The Geometry of 2×2 Matrices

William M. Goldman
Department of Mathematics, University of Maryland, College Park, MD 20742

Spring 2009 MD-DC-VA Sectional Meeting Mathematical Association of America University of Mary Washington
Fredericksburg, Virginia 18 April 2009

The Geometry of 2×2 Matrices

William M. Goldman
Department of Mathematics, University of Maryland, College Park, MD 20742

Spring 2009 MD-DC-VA Sectional Meeting Mathematical Association of America University of Mary Washington
Fredericksburg, Virginia 18 April 2009

The Geometry of 2×2 Matrices

William M.
Goldman

Algebraicizing geometry

Euclidean
geometry
Spherical
geometry
Triangle tilings
Stereographic
projection
Hyperbolic
Geometry
Matrices as geometric objects

Conclusion

Tiling the hyperbolic plane by ideal triangles with dual tree

The Geometry of 2×2 Matrices

William M.
Goldman

Algebraicizing geometry

Euclidean
geometry
Spherical
geometry
Triangle tilings
Stereographic
projection
Hyperbolic
Geometry
Matrices as geometric objects

Conclusion

Tiling the hyperbolic plane by ideal triangles with dual tree

The Geometry of 2×2

 MatricesWilliam M.
Goldman

Algebraicizing geometry

Euclidean
geometry
Spherical
geometry
Triangle tilings
Stereographic
projection
Hyperbolic
Geometry
Matrices as
geometric objects

Conclusion

Tiling the hyperbolic plane by ideal triangles with dual tree

The Geometry of 2×2 Matrices

William M.
Goldman

Algebraicizing geometry

Euclidean
geometry
Spherical
geometry
Triangle tilings
Stereographic
projection
Hyperbolic
Geometry
Matrices as geometric objects

Conclusion

Tiling the hyperbolic plane by ideal triangles with dual tree

The Geometry
of 2×2
Matrices
William M.
Goldman

Algebraicizing geometry

Euclidean
geometry
Spherical
geometry
Triangle tilings
Stereographic
projection
Hyperbolic Geometry

Matrices as geometric objects

Conclusion

Algebraicizing geometry through symmetry

Library of Congress

Felix Klein's Erlangen Program: A geometry is the study of objects invariant under some group of symmetries. (1872)

```
The Geometry
    of 2 < 2
    Matrices
    William M
    Goldman
Algebraicizing
geometry
Putting a geometry on a topological space

■ Can an abstract space locally support a geometry?
```

The Geometry
of 2\times2
Matrices
William M
Goldman
Algebraicizing
geometry

```
Putting a geometry on a topological space

■ Can an abstract space locally support a geometry?
■ A torus is a rectangle with sides identified by translations.
```

The Geometry
of 2 < 2
Matrices
William M
Goldman
Algebraicizing
geometry

```
Putting a geometry on a topological space

■ Can an abstract space locally support a geometry?
■ A torus is a rectangle with sides identified by translations.
■ Locally has Euclidean geometry.
```

The Geometry
of 2 < 2
Matrices
William M.
Goldman
Algebraicizing
geometry
Putting a geometry on a topological space

■ Can an abstract space locally support a geometry?
■ A torus is a rectangle with sides identified by translations.

- Locally has Euclidean geometry.

■ Every point has a Euclidean coordinate neighborhood.

The Geometry

 of 2×2Matrices
William M
Goldman

Algebraicizing geometry

Euclidean geometry

Spherical geometry

Triangle tilings
Stereographic projection

Hyperbolic Geometry

Matrices as geometric objects

Putting a geometry on a topological space

■ Can an abstract space locally support a geometry?
■ A torus is a rectangle with sides identified by translations.

- Locally has Euclidean geometry.

■ Every point has a Euclidean coordinate neighborhood.

The Geometry

 of 2×2Matrices
William M.
Goldman

Algebraicizing geometry

Euclidean
geometry
Spherical geometry

Triangle tilings
Stereographic projection

Hyperbolic Geometry

Matrices as geometric objects

Putting a geometry on a topological space

■ Can an abstract space locally support a geometry?
■ A torus is a rectangle with sides identified by translations.

- Locally has Euclidean geometry.

■ Every point has a Euclidean coordinate neighborhood.

The Geometry

 of 2×2Matrices
William M.
Goldman

Algebraicizing geometry

Euclidean geometry

Spherical geometry Triangle tilings

Stereographic projection

Hyperbolic Geometry

Matrices as geometric objects

Putting a geometry on a topological space

■ Can an abstract space locally support a geometry?

- A torus is a rectangle with sides identified by translations.
- Locally has Euclidean geometry.

■ Every point has a Euclidean coordinate neighborhood.

Putting a geometry on a topological space

■ Can an abstract space locally support a geometry?
■ A torus is a rectangle with sides identified by translations.

- Locally has Euclidean geometry.

■ Every point has a Euclidean coordinate neighborhood.

Putting a geometry on a topological space

■ Can an abstract space locally support a geometry?
■ A torus is a rectangle with sides identified by translations.
■ Locally has Euclidean geometry.
■ Every point has a Euclidean coordinate neighborhood.

```
The Geometry
    of 2\times2
    Matrices
    William M
    Goldman
Algebraicizing
geometry
Euclidean
geometry
Spherical
geometry
Triangle tilings
Stereographic
projection
Hyperbolic
Geometry
Matrices as
geometric
objects
Conclusion
```

A sphere is not Euclidean

```
The Geometry
    of 2 < 2
    Matrices
    William M
    Goldman
Algebraicizing
geometry
Euclidean
geometry
Spherical
geometry
Triangle tilings
Stereographic
projection
Hyperbolic
Geometry
Matrices as
geometric
objects
Conclusion
```

■ No local Euclidean geometry structure on the sphere.

A sphere is not Euclidean

```
The Geometry
    of 2\times2
    Matrices
    William M
    Goldman
Algebraicizing
geometry
```

A sphere is not Euclidean

■ No local Euclidean geometry structure on the sphere.
■ No metrically accurate atlas of the world!

```
The Geometry
    of 2 < 2
    Matrices
    William M.
    Goldman
Algebraicizing
geometry
Euclidean
geometry
Spherical
geometry
Triangle tilings
Stereographic
projection
```

A sphere is not Euclidean

■ No local Euclidean geometry structure on the sphere.
■ No metrically accurate atlas of the world!
■ For example a cube has the topology of a sphere, but its geometry fails to be Euclidean at its 8 vertices.

```
The Geometry
    of 2 < 2
    Matrices
```

Algebraicizing geometry

Euclidean
geometry
Spherical geometry

Triangle tilings
Stereographic
projection
Hyperbolic
Geometry
Matrices as
geometric
objects
Conclusion

The geometry on the space of geometries

```
The Geometry
    of 2 < 2
    Matrices
William M
    Goldman
Algebraicizing
geometry
Euclidean
geometry
Spherical
geometry
Triangle tilings
Stereographic
projection
Hyperbolic
Geometry
Matrices as
geometric
objects
Conclusion
```

■ Geometric objects and transformations represented by scalars, vectors and matrices, all arising from symmetry.

```
The Geometry
    of 2 < 2
    Matrices
William M
    Goldman
Algebraicizing
geometry
Euclidean
geometry
Spherical geometry
Triangle tilings
Stereographic projection
Hyperbolic Geometry
```

■ Geometric objects and transformations represented by scalars, vectors and matrices, all arising from symmetry.
■ Example: Triangles in the plane are classified (up to congruence) by the lengths of their sides:

$$
\begin{aligned}
& 0<a, b, c \\
& a<b+c \\
& b<c+a \\
& c<a+b
\end{aligned}
$$

The geometry on the space of geometries

■ Geometric objects and transformations represented by scalars, vectors and matrices, all arising from symmetry.

- Example: Triangles in the plane are classified (up to congruence) by the lengths of their sides:

$$
\begin{aligned}
& 0<a, b, c \\
& a<b+c \\
& b<c+a \\
& c<a+b
\end{aligned}
$$

The geometry on the space of geometries

■ In general the space of equivalence classes of a geometry has an interesting geometry of its own.

```
The Geometry
    of 2\times2
    Matrices
    William M
    Goldman
Algebraicizing
geometry
Euclidean
geometry
Spherical
geometry
Triangle tilings
Stereographic
projection
Hyperbolic
Geometry
Matrices as
geometric
objects
Conclusion
```

```
The Geometry
    of 2 < 2
    Matrices
William M
    Goldman

\section*{Euclidean structures on torus}

■ Every Euclidean structure on a torus arises as the quotient of the plane by a lattice of translations, for example
\[
(x, y) \longmapsto(x+m, y+n)
\]
where \(m, n \in \mathbb{Z}\).
```

The Geometry
of 2 < 2
Matrices
William M.
Goldman

Euclidean structures on torus

■ Every Euclidean structure on a torus arises as the quotient of the plane by a lattice of translations, for example

$$
(x, y) \longmapsto(x+m, y+n)
$$

where $m, n \in \mathbb{Z}$.
■ The translations identify the fundamental parallelogram.

```
The Geometry
    of 2 < 2
    Matrices

\section*{Euclidean structures on torus}

■ Every Euclidean structure on a torus arises as the quotient of the plane by a lattice of translations, for example
\[
(x, y) \longmapsto(x+m, y+n)
\]
where \(m, n \in \mathbb{Z}\).
■ The translations identify the fundamental parallelogram.
■ Identify \(\mathbb{R}^{2}\) with \(\mathbb{C}\). Up to equivalence the lattice is generated by complex numbers 1 and \(\tau=x+i y\), where \(y>0\).

\section*{Euclidean structures on torus}

■ Every Euclidean structure on a torus arises as the quotient of the plane by a lattice of translations, for example
\[
(x, y) \longmapsto(x+m, y+n)
\]
where \(m, n \in \mathbb{Z}\).
■ The translations identify the fundamental parallelogram.
■ Identify \(\mathbb{R}^{2}\) with \(\mathbb{C}\). Up to equivalence the lattice is generated by complex numbers 1 and \(\tau=x+i y\), where \(y>0\).


\begin{abstract}
The Geometry of \(2 \times 2\) Matrices

William M.
Goldman

Algebraicizing geometry

Euclidean
geometry
Spherical
geometry
Triangle tilings
Stereographic
projection
Hyperbolic
Geometry
Matrices as
geometric
objects
Conclusion

Moduli space
\end{abstract}
```

The Geometry
of 2 < 2
Matrices
William M
Goldman

```

Algebraicizing geometry

Euclidean
geometry
Spherical geometry

Triangle tilings
Stereographic projection

Hyperbolic Geometry

Matrices as
geometric objects

Conclusion

Moduli space
■ The space of structures \(\longleftrightarrow\) with equivalence classes of \(\tau \in H^{2}\) by \(\mathrm{SL}(2, \mathbb{Z})\) - natural hyperbolic geometry.
```

The Geometry
of 2 < 2
Matrices

Euclidean
geometry
Spherical geometry

Triangle tilings
Stereographic projection

Hyperbolic Geometry

Matrices as geometric objects

Moduli space
■ The space of structures \longleftrightarrow with equivalence classes of $\tau \in H^{2}$ by $\operatorname{SL}(2, \mathbb{Z})$ - natural hyperbolic geometry.
■ Changing basis \longleftrightarrow action of the group $\operatorname{SL}(2, \mathbb{Z})$ of integral 2×2 matrices by

$$
\tau \longmapsto \frac{a \tau+b}{c \tau+d} \text { where } a, b, c, d \in \mathbb{Z} .
$$


```
The Geometry
    of 2\times2
    Matrices
    William M.
    Goldman
Algebraicizing
geometry
Euclidean
geometry
Spherical
geometry
Triangle tilings
Stereographic
projection
Hyperbolic
Geometry
Matrices as
geometric
objects
Conclusion
```


Euclidean geometry

```
The Geometry
    of 2 < 2
    Matrices
    William M.
    Goldman
Algebraicizing
geometry
Euclidean geometry
■ Euclidean geometry concerns properties of space invariant under rigid motions.
```

The Geometry
of 2 < 2
Matrices
William M
Goldman
Algebraicizing
geometry
Euclidean
geometry

Euclidean geometry

■ Euclidean geometry concerns properties of space invariant under rigid motions.
■ For example: distance, parallelism, angle, area and volume.

Euclidean geometry

■ Euclidean geometry concerns properties of space invariant under rigid motions.
■ For example: distance, parallelism, angle, area and volume.
■ Points in Euclidean space are represented by vectors; Euclidean distance is defined by:

$$
d(\vec{a}, \vec{b}):=\|\vec{a}-\vec{b}\|,
$$

Euclidean geometry

■ Euclidean geometry concerns properties of space invariant under rigid motions.
■ For example: distance, parallelism, angle, area and volume.

- Points in Euclidean space are represented by vectors; Euclidean distance is defined by:

$$
d(\vec{a}, \vec{b}):=\|\vec{a}-\vec{b}\|,
$$

the size of the translation taking \vec{b} to \vec{a} :

$$
p \longmapsto p+(\vec{b}-\vec{a})
$$

The Geometry of 2×2 Matrices
 Spherical geometry

Algebraicizing

 geometryEuclidean
geometry
Spherical
geometry
Triangle tilings
Stereographic
projection
Hyperbolic
Geometry
Matrices as
geometric
objects
Conclusion

```
The Geometry
    of 2 < 2
    Matrices
    William M.
    Goldman
Algebraicizing geometry

\section*{Spherical geometry}

■ Points on the sphere \(S^{2}\) are unit vectors in \(\mathbb{R}^{3}\).
```

The Geometry
of 2\times2
Matrices
William M
Goldman

Spherical geometry

■ Points on the sphere S^{2} are unit vectors in \mathbb{R}^{3}.
■ Spherical distance between $\vec{a}, \vec{b} \in S^{2}$ is the minimum length of a curve on S^{2} between joining them.

```
The Geometry
    of 2 < 2
    Matrices
William M
    Goldman

\section*{Spherical geometry}

■ Points on the sphere \(S^{2}\) are unit vectors in \(\mathbb{R}^{3}\).
■ Spherical distance between \(\vec{a}, \vec{b} \in S^{2}\) is the minimum length of a curve on \(S^{2}\) between joining them.
- It is the angle \(\theta=\angle(\vec{a}, \vec{b})\) :
```

The Geometry
of 2 < 2
Matrices

Spherical geometry

■ Points on the sphere S^{2} are unit vectors in \mathbb{R}^{3}.

- Spherical distance between $\vec{a}, \vec{b} \in S^{2}$ is the minimum length of a curve on S^{2} between joining them.
■ It is the angle $\theta=\angle(\vec{a}, \vec{b})$:

$$
\cos (\theta)=\vec{a} \cdot \vec{b}
$$

Spherical geometry

■ Points on the sphere S^{2} are unit vectors in \mathbb{R}^{3}.
■ Spherical distance between $\vec{a}, \vec{b} \in S^{2}$ is the minimum length of a curve on S^{2} between joining them.

- It is the angle $\theta=\angle(\vec{a}, \vec{b})$:

$$
\cos (\theta)=\vec{a} \cdot \vec{b}
$$

Hyperbolic Geometry

Matrices as

- the size of the rotation taking \vec{b} to \vec{a}.

```
The Geometry
    of 2 < 2
    Matrices
William M.
    Goldman
Algebraicizing
geometry
Euclidean
geometry
Spherical
geometry
Triangle tilings
Stereographic
projection
Hyperbolic
Geometry
Matrices as
geometric
objects
Conclusion
```

Metric circles on the sphere of radius R.

The Geometry
of 2×2
Matrices
William M.
Goldman
Algebraicizing
geometry
Euclidean
geometry
Spherical
geometry
Triangle tilings
Stereographic
projection
Hyperbolic
Geometry
Matrices as
geometric
objects
Conclusion

Metric circles on the sphere of radius R.

■ Spherical circle of radius r has circumference

$$
C(R)=2 \pi R \sin (r / R)
$$

The Geometry
of 2×2
Matrices
William M.
Goldman
Algebraicizing
geometry
Euclidean
geometry
Spherical
geometry
Triangle tilings
Stereographic
projection
Hyperbolic
Geometry
Matrices as
geometric
objects
Conclusion

```
The Geometry
    of 2 < 2
    Matrices
    William M
    Goldman
Algebraicizing
geometry
Euclidean
geometry
Spherical
geometry
Triangle tilings
Stereographic
projection
Hyperbolic
Geometry
Matrices as
geometric
objects
Conclusion
```


Geodesics (straight lines) on the sphere

The Geometry of 2×2
 Matrices
 William M.
 Goldman
 Geodesics (straight lines) on the sphere
 - A great circle on S^{2} is the intersection with a plane thru the origin.

```
The Geometry
    of 2 < 2
    Matrices
William M
    Goldman
Algebraicizing
geometry

Geodesics (straight lines) on the sphere
- A great circle on \(S^{2}\) is the intersection with a plane thru the origin.
■ These are circles of maximum diameter
```

The Geometry
of 2 < 2
Matrices
William M
Goldman

```

Geodesics (straight lines) on the sphere
- A great circle on \(S^{2}\) is the intersection with a plane thru the origin.
- These are circles of maximum diameter

■ The shortest curves between points (constant speed curves of zero acceleration) are arcs of great circles.

Geodesics (straight lines) on the sphere
- A great circle on \(S^{2}\) is the intersection with a plane thru the origin.
- These are circles of maximum diameter

■ The shortest curves between points (constant speed curves of zero acceleration) are arcs of great circles.
■ Attempted "coordinate grid" on a sphere:

Geodesics (straight lines) on the sphere
- A great circle on \(S^{2}\) is the intersection with a plane thru the origin.
- These are circles of maximum diameter

■ The shortest curves between points (constant speed curves of zero acceleration) are arcs of great circles.
■ Attempted "coordinate grid" on a sphere:


\section*{The Geometry of \(2 \times 2\)} Matrices

William M.
Goldman

Algebraicizing geometry

Euclidean geometry

Spherical geometry

Triangle tilings
Stereographic
projection
Hyperbolic Geometry

Matrices as
geometric
objects
Conclusion

\section*{Tilings by triangles}

■ Example: Take a triangle \(\triangle\) and try to tile the plane by reflecting \(\triangle\) repeatedly in its sides.

\section*{The Geometry}

\section*{Tilings by triangles}

■ Example: Take a triangle \(\triangle\) and try to tile the plane by reflecting \(\triangle\) repeatedly in its sides.
■ If the angles \(\alpha, \beta, \gamma\) in \(\triangle\) are \(\pi / n\), where \(n>0\) is an integer, then the triangles tile the plane.

Tilings by triangles

■ Example: Take a triangle \(\triangle\) and try to tile the plane by reflecting \(\triangle\) repeatedly in its sides.
■ If the angles \(\alpha, \beta, \gamma\) in \(\triangle\) are \(\pi / n\), where \(n>0\) is an integer, then the triangles tile the plane.
■ If the angles are \(\pi / p, \pi / q, \pi / r\) then the three reflections \(R_{1}, R_{2}, R_{3}\) generate a group with presentation with defining relations
\[
\begin{aligned}
\left(R_{1}\right)^{2} & =\left(R_{2}\right)^{2}=\left(R_{3}\right)^{2}= \\
\left(R_{1} R_{2}\right)^{p} & =\left(R_{2} R_{3}\right)^{q}=\left(R_{3} R_{1}\right)^{r}=1
\end{aligned}
\]
```

The Geometry
of 2\times2
Matrices
William M.
Goldman
Algebraicizing
geometry
Euclidean
geometry
Spherical
geometry
Triangle tilings
Stereographic
projection
Hyperbolic
Geometry
Matrices as
geometric
objects
Conclusion

```

Tiling \(\mathbb{R}^{2}\) by triangles
```

The Geometry
of 2 < 2
Matrices
William M
Goldman
Algebraicizing
geometry
Euclidean
geometry
Spherical
geometry
Triangle tilings
Stereographic
projection
Hyperbolic
Geometry
Matrices as
geometric
objects
Conclusion

```

Tiling \(\mathbb{R}^{2}\) by triangles

```

The Geometry
of 2\times2
Matrices
William M.
Goldman
Algebraicizing
geometry
Euclidean
geometry
Spherical
geometry
Triangle tilings
Stereographic
projection
Hyperbolic
Matrices as
geometric
objects
Conclusion

```


Tiling \(\mathbb{R}^{2}\) by triangles
```

The Geometry
of 2 < 2
Matrices
William M
Goldman
Algebraicizing
geometry
Euclidean
geometry
Spherical
geometry
Triangle tilings
Stereographic
projection
Hyperbolic
Geometry
Matrices as
geometric
objects
Conclusion

```

Tiling \(\mathbb{R}^{2}\) by triangles

```

The Geometry
of 2 < 2
Matrices
William M.
Goldman
Algebraicizing
geometry
Euclidean
geometry
Spherical
geometry
Triangle tilings
Stereographic
projection
Hyperbolic
Geometry
Matrices as
geometric
objects
Conclusion

```

Tiling \(\mathbb{R}^{2}\) by triangles

```

The Geometry
of 2\times2
Matrices
William M
Goldman

```
Algebraicizing
geometry
Euclidean
geometry
Spherical
geometry
Triangle tilings
Stereographic
projection
Hyperbolic
Geometry
Matrices as
geometric
objects

Tiling \(\mathbb{R}^{2}\) by triangles



The Geometry of \(2 \times 2\)
Matrices
William M.
Goldman

Algebraicizing geometry

Euclidean geometry

\section*{Spherical} geometry

Triangle tilings
Stereographic projection

Hyperbolic Geometry

Matrices as geometric objects

Conclusion

Tiling \(\mathbb{R}^{2}\) by triangles


The Geometr of \(2 \times 2\)
Matrices
William M
Goldman

Algebraicizing geometry

Euclidean geometry

\section*{Spherical} geometry

Triangle tilings
Stereographic projection

Hyperbolic Geometry

Matrices as geometric objects

Conclusion

Tiling \(\mathbb{R}^{2}\) by triangles


The Geometr of \(2 \times 2\)
Matrices
William M.
Goldman

Algebraicizing geometry

Euclidean geometry

\section*{Spherical} geometry

Triangle tilings
Stereographic projection

Hyperbolic Geometry

Matrices as geometric objects

Conclusion

Tiling \(\mathbb{R}^{2}\) by triangles


The Geometr of \(2 \times 2\)
Matrices
William M.
Goldman

\section*{Algebraicizing} geometry

Euclidean geometry

\section*{Spherical} geometry

Triangle tilings
Stereographic projection

Hyperbolic Geometry

Matrices as geometric objects

Tiling \(\mathbb{R}^{2}\) by triangles


The Geometry of \(2 \times 2\)
Matrices
William M
Goldman

Algebraicizing geometry

Euclidean geometry

\section*{Spherical} geometry

Triangle tilings
Stereographic projection

Hyperbolic Geometry

Matrices as geometric objects

Tiling \(\mathbb{R}^{2}\) by triangles


The Geometry of \(2 \times 2\)
Matrices
William M
Goldman

Algebraicizing geometry

Euclidean geometry

\section*{Spherical} geometry

Triangle tilings
Stereographic projection

Hyperbolic Geometry

Matrices as geometric objects

Tiling \(\mathbb{R}^{2}\) by triangles


The Geometry of \(2 \times 2\)
Matrices
William M.
Goldman

Algebraicizing geometry

Euclidean geometry

\section*{Spherical}
geometry
Triangle tilings
Stereographic projection

Hyperbolic Geometry

Matrices as geometric objects

Tiling \(\mathbb{R}^{2}\) by triangles


\begin{abstract}
The Geometry of \(2 \times 2\)

What can go wrong Matrices

William M
Goldman

Algebraicizing geometry

Euclidean
geometry
Spherical
geometry
Triangle tilings
Stereographic projection

Hyperbolic Geometry

Matrices as geometric objects

Conclusion

\end{abstract}
```

The Geometry
of 2 < 2
Matrices
William M
Goldman
Algebraicizing
geometry
Euclidean
geometry
Spherical
geometry
Triangle tilings
Stereographic
projection
Hyperbolic
Geometry
Matrices as
geometric
objects
Conclusion
Matrices as geometric objects
Conclusion

```

\section*{What can go wrong}

```

The Geometry
of 2 < 2
Matrices
William M
Goldman
Algebraicizing
geometry
Euclidean
geometry
Spherical
geometry
Triangle tilings
Stereographic
projection
Hyperbolic
Geometry
Matrices as
geometric
objects
Conclusion

```

\section*{What can go wrong}


The Geometry
of \(2 \times 2\)
Matrices
William M.
Goldman
Algebraicizing
geometry
Euclidean
geometry
Spherical
geometry
Triangle tilings
Stereographic
projection
Hyperbolic
Geometry
Matrices as
geometric
objects
Conclusion

What can go wrong

The Geometry
of \(2 \times 2\)
Matrices
William M.
Goldman
Algebraicizing
geometry
Euclidean
geometry
Spherical
geometry
Triangle tilings
Stereographic
projection
Hyperbolic
Geometry
Matrices as
geometric
objects
Conclusion

\section*{What can go wrong}


The Geometry of \(2 \times 2\)
Matrices
William M. Goldman

Algebraicizing geometry

Euclidean geometry

Spherical geometry

Triangle tilings
Stereographic projection

Hyperbolic Geometry

Matrices as geometric objects

Conclusion

What can go wrong


Matrices
William M.
Goldman
A tiling of the Euclidean plane by equilateral ( \(\pi / 3-\) ) triangles

Algebraicizing geometry

Euclidean geometry

Spherical geometry

Triangle tilings
Stereographic projection

Hyperbolic Geometry

Matrices as geometric objects

The Geometry of \(2 \times 2\) Matrices
William M.
Goldman
Algebraicizing geometry
Euclidean
geometry
Spherical
geometry
Triangle tilings
Stereographic
projection
Hyperbolic
Geometry
Matrices as
geometric
objects
Conclusion

\section*{Trichotomy}
```

The Geometry
of 2 < 2
Matrices
William M
Goldman
Algebraicizing
geometry
Euclidean
geometry
Spherical
geometry
Triangle tilings
Stereographic
projection
Hyperbolic
Geometry
Matrices as
geometric
objects
Conclusion

Trichotomy

■ If $\alpha+\beta+\gamma=\pi$, then a Euclidean triangle exists with these angles.

```
The Geometry
    of 2 < 2
    Matrices
    William M
    Goldman
Algebraicizing
geometry
```


Euclidean

``` geometry
Spherical geometry
Triangle tilings
Stereographic
projection
Hyperbolic Geometry
Matrices as
geometric objects
Conclusion
```


Trichotomy

■ If $\alpha+\beta+\gamma=\pi$, then a Euclidean triangle exists with these angles.

■ Such a triangle is unique up to similarity.

```
The Geometry
    of 2 < 2
    Matrices

\section*{Trichotomy}

■ If \(\alpha+\beta+\gamma=\pi\), then a Euclidean triangle exists with these angles.
- Such a triangle is unique up to similarity.

■ If \(\pi / \alpha\), etc. are integers \(>1\), reflected images of \(\triangle\) tile \(\mathbb{R}^{2}\).
```

The Geometry
of 2 < 2
Matrices

Trichotomy

■ If $\alpha+\beta+\gamma=\pi$, then a Euclidean triangle exists with these angles.

- Such a triangle is unique up to similarity.
- If π / α, etc. are integers >1, reflected images of \triangle tile \mathbb{R}^{2}.

■ If $\alpha+\beta+\gamma>\pi$, then a spherical triangle exists with these angles.

```
The Geometry
    of 2 < 2
    Matrices

\section*{Trichotomy}

■ If \(\alpha+\beta+\gamma=\pi\), then a Euclidean triangle exists with these angles.
- Such a triangle is unique up to similarity.
- If \(\pi / \alpha\), etc. are integers \(>1\), reflected images of \(\triangle\) tile \(\mathbb{R}^{2}\).

■ If \(\alpha+\beta+\gamma>\pi\), then a spherical triangle exists with these angles. These triangles tile \(S^{2}\).

\section*{Trichotomy}

■ If \(\alpha+\beta+\gamma=\pi\), then a Euclidean triangle exists with these angles.
- Such a triangle is unique up to similarity.
\(\square\) If \(\pi / \alpha\), etc. are integers \(>1\), reflected images of \(\triangle\) tile \(\mathbb{R}^{2}\).
■ If \(\alpha+\beta+\gamma>\pi\), then a spherical triangle exists with these angles.
These triangles tile \(S^{2}\).
The number of triangles equals
\[
\frac{4 \pi}{\alpha+\beta+\gamma-\pi},
\]
the numerator equals area \(\left(S^{2}\right)\). and the denominator equals area \((\triangle)\).
```

The Geometry
of 2\times2
Matrices
William M
Goldman
Algebraicizing
geometry
Angle-Angle-Angle implies Congruence

```
Euclidean
geometry
Spherical
geometry
Triangle tilings
Stereographic
projection
Hyperbolic
Geometry
Matrices as
geometric
objects
Conclusion
```

The Geometry
of 2 < 2
Matrices
William M
Goldman
Algebraicizing
geometry
Euclidean
geometry

```

Angle-Angle-Angle implies Congruence

■ If \(\alpha+\beta+\gamma<\pi\), then a hyperbolic triangle exists with these angles.
```

The Geometry
of 2 < 2
Matrices
William M
Goldman
Algebraicizing
geometry
Euclidean
geometry
Angle-Angle-Angle implies Congruence
■ If $\alpha+\beta+\gamma<\pi$, then a hyperbolic triangle exists with these angles. These triangles tile H^{2}.

```
```

The Geometry
of 2 < 2
Matrices
William M.
Goldman
Algebraicizing
geometry
Euclidean
geometry

```

■ If \(\alpha+\beta+\gamma<\pi\), then a hyperbolic triangle exists with these angles. These triangles tile \(H^{2}\).
■ In both spherical and hyperbolic geometry, the angles ( \(\alpha, \beta, \gamma\) ) determine \(\triangle\) up to congruence.

The Geometry of \(2 \times 2\) Matrices

William M.
Goldman

Algebraicizing geometry

Euclidean
geometry
Spherical geometry

Triangle tilings
Stereographic projection

Hyperbolic Geometry

Matrices as geometric objects

Conclusion

\section*{Stereographic Projection}


Stereographic projection maps \(z=x+i y \in \mathbb{C}\) to
\[
\Sigma(z):=\frac{1}{1+|z|^{2}}\left[\begin{array}{c}
2 z \\
-1+|z|^{2}
\end{array}\right]
\]
```

The Geometry
of 2 < 2
Matrices
William M.
Goldman
geometry
Euclidean
geometry

Stereographic models for inversive geometry

■ Stereographic projection maps circles to circles

```
The Geometry
    of 2 < 2
    Matrices
William M
    Goldman
Algebraicizing
geometry
Euclidean
geometry
Spherical
geometry
Triangle tilings
Stereographic
projection
Hyperbolic
Geometry
Matrices as
geometric
objects
Conclusion

Stereographic models for inversive geometry

■ Stereographic projection maps circles to circles
■ - and preserves angles.
```

The Geometry
of 2\times2
Matrices
William M
Goldman

Stereographic models for inversive geometry

■ Stereographic projection maps circles to circles

- - and preserves angles.

■ Great circles are those which are symmetric about the origin (maximum radius).

```
The Geometry
    of 2 < 2
    Matrices

Stereographic models for inversive geometry

■ Stereographic projection maps circles to circles
■ - and preserves angles.
■ Great circles are those which are symmetric about the origin (maximum radius).
■ Euclidean straight lines those which pass through \(\infty\) (the North Pole).
```

The Geometry
of 2 < 2
Matrices
William M
Goldman
Algebraicizing
geometry
Euclidean
geometry
Spherical
geometry
Triangle tilings
Stereographic
projection
Hyperbolic
Geometry
Matrices as
geometric
objects
Conclusion

```

\section*{All-right triangles on the sphere}
```

The Geometry
of 2 < 2
Matrices
William M
Goldman
Algebraicizing
geometry

```

\section*{All-right triangles on the sphere}
```

■ The coordinate planes intersect S^{2} in three orthogonal great circles.

```
The Geometry
    of 2 < 2
    Matrices
William M
    Goldman
Algebraicizing
geometry
Euclidean
geometry
All-right triangles on the sphere
- The coordinate planes intersect \(S^{2}\) in three orthogonal great circles.
- Eight octants define triangles with three right angles.
```

The Geometry
of 2 < 2
Matrices
William M
Goldman
Algebraicizing
geometry
Euclidean
geometry
Spherical
geometry
Algebraicizing geometry
Euclidean
geometry
Spherical geometry

```

■ The coordinate planes intersect \(S^{2}\) in three orthogonal

\section*{All-right triangles on the sphere}
great circles.
■ Eight octants define triangles with three right angles.
■ Here is a stereogrphic projection of this tiling:

\section*{All-right triangles on the sphere}

Algebraicizing geometry

Euclidean
geometry
Spherical geometry

Triangle tilings
Stereographic projection

Hyperbolic Geometry

Matrices as geometric objects Conclusion
- The coordinate planes intersect \(S^{2}\) in three orthogonal great circles.
■ Eight octants define triangles with three right angles.
■ Here is a stereogrphic projection of this tiling:

The Geometry
of \(2 \times 2\)
Matrices
William M.
Goldman

Algebraicizing geometry

Euclidean
geometry
Spherical

\section*{geometry}

Triangle tilings
Stereographic projection

Hyperbolic Geometry

Matrices as geometric objects

Conclusion

Tiling the sphere by triangles with two right angles


Here is a tiling of \(S^{2}\) by 24 triangles with angles \(\pi / 2, \pi / 2\) and \(\pi / 6\).

The tetrahedral tiling of the sphere by triangle


Matrices as geometric objects

Conclusion
Inscribe a tetrahedron in a sphere and then join the centers of its faces to the vertices to obtain a tiling of the sphere by 24 triangles. Each triangle has angles \(\pi / 2, \pi / 3, \pi / 3\).

The tetrahedral tiling of the sphere by triangle


Matrices as geometric objects

Inscribe a tetrahedron in a sphere and then join the centers of its faces to the vertices to obtain a tiling of the sphere by 24 triangles. Each triangle has angles \(\pi / 2, \pi / 3, \pi / 3\).

The Geometry
of \(2 \times 2\)
Matrices
William M.
Goldman

Algebraicizing geometry

Euclidean
geometry
Spherical

\section*{geometry}

Triangle tilings
Stereographic projection

Hyperbolic Geometry

Matrices as geometric objects

Conclusion

Stereographic projection of the tetrahedral tiling


Tiling the sphere by 24 triangles with angles \(\pi / 2, \pi / 3\) and \(\pi / 3\).

\section*{The Octahedral Tiling}


Stereographic projection of the tiling of a sphere by 48 triangles of angles \(\pi / 2, \pi / 3, \pi / 4\) corresponding to a regular octahedron inscribed in the sphere.

The Geometry of \(2 \times 2\)
Matrices
William M.
Goldman

Algebraicizing geometry

Euclidean geometry

Spherical geometry

\section*{Triangle tilings}

Stereographic projection

Hyperbolic Geometry

Matrices as geometric objects

Conclusion

\section*{The Icosahedral Tiling}


Tiling the sphere by 120 triangles of angles \(\pi / 2, \pi / 3, \pi / 5\) corresponding to an icosahedron.
(Poincaré:) Hyperbolic geometry arises on a disc bounded by a circle \(C_{\infty}\). Geodesics are circular arcs orthogonal to \(C_{\infty}\).
```

The Geometry
of 2 < 2
Matrices
William M
Goldman

```
(Poincaré:) Hyperbolic geometry arises on a disc bounded by a circle \(C_{\infty}\). Geodesics are circular arcs orthogonal to \(C_{\infty}\).

■ Geodesic rays may be asymptotic if they remain a bounded distance; they are represented by mutually tangent arcs.
(Poincaré:) Hyperbolic geometry arises on a disc bounded by a circle \(C_{\infty}\). Geodesics are circular arcs orthogonal to \(C_{\infty}\).

■ Geodesic rays may be asymptotic if they remain a bounded distance; they are represented by mutually tangent arcs.
■ Otherwise they are ultraparallel, they diverge, and have a common orthogonal.

(Poincaré:) Hyperbolic geometry arises on a disc bounded by a circle \(C_{\infty}\). Geodesics are circular arcs orthogonal to \(C_{\infty}\).

■ Geodesic rays may be asymptotic if they remain a bounded distance; they are represented by mutually tangent arcs.
■ Otherwise they are ultraparallel, they diverge, and have a common orthogonal.


■ Given \(\alpha, \beta, \gamma \geq 0\) such that \(\alpha+\beta+\gamma<\pi\), a unique triangle exists with these angles.


Matrices
William M.
Goldman

Algebraicizing geometry

Euclidean geometry

Spherical
geometry
Triangle tilings
Stereographic projection

Hyperbolic Geometry

Matrices as geometric objects

Conclusion

Tiling \(H^{2}\) by triangles with angles \(\pi / 2, \pi / 4, \pi / 8\).


The Geometrs of \(2 \times 2\)
Matrices
William M
Goldman

Algebraicizing geometry

Euclidean geometry

Spherical geometry

Triangle tilings
Stereographic projection

Hyperbolic Geometry

Matrices as geometric objects

Conclusion

Tiling the hyperbolic plane by \(\pi / 6\)-equilateral triangles


The Geometry of \(2 \times 2\) Matrices

William M.
Goldman

Algebraicizing geometry

Euclidean
geometry
Spherical
geometry
Triangle tilings
Stereographic projection

Hyperbolic Geometry

Matrices as geometric objects

Tiling the hyperbolic plane by triangles with asymptotic sides


Finite area although sides have infinite length.

\section*{Matrices as geometric objects}

Algebraicizing geometry

Euclidean geometry

Spherical geometry

Triangle tilings
Stereographic projection

Hyperbolic Geometry

Matrices as geometric objects

Conclusion
\[
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right], a d-b c=1
\]

\section*{Matrices as geometric objects}

Algebraicizing geometry

Euclidean geometry

Spherical geometry

Triangle tilings
Stereographic projection

Hyperbolic Geometry

Matrices as geometric objects

Conclusion

■ The group \(\operatorname{SL}(2, \mathbb{C})\) of \(2 \times 2\) complex matrices of determinant one:
\[
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right], a d-b c=1
\]

■ acts by linear fractional transformations
\[
z \stackrel{\phi}{\longmapsto} \frac{a z+b}{c z+d}
\]
on \(\mathbb{C} \cup\{\infty\}\).

\section*{Subgroup corresponding to Euclidean geometry}

Algebraicizing geometry

Euclidean
geometry
Spherical
geometry
Triangle tilings
Stereographic
projection
Hyperbolic
Geometry
Matrices as geometric objects

Conclusion
```

The Geometry
of 2 < 2
Matrices
William M
Goldman
geometry

Subgroup corresponding to Euclidean geometry

■ Euclidean plane: complement of one point (∞) in S^{2}.

```
The Geometry
    of 2 < 2
    Matrices
William M
    Goldman
Algebraicizing
geometry
Euclidean

\section*{Subgroup corresponding to Euclidean geometry}

■ Euclidean plane: complement of one point \((\infty)\) in \(S^{2}\).
■ If \(c=0\), then \(\phi(\infty)=\infty\).

\section*{Subgroup corresponding to Euclidean geometry}

Algebraicizing geometry

Euclidean geometry

Spherical geometry

Triangle tilings
Stereographic projection

Hyperbolic Geometry

Matrices as geometric objects

Conclusion

■ Euclidean plane: complement of one point \((\infty)\) in \(S^{2}\).
- If \(c=0\), then \(\phi(\infty)=\infty\).
- For some \(A \neq 0, B \in \mathbb{C}\),
\[
\phi(z)=A z+B
\]

\section*{Subgroup corresponding to Euclidean geometry}

Algebraicizing geometry

Euclidean geometry

Spherical geometry

Triangle tilings
Stereographic projection

Hyperbolic Geometry

Matrices as geometric objects

Conclusion

■ Euclidean plane: complement of one point \((\infty)\) in \(S^{2}\).
- If \(c=0\), then \(\phi(\infty)=\infty\).
- For some \(A \neq 0, B \in \mathbb{C}\),
\[
\phi(z)=A z+B
\]

■ \(\phi\) is a Euclidean similarity transformation:

\section*{The Geometry}

Matrices
William M
Goldman

Algebraicizing geometry

Euclidean geometry

Spherical geometry

Triangle tilings
Stereographic projection

Hyperbolic Geometry

Matrices as geometric objects

\section*{Subgroup corresponding to Euclidean geometry}

■ Euclidean plane: complement of one point \((\infty)\) in \(S^{2}\).
- If \(c=0\), then \(\phi(\infty)=\infty\).
- For some \(A \neq 0, B \in \mathbb{C}\),
\[
\phi(z)=A z+B
\]

■ \(\phi\) is a Euclidean similarity transformation:
- A composition of translations, rotations and dilations.

\section*{The Geometry}
of \(2 \times 2\)
Matrices
William M.
Goldman

Algebraicizing geometry

Euclidean geometry

Spherical geometry

Triangle tilings
Stereographic projection

Hyperbolic Geometry

Matrices as geometric objects

Conclusion

\section*{Subgroup corresponding to Euclidean geometry}

■ Euclidean plane: complement of one point \((\infty)\) in \(S^{2}\).
- If \(c=0\), then \(\phi(\infty)=\infty\).
- For some \(A \neq 0, B \in \mathbb{C}\),
\[
\phi(z)=A z+B
\]

■ \(\phi\) is a Euclidean similarity transformation:
- A composition of translations, rotations and dilations.
- Represented by \(\left[\begin{array}{cc}A & B \\ 0 & 1\end{array}\right]\).

\section*{The Geometry of \(2 \times 2\)} Matrices

\section*{Subgroup corresponding to spherical geometry}

■ Reflection in the origin in \(\mathbb{R}^{3}\) corresponds to the antipodal map of \(S^{2}\) :
\[
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \longmapsto\left[\begin{array}{l}
-x \\
-y \\
-z
\end{array}\right]
\]

\section*{Subgroup corresponding to spherical geometry}

■ Reflection in the origin in \(\mathbb{R}^{3}\) corresponds to the antipodal map of \(S^{2}\) :
\[
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \longmapsto\left[\begin{array}{l}
-x \\
-y \\
-z
\end{array}\right]
\]

■ Under stereographic projection, corresponds to:
\[
z \stackrel{\sigma}{\longmapsto}-1 / \bar{z}
\]
where \(z=x+i y\) and \(\bar{z}=x-i y\).

\section*{The Geometry} of \(2 \times 2\)
Matrices
William M.
Goldman

Algebraicizing geometry

Euclidean geometry

Spherical geometry

Triangle tilings
Stereographic projection

Hyperbolic Geometry

Matrices as geometric objects

Conclusion

\section*{Subgroup corresponding to spherical geometry}
- Reflection in the origin in \(\mathbb{R}^{3}\) corresponds to the antipodal map of \(S^{2}\) :
\[
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \longmapsto\left[\begin{array}{l}
-x \\
-y \\
-z
\end{array}\right]
\]

■ Under stereographic projection, corresponds to:
\[
z \stackrel{\sigma}{\longmapsto}-1 / \bar{z}
\]
where \(z=x+i y\) and \(\bar{z}=x-i y\).
■ \(\phi\) is a spherical isometry \(\Longleftrightarrow \phi \circ \sigma=\sigma \circ \phi\)

\section*{Subgroup corresponding to hyperbolic geometry}
```

The Geometry
of 2\times2
Matrices
William M
Goldman
Algebraicizing
geometry
Euclidean
geometry

Subgroup corresponding to hyperbolic geometry

■ A "hyperbolic geometry" arises by taking a circle C_{∞} (called the absolute) and a component of its complement (call it H^{2}).

```
The Geometry
    of 2\times2
    Matrices
    William M
    Goldman
Algebraicizing
geometry
Euclidean
geometry
Spherical
geometry
Triangle tilings
Stereographic
projection
Hyperbolic
Geometry
Matrices as
geometric
objects
```

■ A "hyperbolic geometry" arises by taking a circle C_{∞} (called the absolute) and a component of its complement (call it H^{2}).
■ For example the real line \mathbb{R}.

Subgroup corresponding to hyperbolic geometry

■ A "hyperbolic geometry" arises by taking a circle C_{∞} (called the absolute) and a component of its complement (call it H^{2}).
■ For example the real line \mathbb{R}.
■ Inversion in \mathbb{R} is just complex conjugation:

$$
z \stackrel{\iota_{\mathbb{R}}}{\longmapsto} \bar{z}=x-i y
$$

The Geometry

of 2×2
Matrices
William M
Goldman

Algebraicizing geometry
Euclidean geometry

Spherical geometry

Triangle tilings
Stereographic projection

Hyperbolic Geometry

Subgroup corresponding to hyperbolic geometry

■ A "hyperbolic geometry" arises by taking a circle C_{∞} (called the absolute) and a component of its complement (call it H^{2}).
■ For example the real line \mathbb{R}.
■ Inversion in \mathbb{R} is just complex conjugation:

$$
z \stackrel{\iota_{\mathbb{R}}}{\longmapsto} \bar{z}=x-i y
$$

$\square \phi$ is an isometry of $H^{2} \Longleftrightarrow \phi \circ \iota_{\mathbb{R}}=\iota_{\mathbb{R}} \circ \phi$,

Subgroup corresponding to hyperbolic geometry

■ A "hyperbolic geometry" arises by taking a circle C_{∞} (called the absolute) and a component of its complement (call it H^{2}).
■ For example the real line \mathbb{R}.
■ Inversion in \mathbb{R} is just complex conjugation:

$$
z \stackrel{\iota_{\mathbb{R}}}{\longmapsto} \bar{z}=x-i y
$$

■ ϕ is an isometry of $H^{2} \Longleftrightarrow \phi \circ \iota_{\mathbb{R}}=\iota_{\mathbb{R}} \circ \phi$, that is, the matrix ϕ is real: $a, b, c, d \in \mathbb{R}$.

The Geometry of 2×2
 Circles as matrices
 Matrices
 William M.
 Goldman
 \square Every circle is fixed under a unique inversion.

Algebraicizing geometry

Euclidean
geometry
Spherical
geometry
Triangle tilings
Stereographic
projection
Hyperbolic
Geometry
Matrices as geometric objects

Conclusion

```
The Geometry
    of 2 < 2
    Matrices
William M
    Goldman
Algebraicizing
geometry
Euclidean

\section*{Circles as matrices \\ Circles as matrices}

■ Every circle is fixed under a unique inversion.
■ The inversion in the circle of radius \(R\) centered at 0 is:
\[
z \mapsto R^{2} / \bar{z}
\]
```

The Geometry
of 2 < 2
Matrices
William M
Goldman

Circles as matrices

■ Every circle is fixed under a unique inversion.
■ The inversion in the circle of radius R centered at 0 is:

$$
z \mapsto R^{2} / \bar{z}
$$

$$
\text { corresponding to }\left[\begin{array}{cc}
0 & i R \\
i / R & 0
\end{array}\right]
$$

The Geometry

■ Every circle is fixed under a unique inversion.
■ The inversion in the circle of radius R centered at 0 is:

$$
z \mapsto R^{2} / \bar{z}
$$

corresponding to $\left[\begin{array}{cc}0 & i R \\ i / R & 0\end{array}\right]$.
■ A straight line is a (degenerate) circle passing through ∞.

Euclidean geometry

Spherical geometry

Triangle tilings
Stereographic projection

■ Every circle is fixed under a unique inversion.
■ The inversion in the circle of radius R centered at 0 is:

$$
z \mapsto R^{2} / \bar{z}
$$

corresponding to $\left[\begin{array}{cc}0 & i R \\ i / R & 0\end{array}\right]$.
■ A straight line is a (degenerate) circle passing through ∞.
■ Its inversion is just Euclidean reflection.

Euclidean geometry

Circles as matrices
■ Every circle is fixed under a unique inversion.
■ The inversion in the circle of radius R centered at 0 is:

$$
z \mapsto R^{2} / \bar{z}
$$

corresponding to $\left[\begin{array}{cc}0 & i R \\ i / R & 0\end{array}\right]$.
■ A straight line is a (degenerate) circle passing through ∞.
■ Its inversion is just Euclidean reflection.

- Inversion in $e^{i \theta} \mathbb{R}$ is:

$$
z \mapsto e^{2 i \theta} \bar{z}
$$

Euclidean geometry

Spherical geometry

Triangle tilings
Stereographic projection

Hyperbolic Geometry

Matrices as geometric objects

Conclusion

Circles as matrices
■ Every circle is fixed under a unique inversion.
■ The inversion in the circle of radius R centered at 0 is:

$$
z \mapsto R^{2} / \bar{z}
$$

corresponding to $\left[\begin{array}{cc}0 & i R \\ i / R & 0\end{array}\right]$.
■ A straight line is a (degenerate) circle passing through ∞.
■ Its inversion is just Euclidean reflection.

- Inversion in $e^{i \theta} \mathbb{R}$ is:

$$
z \mapsto e^{2 i \theta} \bar{z}
$$

corresponding to $\left[\begin{array}{cc}e^{i \theta} & 0 \\ 0 & e^{-i \theta}\end{array}\right]$.

The Geometry of 2×2

Matrices

William M
Goldman

Algebraicizing geometry

Euclidean geometry

Spherical geometry

Triangle tilings
Stereographic projection

Hyperbolic Geometry

Matrices as geometric objects

Conclusion

The trace

- A single matrix

$$
X=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \operatorname{SL}(2, \mathbb{C})
$$

is determined up to equivalence by its trace:

$$
\operatorname{tr}(X):=a+d
$$

The Geometry of 2×2
Matrices
William M.
Goldman

Algebraicizing geometry

Euclidean geometry

Spherical geometry

Triangle tilings
Stereographic projection

Hyperbolic Geometry

Matrices as geometric objects

Conclusion

The trace

- A single matrix

$$
X=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \operatorname{SL}(2, \mathbb{C})
$$

is determined up to equivalence by its trace:

$$
\operatorname{tr}(X):=a+d
$$

■ Every complex number $a \in \mathbb{C}$ is the trace of some $A \in \operatorname{SL}(2, \mathbb{C})$, for example:

$$
A=\left[\left.\begin{array}{cc}
a & -1 \\
1 & 0
\end{array} \right\rvert\,\right.
$$

```
The Geometry
    of 2 < 2
    Matrices
William M
    Goldman
```


Products of reflections

geometry
■ Two distinct circles C_{1}, C_{2} may intersect in two points, be tangent, or be disjoint.

```
Euclidean
geometry
Spherical
geometry
Triangle tilings
Stereographic
projection
Hyperbolic
Geometry
Matrices as
geometric
objects
Conclusion
```

The Geometry
of 2\times2
Matrices
William M.
Goldman
Algebraicizing
geometry
Euclidean

Products of reflections

■ Two distinct circles C_{1}, C_{2} may intersect in two points, be tangent, or be disjoint.
\square Let R_{i} be inversion in C_{i}, represented as matrices in $\mathrm{SL}(2, \mathbb{C})$.

```
The Geometry
    of 2\times2
    Matrices

\section*{Products of reflections}

■ Two distinct circles \(C_{1}, C_{2}\) may intersect in two points, be tangent, or be disjoint.
\(\square\) Let \(R_{i}\) be inversion in \(C_{i}\), represented as matrices in \(\mathrm{SL}(2, \mathbb{C})\).
- \(C_{1}, C_{2}\) are tangent \(\Longleftrightarrow \operatorname{tr}\left(R_{1} R_{2}\right)= \pm 2\).

\section*{The Geometry} of \(2 \times 2\)
Matrices

\section*{Products of reflections}

■ Two distinct circles \(C_{1}, C_{2}\) may intersect in two points, be tangent, or be disjoint.
\(\square\) Let \(R_{i}\) be inversion in \(C_{i}\), represented as matrices in \(\mathrm{SL}(2, \mathbb{C})\).
- \(C_{1}, C_{2}\) are tangent \(\Longleftrightarrow \operatorname{tr}\left(R_{1} R_{2}\right)= \pm 2\).
- \(C_{1}, C_{2}\) intersect in angle \(\theta \Longleftrightarrow \operatorname{tr}\left(R_{1} R_{2}\right)= \pm 2 \cos (\theta)\).

\section*{The Geometry}
of \(2 \times 2\)
Matrices
William M
Goldman

Algebraicizing geometry

Euclidean geometry

Spherical geometry

Triangle tilings
Stereographic projection

Hyperbolic Geometry

Matrices as geometric objects

\section*{Products of reflections}

■ Two distinct circles \(C_{1}, C_{2}\) may intersect in two points, be tangent, or be disjoint.
\(\square\) Let \(R_{i}\) be inversion in \(C_{i}\), represented as matrices in \(\mathrm{SL}(2, \mathbb{C})\).
- \(C_{1}, C_{2}\) are tangent \(\Longleftrightarrow \operatorname{tr}\left(R_{1} R_{2}\right)= \pm 2\).
- \(C_{1}, C_{2}\) intersect in angle \(\theta \Longleftrightarrow \operatorname{tr}\left(R_{1} R_{2}\right)= \pm 2 \cos (\theta)\).
- \(C_{1}, C_{2}\) are disjoint \(\theta \Longleftrightarrow \operatorname{tr}\left(R_{1} R_{2}\right)>2\) or \(<-2\).

The Geometry
of \(2 \times 2\)
Matrices
William M
Goldman

Algebraicizing geometry

Euclidean
geometry
Spherical geometry

Triangle tilings
Stereographic projection

Hyperbolic Geometry

Matrices as geometric objects

\section*{Products of reflections}

■ Two distinct circles \(C_{1}, C_{2}\) may intersect in two points, be tangent, or be disjoint.
\(\square\) Let \(R_{i}\) be inversion in \(C_{i}\), represented as matrices in \(\mathrm{SL}(2, \mathbb{C})\).
- \(C_{1}, C_{2}\) are tangent \(\Longleftrightarrow \operatorname{tr}\left(R_{1} R_{2}\right)= \pm 2\).
- \(C_{1}, C_{2}\) intersect in angle \(\theta \Longleftrightarrow \operatorname{tr}\left(R_{1} R_{2}\right)= \pm 2 \cos (\theta)\).
- \(C_{1}, C_{2}\) are disjoint \(\theta \Longleftrightarrow \operatorname{tr}\left(R_{1} R_{2}\right)>2\) or \(<-2\).

■ In the latter case, \(C_{1}\) and \(C_{2}\) are orthogonal to a unique circle \(C_{\infty}\).

The Geometry

\section*{Products of reflections}

■ Two distinct circles \(C_{1}, C_{2}\) may intersect in two points, be tangent, or be disjoint.
- Let \(R_{i}\) be inversion in \(C_{i}\), represented as matrices in \(S L(2, \mathbb{C})\).
- \(C_{1}, C_{2}\) are tangent \(\Longleftrightarrow \operatorname{tr}\left(R_{1} R_{2}\right)= \pm 2\).
- \(C_{1}, C_{2}\) intersect in angle \(\theta \Longleftrightarrow \operatorname{tr}\left(R_{1} R_{2}\right)= \pm 2 \cos (\theta)\).
- \(C_{1}, C_{2}\) are disjoint \(\theta \Longleftrightarrow \operatorname{tr}\left(R_{1} R_{2}\right)>2\) or \(<-2\).

■ In the latter case, \(C_{1}\) and \(C_{2}\) are orthogonal to a unique circle \(C_{\infty}\).
■ Let \(H^{2}\) be a disc bounded by \(C_{\infty}\).

\section*{Products of reflections}

■ Two distinct circles \(C_{1}, C_{2}\) may intersect in two points, be tangent, or be disjoint.
- Let \(R_{i}\) be inversion in \(C_{i}\), represented as matrices in \(S L(2, \mathbb{C})\).
- \(C_{1}, C_{2}\) are tangent \(\Longleftrightarrow \operatorname{tr}\left(R_{1} R_{2}\right)= \pm 2\).
- \(C_{1}, C_{2}\) intersect in angle \(\theta \Longleftrightarrow \operatorname{tr}\left(R_{1} R_{2}\right)= \pm 2 \cos (\theta)\).
- \(C_{1}, C_{2}\) are disjoint \(\theta \Longleftrightarrow \operatorname{tr}\left(R_{1} R_{2}\right)>2\) or \(<-2\).

■ In the latter case, \(C_{1}\) and \(C_{2}\) are orthogonal to a unique circle \(C_{\infty}\).
- Let \(H^{2}\) be a disc bounded by \(C_{\infty}\).
\(C_{1}, C_{2}\) determine Poincaré geodesics at distance \(d\) :
\[
\operatorname{tr}\left(R_{1} R_{2}\right)= \pm 2 \cosh (d)
\]

The Geometry of \(2 \times 2\) Matrices

William M.
Goldman

Algebraicizing geometry

Euclidean
geometry
Spherical geometry

Triangle tilings
Stereographic projection

Hyperbolic Geometry

Matrices as geometric objects

Conclusion

\section*{Triangle representations}

■ If \(R_{1}, R_{2}, R_{3}\) satisfy \(\left(R_{i}\right)^{2}=I\), then
\[
\begin{aligned}
A & :=R_{1} R_{2} \\
B & :=R_{2} R_{3} \\
C & :=R_{3} R_{1}
\end{aligned}
\]
satisfy \(A B C=1\).

The Geometry
of \(2 \times 2\)
Matrices
William M.
Goldman

Algebraicizing geometry

Euclidean geometry

Spherical geometry

Triangle tilings
Stereographic projection

Hyperbolic Geometry

Matrices as geometric objects

\section*{Triangle representations}

■ If \(R_{1}, R_{2}, R_{3}\) satisfy \(\left(R_{i}\right)^{2}=I\), then
\[
\begin{aligned}
A & :=R_{1} R_{2} \\
B & :=R_{2} R_{3} \\
C & :=R_{3} R_{1}
\end{aligned}
\]
satisfy \(A B C=1\).
- Thus the problem of finding circles intersecting at angles \(\alpha, \beta, \gamma\) reduces to finding matrices \(A, B, C\) satisfying \(A B C=I\) and
\[
\begin{aligned}
\operatorname{tr}(A) & =2 \cos (\alpha) \\
\operatorname{tr}(B) & =2 \cos (\beta) \\
\operatorname{tr}(C) & =2 \cos (\gamma) .
\end{aligned}
\]

\section*{The Lie product}

■ If \(A, B, C\) are found, then \(R_{1}, R_{2}, R_{3}\) can be reconstructed by formulas:
\[
\begin{aligned}
& R_{1}=C A-A C \\
& R_{2}=A B-B A \\
& R_{3}=B C-C B
\end{aligned}
\]
to ensure that \(A=R_{1} R_{2}\), etc.
■ The Lie product \(A B-B A\) is analogous to the cross product \(A \times B\) of vectors.
```

The Geometry
of 2 < 2
Matrices
William M
Goldman
Algebraicizing
geometry

```

The Vogt-Fricke-Klein Theorem (1889)

■ Central to all this theory is the fundamental result characterizing pairs of unimodular \(2 \times 2\) complex matrices:

\section*{The Vogt-Fricke-Klein Theorem (1889)}

■ Central to all this theory is the fundamental result characterizing pairs of unimodular \(2 \times 2\) complex matrices:
- Let \(A, B \in \operatorname{SL}(2, \mathbb{C})\), and define \(C=(A B)^{-1}\)
\[
\begin{aligned}
a & :=\operatorname{tr}(A) \\
b & :=\operatorname{tr}(B) \\
c & :=\operatorname{tr}(A B)=\operatorname{tr}(C)
\end{aligned}
\]

Then if \(a^{2}+b^{2}+c^{2}-a b c \neq 4\), then any other pair ( \(A^{\prime}, B^{\prime}\) ) with the same traces \((a, b, c)\) is conjugate to \((A, B)\).

The Geometry of \(2 \times 2\)
Matrices
■ If \(a^{2}+b^{2}+c^{2}-a b c=4\), then \(\exists P\) such that

Algebraicizing geometry

Euclidean
geometry
Spherical geometry

Triangle tilings
Stereographic projection

Hyperbolic Geometry

Matrices as geometric objects

Conclusion
\[
\begin{aligned}
P A P^{-1} & =\left[\begin{array}{cc}
\alpha & * \\
0 & 1 / \alpha
\end{array}\right] \\
P B P^{-1} & =\left[\begin{array}{cc}
\beta & * \\
0 & 1 / \beta
\end{array}\right] .
\end{aligned}
\]

■ so that
\[
\begin{aligned}
& a=\alpha+1 / \alpha \\
& b=\beta+1 / \beta \\
& c=(\alpha \beta)+1 /(\alpha \beta)
\end{aligned}
\]
parametrizing \(a^{2}+b^{2}+c^{2}-a b c=4\) by rational functions.

The Geometry of \(2 \times 2\) Matrices

William M.
Goldman

Algebraicizing geometry

Euclidean geometry

Spherical geometry

Triangle tilings
Stereographic projection

Hyperbolic Geometry

Matrices as geometric objects

Conversely, given \(a, b, c\) satisfying \(a^{2}+b^{2}+c^{2}-a b c \neq 4\). Choose \(\gamma\) so that
\[
c=\gamma+1 / \gamma
\]

Then \(\exists P\) such that
\[
\begin{aligned}
& P A P^{-1}=\left[\begin{array}{cc}
a & -1 \\
1 & 0
\end{array}\right] \\
& P B P^{-1}=\left[\begin{array}{cc}
0 & \gamma \\
-1 / \gamma & b
\end{array}\right] \\
& P C P^{-1}=\left[\begin{array}{cc}
\gamma & -a \gamma+b \\
0 & 1 / \gamma
\end{array}\right] .
\end{aligned}
\]
```

The Geometry
of 2 < 2
Matrices
William M.
Goldman
Algebraicizing geometry
Euclidean
geometry

Building moduli spaces

■ Vogt's theorem \Longrightarrow traces of 2×2 matrices give coordinates for spaces of geometries.

```
The Geometry
    of 2 < 2
    Matrices
William M
    Goldman

\section*{Building moduli spaces}

■ Vogt's theorem \(\Longrightarrow\) traces of \(2 \times 2\) matrices give coordinates for spaces of geometries.
- \(\mathbb{C}^{3}\) parametrizes equivalence classes in \(\operatorname{SL}(2, \mathbb{C}) \times \operatorname{SL}(2, \mathbb{C})\).
```

The Geometry
of 2 < 2
Matrices
William M
Goldman

```

\section*{Building moduli spaces}
■ Vogt's theorem \(\Longrightarrow\) traces of \(2 \times 2\) matrices give coordinates for spaces of geometries.
- \(\mathbb{C}^{3}\) parametrizes equivalence classes in \(\operatorname{SL}(2, \mathbb{C}) \times \operatorname{SL}(2, \mathbb{C})\).
- Generalizes the Angle-Angle-Angle test for congruence in non-Euclidean geometry.
```

```
The Geometry
    of 2 < 2
    Matrices

\section*{Building moduli spaces}

■ Vogt's theorem \(\Longrightarrow\) traces of \(2 \times 2\) matrices give coordinates for spaces of geometries.
- \(\mathbb{C}^{3}\) parametrizes equivalence classes in \(\mathrm{SL}(2, \mathbb{C}) \times \mathrm{SL}(2, \mathbb{C})\).
- Generalizes the Angle-Angle-Angle test for congruence in non-Euclidean geometry.
- Triangles are the building blocks for surfaces.

\section*{Building moduli spaces}

■ Vogt's theorem \(\Longrightarrow\) traces of \(2 \times 2\) matrices give coordinates for spaces of geometries.
- \(\mathbb{C}^{3}\) parametrizes equivalence classes in \(\mathrm{SL}(2, \mathbb{C}) \times \mathrm{SL}(2, \mathbb{C})\).
- Generalizes the Angle-Angle-Angle test for congruence in non-Euclidean geometry.
- Triangles are the building blocks for surfaces.

■ Geometry of matrices defines geometric structure on the moduli space.
```

The Geometry
of 2 < 2
Matrices
William M.
Goldman
Algebraicizing
geometry
Euclidean
geometry
Spherical

Other Geometries and Higher Dimensions

■ Just the beginning of a more intricate picture.

```
The Geometry
    of 2 < 2
    Matrices
    William M
    Goldman
Algebraicizing
geometry
Euclidean
geometry
Spherical
geometry
Other Geometries and Higher Dimensions
■ Just the beginning of a more intricate picture.
■ For example:
```

```
The Geometry
    of 2 < 2
    Matrices
    William M.
    Goldman
Algebraicizing
geometry
Euclidean
geometry
Spherical
geometry
Triangle tilings
Stereographic
projection
Hyperbolic
Geometry
Matrices as
geometric
objects
Conclusion
```

■ Just the beginning of a more intricate picture.
■ For example:

- Groups with >2 generators;

```
The Geometry
    of 2 < 2
    Matrices
    William M
    Goldman
Algebraicizing
geometry
Euclidean
geometry
Spherical
geometry
Triangle tilings
Stereographic
projection
Hyperbolic Geometry
Matrices as
geometric
objects
Conclusion
```


Other Geometries and Higher Dimensions

■ Just the beginning of a more intricate picture.
■ For example:

- Groups with > 2 generators;

■ Manifolds of dimension 3, 4, ...;

```
The Geometry
    of 2\times2
    Matrices
    William M
    Goldman
Algebraicizing
geometry
Euclidean
geometry
Spherical
geometry
Triangle tilings
Stereographic
projection
Hyperbolic

\section*{Other Geometries and Higher Dimensions}

■ Just the beginning of a more intricate picture.
■ For example:
- Groups with > 2 generators;

■ Manifolds of dimension 3,4,...;
■ More complicated Lie groups ( \(\operatorname{SL}(n, \mathbb{C})\) when \(n>2)\).

The Geometry of \(2 \times 2\) Matrices

William M.
Goldman

Algebraicizing geometry

Euclidean geometry

Spherical geometry

Triangle tilings
Stereographic projection

Hyperbolic Geometry

Matrices as geometric objects

Conclusion

A (3,3,4)-triangle tiling in the real projective plane \(G=\operatorname{SL}(3, \mathbb{R})\).
```

