})
$$

defines a local coefficient system $\mathfrak{g}_{\text {Ad } \rho}$ over Σ,

- inheriting a symmetric nondegenerate pairing

$$
\mathfrak{g}_{\operatorname{Ad} \rho} \times \mathfrak{g}_{\mathrm{Ad} \rho} \xrightarrow{\mathbb{B}} \mathbb{R}
$$

$\Rightarrow[\rho]$ smooth point $\Rightarrow T_{[\rho]} \operatorname{Hom}(\pi, G) / G=H^{1}\left(\Sigma, \mathfrak{g}_{\text {Ad } \rho}\right)$.

- Cup-product + coefficient pairing $\mathbb{B}+$ orientation \Longrightarrow bilinear pairing

$$
H^{1}\left(\Sigma, \mathfrak{g}_{\operatorname{Ad} \rho}\right) \times H^{1}\left(\Sigma, \mathfrak{g}_{\operatorname{Ad} \rho}\right) \xrightarrow{\omega_{\rho}} H^{2}(\Sigma, \mathbb{R}) \cong \mathbb{R}
$$

Ingredients of symplectic structure

- Σ oriented closed surface and \mathbb{B} Ad-invariant nondegeneate symmetric pairing on \mathfrak{g}.
- For $\rho \in \operatorname{Hom}(\pi, G)$, the composition

$$
\pi \xrightarrow{\rho} G \xrightarrow{\text { Ad }} \operatorname{Aut}(\mathfrak{g})
$$

defines a local coefficient system $\mathfrak{g}_{\text {Ad } \rho}$ over Σ,

- inheriting a symmetric nondegenerate pairing

$$
\mathfrak{g}_{\mathrm{Ad} \rho} \times \mathfrak{g}_{\mathrm{Add} \rho} \xrightarrow{\mathbb{B}} \mathbb{R}
$$

$\Rightarrow[\rho]$ smooth point $\Rightarrow T_{[\rho]} \operatorname{Hom}(\pi, G) / G=H^{1}\left(\Sigma, \mathfrak{g}_{\text {Ad } \rho}\right)$.

- Cup-product + coefficient pairing $\mathbb{B}+$ orientation \Longrightarrow bilinear pairing

$$
H^{1}\left(\Sigma, \mathfrak{g}_{\operatorname{Ad} \rho}\right) \times H^{1}\left(\Sigma, \mathfrak{g}_{\text {Ad } \rho}\right) \xrightarrow{\omega_{\rho}} H^{2}(\Sigma, \mathbb{R}) \cong \mathbb{R}
$$

Ingredients of symplectic structure

- \sum oriented closed surface and \mathbb{B} Ad-invariant nondegeneate symmetric pairing on \mathfrak{g}.
- For $\rho \in \operatorname{Hom}(\pi, G)$, the composition

$$
\pi \xrightarrow{\rho} G \xrightarrow{\text { Ad }} \operatorname{Aut}(\mathfrak{g})
$$

defines a local coefficient system $\mathfrak{g}_{\text {Ad } \rho}$ over Σ,

- inheriting a symmetric nondegenerate pairing

- [ρ] smooth point $\Rightarrow T_{[\rho]} \operatorname{Hom}(\pi, G) / G=H^{1}\left(\Sigma, \mathfrak{g}_{\text {Ad } \rho}\right)$.
- Cup-product + coefficient pairing $\mathbb{B}+$ orientation \Longrightarrow bilinear pairing

$$
H^{1}\left(\Sigma, \mathfrak{g}_{\mathrm{Ad} \rho}\right) \times H^{1}\left(\Sigma, \mathfrak{g}_{\mathrm{Ad} \rho}\right) \xrightarrow{\omega_{\rho}} H^{2}(\Sigma, \mathbb{R}) \cong \mathbb{R}
$$

Ingredients of symplectic structure

- Σ oriented closed surface and \mathbb{B} Ad-invariant nondegeneate symmetric pairing on \mathfrak{g}.
- For $\rho \in \operatorname{Hom}(\pi, G)$, the composition

$$
\pi \xrightarrow{\rho} G \xrightarrow{\text { Ad }} \operatorname{Aut}(\mathfrak{g})
$$

defines a local coefficient system $\mathfrak{g}_{\text {Ad } \rho}$ over Σ,

- inheriting a symmetric nondegenerate pairing

$$
\mathfrak{g}_{\mathrm{Ad} \rho} \times \mathfrak{g}_{\mathrm{Ad} \rho} \xrightarrow{\mathbb{B}} \mathbb{R}
$$

$\Rightarrow[\rho]$ smooth point $\Rightarrow T_{[\rho]} \operatorname{Hom}(\pi, G) / G=H^{1}\left(\Sigma, g_{\text {Ad } \rho}\right)$.

- Cup-product + coefficient pairing $\mathbb{B}+$ orientation \Longrightarrow bilinear pairing

$$
H^{1}\left(\Sigma, \mathfrak{g}_{\operatorname{Ad} \rho}\right) \times H^{1}\left(\Sigma, \mathfrak{g}_{\operatorname{Ad} \rho}\right) \xrightarrow{\omega_{\rho}} H^{2}(\Sigma, \mathbb{R}) \cong \mathbb{R}
$$

Ingredients of symplectic structure

- Σ oriented closed surface and \mathbb{B} Ad-invariant nondegeneate symmetric pairing on \mathfrak{g}.
- For $\rho \in \operatorname{Hom}(\pi, G)$, the composition

$$
\pi \xrightarrow{\rho} G \xrightarrow{\text { Ad }} \operatorname{Aut}(\mathfrak{g})
$$

defines a local coefficient system $\mathfrak{g}_{\text {Ad } \rho}$ over Σ,

- inheriting a symmetric nondegenerate pairing

$$
\mathfrak{g}_{\mathrm{Ad} \rho} \times \mathfrak{g}_{\mathrm{Ad} \rho} \xrightarrow{\mathbb{B}} \mathbb{R}
$$

- $[\rho]$ smooth point $\Rightarrow T_{[\rho]} \operatorname{Hom}(\pi, G) / G=H^{1}\left(\Sigma, \mathfrak{g}_{\text {Ad } \rho}\right)$.
bilinear pairing

$$
H^{1}\left(\Sigma, g_{\text {Ad } \rho}\right) \times H^{1}\left(\Sigma, g_{\text {Ad }}\right) \xrightarrow{\omega_{p}} H^{2}(\Sigma, \mathbb{R}) \cong \mathbb{R}
$$

Ingredients of symplectic structure

- Σ oriented closed surface and \mathbb{B} Ad-invariant nondegeneate symmetric pairing on \mathfrak{g}.
- For $\rho \in \operatorname{Hom}(\pi, G)$, the composition

$$
\pi \xrightarrow{\rho} G \xrightarrow{\operatorname{Ad}} \operatorname{Aut}(\mathfrak{g})
$$

defines a local coefficient system $\mathfrak{g}_{\text {Ad } \rho}$ over Σ,

- inheriting a symmetric nondegenerate pairing

$$
\mathfrak{g}_{\mathrm{Ad} \rho} \times \mathfrak{g}_{\mathrm{Ad} \rho} \xrightarrow{\mathbb{B}} \mathbb{R}
$$

- [ρ] smooth point $\Rightarrow T_{[\rho]} \operatorname{Hom}(\pi, G) / G=H^{1}\left(\Sigma, \mathfrak{g}_{\text {Ad } \rho}\right)$.
- Cup-product + coefficient pairing $\mathbb{B}+$ orientation \Longrightarrow bilinear pairing

$$
H^{1}\left(\Sigma, \mathfrak{g}_{\operatorname{Ad} \rho}\right) \times H^{1}\left(\Sigma, \mathfrak{g}_{\operatorname{Ad} \rho}\right) \xrightarrow{\omega_{\rho}} H^{2}(\Sigma, \mathbb{R}) \cong \mathbb{R}
$$

Construction of symplectic structure

- This pairing is skew-symmetric, and hence defines an exterior 2-form on the smooth part of $\operatorname{Hom}(\pi, G) / G$.
- This 2-form is nondegenerate and closed.
- By Ehresmann-Thurston, this induces a symplectic structure on $\mathfrak{D}_{(G, X)}(\Sigma)$.
- On a symplectic manifold (W, ω), functions ϕ induce vector fields $\operatorname{Ham}(\phi)$.
- Both the function ϕ and the 2-form ω are Ham(ϕ)-invariant.

Construction of symplectic structure

- This pairing is skew-symmetric, and hence defines an exterior 2-form on the smooth part of $\operatorname{Hom}(\pi, G) / G$.
- This 2-form is nondegenerate and closed.
- By Ehresmann-Thurston, this induces a symplectic structure on $\mathfrak{D}_{(G, X)}(\Sigma)$
- On a symplectic manifold (W, ω), functions ϕ induce vector fields $\operatorname{Ham}(\phi)$
- Both the function ϕ and the 2 -form ω are Ham (ϕ)-invariant.

Construction of symplectic structure

- This pairing is skew-symmetric, and hence defines an exterior 2-form on the smooth part of $\operatorname{Hom}(\pi, G) / G$.
- This 2-form is nondegenerate and closed.
- By Ehresmann-Thurston, this induces a symplectic structure on $\mathfrak{D}_{(G, X)}(\Sigma)$
- On a symplectic manifold (W, ω), functions ϕ induce vector fields $\operatorname{Ham}(\phi)$
- Both the function ϕ and the 2 -form ω are $\operatorname{Ham}(\phi)$-invariant.

Construction of symplectic structure

- This pairing is skew-symmetric, and hence defines an exterior 2-form on the smooth part of $\operatorname{Hom}(\pi, G) / G$.
- This 2-form is nondegenerate and closed.
- By Ehresmann-Thurston, this induces a symplectic structure on $\mathfrak{D}_{(G, X)}(\Sigma)$.
- On a symplectic manifold (W, ω), functions ϕ induce vector fields $\operatorname{Ham}(\phi)$
- Both the function ϕ and the 2 -form ω are Ham (ϕ)-invariant.

Construction of symplectic structure

- This pairing is skew-symmetric, and hence defines an exterior 2-form on the smooth part of $\operatorname{Hom}(\pi, G) / G$.
- This 2-form is nondegenerate and closed.
- By Ehresmann-Thurston, this induces a symplectic structure on $\mathfrak{D}_{(G, X)}(\Sigma)$.
- On a symplectic manifold (W, ω), functions ϕ induce vector fields $\operatorname{Ham}(\phi)$.
- Both the function ϕ and the 2 -form ω are Ham (ϕ)-invariant.

Construction of symplectic structure

- This pairing is skew-symmetric, and hence defines an exterior 2-form on the smooth part of $\operatorname{Hom}(\pi, G) / G$.
- This 2-form is nondegenerate and closed.
- By Ehresmann-Thurston, this induces a symplectic structure on $\mathfrak{D}_{(G, X)}(\Sigma)$.
- On a symplectic manifold (W, ω), functions ϕ induce vector fields $\operatorname{Ham}(\phi)$.
- Both the function ϕ and the 2 -form ω are $\operatorname{Ham}(\phi)$-invariant.

Hamiltonian twist flows on $\operatorname{Hom}(\pi, G)$

- The Hamiltonian vector field $\operatorname{Ham}\left(f_{\alpha}\right)$ associated to f and α assigns to a representation ρ in $\operatorname{Hom}(\pi, G)$ a tangent vector

$$
\operatorname{Ham}\left(f_{\alpha}\right)[\rho] \in T_{[\rho]} \operatorname{Hom}(\pi, G) / G=H^{1}\left(\Sigma, \mathfrak{g}_{\operatorname{Ad} \rho}\right)
$$

- It is represented by the (Poincaré dual) cycle-with-coefficient supported on α and with coefficient

$$
F(\rho(\alpha)) \in \mathfrak{g}_{\operatorname{Ad} \rho}
$$

Hamiltonian twist flows on $\operatorname{Hom}(\pi, G)$

- The Hamiltonian vector field $\operatorname{Ham}\left(f_{\alpha}\right)$ associated to f and α assigns to a representation ρ in $\operatorname{Hom}(\pi, G)$ a tangent vector

$$
\operatorname{Ham}\left(f_{\alpha}\right)[\rho] \in T_{[\rho]} \operatorname{Hom}(\pi, G) / G=H^{1}\left(\Sigma, \mathfrak{g}_{\mathrm{Ad} \rho}\right)
$$

- It is represented by the (Poincaré dual) cycle-with-coefficient supported on α and with coefficient
$F(\rho(\alpha)) \in g_{\text {Ad } p}$.

Hamiltonian twist flows on $\operatorname{Hom}(\pi, G)$

- The Hamiltonian vector field $\operatorname{Ham}\left(f_{\alpha}\right)$ associated to f and α assigns to a representation ρ in $\operatorname{Hom}(\pi, G)$ a tangent vector

$$
\operatorname{Ham}\left(f_{\alpha}\right)[\rho] \in T_{[\rho]} \operatorname{Hom}(\pi, G) / G=H^{1}\left(\Sigma, \mathfrak{g}_{\mathrm{Ad} \rho}\right)
$$

- It is represented by the (Poincaré dual) cycle-with-coefficient supported on α and with coefficient

$$
F(\rho(\alpha)) \in \mathfrak{g}_{\operatorname{Ad} \rho}
$$

The one-parameter subgroup associated to an invariant function

- Invariant function

and $A \in G \Longrightarrow$ one-parameter subgroup

$$
\zeta(t)=\exp (t \Gamma(A)) \in G
$$

where $F(A) \in \mathfrak{g}$.

- Centralizes A :

$$
\zeta(t) A \zeta^{-1}=A
$$

$\Rightarrow F(A)$ is defined by duality:

$$
d f(A) \in T_{A}^{*} G \cong \mathfrak{g}^{*} \stackrel{\mathbb{B}}{\cong} \mathfrak{g}
$$

- Alternatively, (where X is an arbitrary element of \mathfrak{g}):

$$
\mathbb{B}(F(A), X)=\left.\frac{d}{d t}\right|_{t=0} f(A \exp (t X))
$$

The one-parameter subgroup associated to an invariant function

- Invariant function

$$
G \xrightarrow{f} \mathbb{R}
$$

and $A \in G \Longrightarrow$ one-parameter subgroup

$$
\zeta(t)=\exp (t F(A)) \in G
$$

where $F(A) \in \mathfrak{g}$.

- $F(A)$ is defined by duality:

$$
d f(A) \in T_{A}^{*} G \cong \mathfrak{g}^{*} \stackrel{\mathbb{B}}{\cong} \mathfrak{g}
$$

- Alternatively, (where X is an arbitrary element of \mathfrak{g}):

$$
\mathbb{B}(F(A), X)=\left.\frac{d}{d t}\right|_{t=0} f(A \exp (t X))
$$

The one-parameter subgroup associated to an invariant function

- Invariant function

$$
G \xrightarrow{f} \mathbb{R}
$$

and $A \in G \Longrightarrow$ one-parameter subgroup

$$
\zeta(t)=\exp (t F(A)) \in G
$$

where $F(A) \in \mathfrak{g}$.

- Centralizes A :

$$
\zeta(t) A \zeta^{-1}=A
$$

- $F(A)$ is defined by duality:

$$
d f(A) \in T_{A}^{*} G \cong \mathfrak{g}^{*} \stackrel{\mathbb{B}}{\cong} \mathfrak{g}
$$

- Alternatively, (where X is an arbitrary element of \mathfrak{g}):

$$
\mathbb{B}(F(A), X)=\left.\frac{d}{d t}\right|_{t=0} f(A \exp (t X))
$$

The one-parameter subgroup associated to an invariant function

- Invariant function

$$
G \xrightarrow{f} \mathbb{R}
$$

and $A \in G \Longrightarrow$ one-parameter subgroup

$$
\zeta(t)=\exp (t F(A)) \in G
$$

where $F(A) \in \mathfrak{g}$.

- Centralizes A :

$$
\zeta(t) A \zeta^{-1}=A
$$

- $F(A)$ is defined by duality:

$$
d f(A) \in T_{A}^{*} G \cong \mathfrak{g}^{*} \stackrel{\mathbb{B}}{\cong} \mathfrak{g}
$$

- Alternatively, (where X is an arbitrary element of \mathfrak{g}):

The one-parameter subgroup associated to an invariant function

- Invariant function

$$
G \xrightarrow{f} \mathbb{R}
$$

and $A \in G \Longrightarrow$ one-parameter subgroup

$$
\zeta(t)=\exp (t F(A)) \in G
$$

where $F(A) \in \mathfrak{g}$.

- Centralizes A :

$$
\zeta(t) A \zeta^{-1}=A
$$

- $F(A)$ is defined by duality:

$$
d f(A) \in T_{A}^{*} G \cong \mathfrak{g}^{*} \stackrel{\mathbb{B}}{\cong} \mathfrak{g}
$$

- Alternatively, (where X is an arbitrary element of \mathfrak{g}):

$$
\mathbb{B}(F(A), X)=\left.\frac{d}{d t}\right|_{t=0} f(A \exp (t X))
$$

Generalized twist deformations

- When α is a simple closed curve, then a flow Φ_{t} on $\operatorname{Hom}(\pi, G)$ exists, which covers the (local) flow of the Hamiltonian vector field $\operatorname{Ham}\left(f_{\alpha}\right)$.
- When α is, for example, the nonseparating curve A_{1} in the standard presentation
$\pi=\left\langle A_{1}, B_{1}, \ldots, A_{g}, B_{g} \mid A_{1} B_{1} A_{1}^{-1} B_{1}^{-1} \ldots, A_{g} B_{g} A_{g}^{-1} B_{g}^{-1}=1\right\rangle$
this flow has the following description in terms of generators:
- $\Phi_{t}(\gamma)=\rho(\gamma)$ is constant if γ is either A f for $1 \leq i \leq g$ or B. for $2 \leq i \leq g$.
- $\Phi_{t}\left(B_{1}\right)=\rho\left(B_{1}\right) \zeta(t)$
- Similar construction when γ separates.

Generalized twist deformations

- When α is a simple closed curve, then a flow Φ_{t} on $\operatorname{Hom}(\pi, G)$ exists, which covers the (local) flow of the Hamiltonian vector field $\operatorname{Ham}\left(f_{\alpha}\right)$.
- When α is, for example, the nonseparating curve A_{1} in the standard presentation
$\pi=\left\langle A_{1}, B_{1}, \ldots, A_{g}, \bar{B}_{g} \mid A_{1} B_{1} A_{1}^{-1} B_{1}^{-1} \ldots, A_{g} B_{g} A_{g}^{-1} B_{g}^{-1}=1\right\rangle$
this flow has the following description in terms of generators:
- $\Phi_{t}(\gamma)=\rho(\gamma)$ is constant if γ is either A_{i} for $1<i \leq g$ or B_{i} for $2 \leq i \leq g$.
- $\Phi_{t}\left(B_{1}\right)=\rho\left(B_{1}\right) \zeta(t)$.
- Similar construction when γ separates..

Generalized twist deformations

- When α is a simple closed curve, then a flow Φ_{t} on $\operatorname{Hom}(\pi, G)$ exists, which covers the (local) flow of the Hamiltonian vector field $\operatorname{Ham}\left(f_{\alpha}\right)$.
- When α is, for example, the nonseparating curve A_{1} in the standard presentation

$$
\pi=\left\langle A_{1}, B_{1}, \ldots, A_{g}, B_{g} \mid A_{1} B_{1} A_{1}^{-1} B_{1}^{-1} \ldots, A_{g} B_{g} A_{g}^{-1} B_{g}^{-1}=1\right\rangle
$$

this flow has the following description in terms of generators:.

- $\Phi_{t}(\gamma)=\rho(\gamma)$ is constant if γ is either A_{i} for $1 \leq i \leq g$ or B_{i} for $2 \leq i \leq g$.
- $\Phi_{t}\left(B_{1}\right)=\rho\left(B_{1}\right) \zeta(t)$
- Similar construction when γ separates.

Generalized twist deformations

- When α is a simple closed curve, then a flow Φ_{t} on $\operatorname{Hom}(\pi, G)$ exists, which covers the (local) flow of the Hamiltonian vector field $\operatorname{Ham}\left(f_{\alpha}\right)$.
- When α is, for example, the nonseparating curve A_{1} in the standard presentation

$$
\pi=\left\langle A_{1}, B_{1}, \ldots, A_{g}, B_{g} \mid A_{1} B_{1} A_{1}^{-1} B_{1}^{-1} \ldots, A_{g} B_{g} A_{g}^{-1} B_{g}^{-1}=1\right\rangle
$$

this flow has the following description in terms of generators:.

- $\Phi_{t}(\gamma)=\rho(\gamma)$ is constant if γ is either A_{i} for $1 \leq i \leq g$ or B_{i} for $2 \leq i \leq g$.
- $\Phi_{t}\left(B_{1}\right)=\rho\left(B_{1}\right) \zeta(t)$.
- Similar construction when γ separates..

Generalized twist deformations

- When α is a simple closed curve, then a flow Φ_{t} on $\operatorname{Hom}(\pi, G)$ exists, which covers the (local) flow of the Hamiltonian vector field $\operatorname{Ham}\left(f_{\alpha}\right)$.
- When α is, for example, the nonseparating curve A_{1} in the standard presentation

$$
\pi=\left\langle A_{1}, B_{1}, \ldots, A_{g}, B_{g} \mid A_{1} B_{1} A_{1}^{-1} B_{1}^{-1} \ldots, A_{g} B_{g} A_{g}^{-1} B_{g}^{-1}=1\right\rangle
$$

this flow has the following description in terms of generators:.

- $\Phi_{t}(\gamma)=\rho(\gamma)$ is constant if γ is either A_{i} for $1 \leq i \leq g$ or B_{i} for $2 \leq i \leq g$.
- $\Phi_{t}\left(B_{1}\right)=\rho\left(B_{1}\right) \zeta(t)$.
- Similar construction when γ separates..

Generalized twist deformations

- When α is a simple closed curve, then a flow Φ_{t} on $\operatorname{Hom}(\pi, G)$ exists, which covers the (local) flow of the Hamiltonian vector field $\operatorname{Ham}\left(f_{\alpha}\right)$.
- When α is, for example, the nonseparating curve A_{1} in the standard presentation

$$
\pi=\left\langle A_{1}, B_{1}, \ldots, A_{g}, B_{g} \mid A_{1} B_{1} A_{1}^{-1} B_{1}^{-1} \ldots, A_{g} B_{g} A_{g}^{-1} B_{g}^{-1}=1\right\rangle
$$

this flow has the following description in terms of generators:.

- $\Phi_{t}(\gamma)=\rho(\gamma)$ is constant if γ is either A_{i} for $1 \leq i \leq g$ or B_{i} for $2 \leq i \leq g$.
- $\Phi_{t}\left(B_{1}\right)=\rho\left(B_{1}\right) \zeta(t)$.
- Similar construction when γ separates..

Twist and bulging deformations for $\mathbb{R P}^{2}$-structures

- Apply the previous general construction to $G=S L(3, \mathbb{R})$ and the two invariant functions ℓ, β defined earlier:

$$
\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right] \xrightarrow{(\ell, \beta)}\binom{\log \left(\lambda_{1}\right)-\log \left(\lambda_{3}\right)}{\log \left(\lambda_{2}\right)}
$$

- The corresponding one-parameter subgroups in $\mathrm{PGL}(3, \mathbb{R})$ are:

$$
\zeta_{\ell}(t):=\left[\begin{array}{ccc}
e^{t} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & e^{-t}
\end{array}\right], \zeta_{\beta}(t):=e^{-t / 3}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{t} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Twist and bulging deformations for $\mathbb{R P}^{2}$-structures

- Apply the previous general construction to $G=\operatorname{SL}(3, \mathbb{R})$ and the two invariant functions ℓ, β defined earlier:

$$
\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right] \xrightarrow{(\ell, \beta)}\binom{\log \left(\lambda_{1}\right)-\log \left(\lambda_{3}\right)}{\log \left(\lambda_{2}\right)}
$$

- The corresponding one-parameter subgroups in PGL(3, $\mathbb{R})$ are:

Twist and bulging deformations for $\mathbb{R P}^{2}$-structures

- Apply the previous general construction to $G=\operatorname{SL}(3, \mathbb{R})$ and the two invariant functions ℓ, β defined earlier:

$$
\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right] \xrightarrow{(\ell, \beta)}\binom{\log \left(\lambda_{1}\right)-\log \left(\lambda_{3}\right)}{\log \left(\lambda_{2}\right)}
$$

- The corresponding one-parameter subgroups in $\operatorname{PGL}(3, \mathbb{R})$ are:

$$
\zeta_{\ell}(t):=\left[\begin{array}{ccc}
e^{t} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & e^{-t}
\end{array}\right], \zeta_{\beta}(t):=e^{-t / 3}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{t} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Bulging conics along a triangle in $\mathbb{R} \mathbb{P}^{2}$

- When applied to a hyperbolic structure, the flow of $\operatorname{Ham}\left(\ell_{\alpha}\right)$ is just the ordinary Fenchel-Nielsen earthquake deformation and the developing image Ω is unchanged.
- However, the flow of $\operatorname{Ham}\left(\beta_{\alpha}\right)$ changes Ω by bulging it along a triangle tangent to $\partial \Omega$.

Bulging conics along a triangle in $\mathbb{R P}^{2}$

- When applied to a hyperbolic structure, the flow of $\operatorname{Ham}\left(\ell_{\alpha}\right)$ is just the ordinary Fenchel-Nielsen earthquake deformation and the developing image Ω is unchanged.

Bulging conics along a triangle in $\mathbb{R}^{\mathbb{P}^{2}}$

- When applied to a hyperbolic structure, the flow of $\operatorname{Ham}\left(\ell_{\alpha}\right)$ is just the ordinary Fenchel-Nielsen earthquake deformation and the developing image Ω is unchanged.
- However, the flow of $\operatorname{Ham}\left(\beta_{\alpha}\right)$ changes Ω by bulging it along a triangle tangent to $\partial \Omega$.

Bulging domains in $\mathbb{R P}^{2}$

- Start with a properly domain Ω whose boundary $\partial \Omega$ is strictly convex and C^{1}. (For example, $\partial \Omega$ a conic.) Each geodesic embeds in a triangle tangent to $\partial \Omega$.
- Choose a collection Λ of disjoint lines in Ω, with instructions how to deform along Λ (for each $\lambda \in \Lambda$, a one-parameter subgroup of $\operatorname{SL}(3, \mathbb{R})$ preserving λ.
- Fixing a basepoint in the complement of Λ, bulge/earthquake the curve inside the triangles tangent to $\partial \Omega$.
- Obtain a sequence of piecewise conics converging to the limit curve.

Bulging domains in $\mathbb{R P}^{2}$

- Start with a properly domain Ω whose boundary $\partial \Omega$ is strictly convex and C^{1}. (For example, $\partial \Omega$ a conic.) Each geodesic embeds in a triangle tangent to $\partial \Omega$.
- Choose a collection Λ of disjoint lines in Ω, with instructions how to deform along Λ (for each $\lambda \in \Lambda$, a one-parameter subgroup of $\operatorname{SL}(3, \mathbb{R})$ preserving λ.
- Fixing a basepoint in the complement of Λ, bulge/earthquake the curve inside the triangles tangent to $\partial \Omega$.
- Obtain a sequence of piecewise conics converging to the limit curve.

Bulging domains in $\mathbb{R P}^{2}$

- Start with a properly domain Ω whose boundary $\partial \Omega$ is strictly convex and C^{1}. (For example, $\partial \Omega$ a conic.) Each geodesic embeds in a triangle tangent to $\partial \Omega$.
- Choose a collection Λ of disjoint lines in Ω, with instructions how to deform along Λ (for each $\lambda \in \Lambda$, a one-parameter subgroup of $\operatorname{SL}(3, \mathbb{R})$ preserving λ.
- Fixing a basepoint in the complement of Λ, bulge/earthquake the curve inside the triangles tangent to $\partial \Omega$.
- Obtain a sequence of piecewise conics converging to the limit

Bulging domains in $\mathbb{R P}^{2}$

- Start with a properly domain Ω whose boundary $\partial \Omega$ is strictly convex and C^{1}. (For example, $\partial \Omega$ a conic.) Each geodesic embeds in a triangle tangent to $\partial \Omega$.
- Choose a collection Λ of disjoint lines in Ω, with instructions how to deform along Λ (for each $\lambda \in \Lambda$, a one-parameter subgroup of $\operatorname{SL}(3, \mathbb{R})$ preserving λ.
- Fixing a basepoint in the complement of Λ, bulge/earthquake the curve inside the triangles tangent to $\partial \Omega$.
- Obtain a sequence of piecewise conics converging to the limit curve.

Bulging domains in $\mathbb{R P}^{2}$

- Start with a properly domain Ω whose boundary $\partial \Omega$ is strictly convex and C^{1}. (For example, $\partial \Omega$ a conic.) Each geodesic embeds in a triangle tangent to $\partial \Omega$.
- Choose a collection Λ of disjoint lines in Ω, with instructions how to deform along Λ (for each $\lambda \in \Lambda$, a one-parameter subgroup of $\operatorname{SL}(3, \mathbb{R})$ preserving λ.
- Fixing a basepoint in the complement of Λ, bulge/earthquake the curve inside the triangles tangent to $\partial \Omega$.
- Obtain a sequence of piecewise conics converging to the limit curve.

A domain in $\mathbb{R} \mathbb{P}^{2}$ covering a closed surface

Iterated bulging of convex domains in $\mathbb{R P}^{2}$: Speculation

- If Ω covers a closed convex $\mathbb{R P}^{2}$-surface with $\chi<0$, then $\partial \Omega$ is obtained from a conic by iterated bulgings and earthquakes.
- Is every properly convex domain $\Omega \subset \mathbb{R P}^{2}$ with strictly convex C^{1} boundary obtained by iterated bulging-earthquaking?
- Thurston proved that any two marked hyperbolic structures on \sum can be related by (left)-earthquake along a unique measured geodesic lamination. Generalize this to convex $\mathbb{R P}^{2}$-structures.

Iterated bulging of convex domains in $\mathbb{R P}^{2}$: Speculation

- If Ω covers a closed convex $\mathbb{R P}^{2}$-surface with $\chi<0$, then $\partial \Omega$ is obtained from a conic by iterated bulgings and earthquakes.
- Is every properly convex domain $\Omega \subset \mathbb{R P}^{2}$ with strictly convex C^{1} boundary obtained by iterated bulging-earthquaking?
- Thurston proved that any two marked hyperbolic structures on Σ can be related by (left)-earthquake along a unique measured geodesic lamination. Generalize this to convex $\mathbb{R} \mathbb{P}^{2}$-structures.

Iterated bulging of convex domains in $\mathbb{R P}^{2}$: Speculation

- If Ω covers a closed convex $\mathbb{R P}^{2}$-surface with $\chi<0$, then $\partial \Omega$ is obtained from a conic by iterated bulgings and earthquakes.
- Is every properly convex domain $\Omega \subset \mathbb{R P}^{2}$ with strictly convex C^{1} boundary obtained by iterated bulging-earthquaking?
- Thurston proved that any two marked hyperbolic structures on \sum can be related by (left)-earthquake along a unique measured geodesic lamination. Generalize this to convex $\mathbb{R P}^{2}$-structures.

Iterated bulging of convex domains in $\mathbb{R P}^{2}$: Speculation

- If Ω covers a closed convex $\mathbb{R P}^{2}$-surface with $\chi<0$, then $\partial \Omega$ is obtained from a conic by iterated bulgings and earthquakes.
- Is every properly convex domain $\Omega \subset \mathbb{R} \mathbb{P}^{2}$ with strictly convex C^{1} boundary obtained by iterated bulging-earthquaking?
- Thurston proved that any two marked hyperbolic structures on Σ can be related by (left)-earthquake along a unique measured geodesic lamination. Generalize this to convex $\mathbb{R P}^{2}$-structures.

