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Algebraicizing geometry through symmetry

Felix Klein’s Erlangen Program: A geometry is the study of
objects invariant under some group of symmetries. (1872)
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A sphere is not Euclidean

No local Euclidean geometry structure on the sphere.

No metrically accurate atlas of the world!

For example a cube has the topology of a sphere, but its
geometry fails to be Euclidean at its 8 vertices.
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a < b + c
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The geometry on the space of geometries

Geometric objects and transformations represented by
scalars, vectors and matrices, all arising from symmetry.

Example: Triangles in the plane are classified (up to
congruence) by the lengths of their sides:

0 < a, b, c

a < b + c

b < c + a

c < a + b

In general the space of equivalence classes of a geometry
has an interesting geometry of its own.
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of the plane by a lattice of translations, for example

(x , y) 7−→ (x + m, y + n)

where m, n ∈ Z.
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Every Euclidean structure on a torus arises as the quotient
of the plane by a lattice of translations, for example

(x , y) 7−→ (x + m, y + n)

where m, n ∈ Z.
The translations identify the fundamental parallelogram.
Identify R

2 with C. Up to equivalence the lattice is
generated by complex numbers 1 and τ = x + iy , where
y > 0.
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Moduli space

The space of structures ←→ with equivalence classes of
τ ∈ H2 by SL(2, Z) — natural hyperbolic geometry.
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Moduli space

The space of structures ←→ with equivalence classes of
τ ∈ H2 by SL(2, Z) — natural hyperbolic geometry.

Changing basis ←→ action of the group SL(2, Z) of
integral 2x2 matrices by

τ 7−→
aτ + b

cτ + d
where a, b, c , d ∈ Z.
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Points in Euclidean space are represented by vectors;
Euclidean distance is defined by:

d(~a,~b) := ‖~a − ~b‖,
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Euclidean geometry

Euclidean geometry concerns properties of space invariant
under rigid motions.

For example: distance, parallelism, angle, area and volume.

Points in Euclidean space are represented by vectors;
Euclidean distance is defined by:

d(~a,~b) := ‖~a − ~b‖,

the size of the translation taking ~b to ~a:

p 7−→ p + (~b −~a)



The Geometry

of 2 × 2

Matrices

William M.

Goldman

Algebraicizing

geometry

Euclidean

geometry

Spherical

geometry

Triangle tilings

Stereographic

projection

Hyperbolic

Geometry

Matrices as

geometric

objects

Conclusion

Spherical geometry



The Geometry

of 2 × 2

Matrices

William M.

Goldman

Algebraicizing

geometry

Euclidean

geometry

Spherical

geometry

Triangle tilings

Stereographic

projection

Hyperbolic

Geometry

Matrices as

geometric

objects

Conclusion

Spherical geometry
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Points on the sphere S2 are unit vectors in R
3.

Spherical distance between ~a,~b ∈ S2 is the minimum
length of a curve on S2 between joining them.

It is the angle θ = ∠(~a,~b):
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Spherical geometry

Points on the sphere S2 are unit vectors in R
3.

Spherical distance between ~a,~b ∈ S2 is the minimum
length of a curve on S2 between joining them.

It is the angle θ = ∠(~a,~b):

cos(θ) = ~a · ~b
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Spherical geometry

Points on the sphere S2 are unit vectors in R
3.

Spherical distance between ~a,~b ∈ S2 is the minimum
length of a curve on S2 between joining them.

It is the angle θ = ∠(~a,~b):

cos(θ) = ~a · ~b

the size of the rotation taking ~b to ~a.
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Metric circles on the sphere of radius R .

r = Rθ

R

2πR sin(θ)

R sin(θ)
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Metric circles on the sphere of radius R .

r = Rθ

R

2πR sin(θ)

R sin(θ)

Spherical circle of radius r has circumference

C (R) = 2πR sin(r/R)
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Metric circles on the sphere of radius R .

r = Rθ

R

2πR sin(θ)

R sin(θ)

Spherical circle of radius r has circumference

C (R) = 2πR sin(r/R)

As R −→ ∞, the geometry approaches Euclidean:

C (r) −→ 2πr .
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Geodesics (straight lines) on the sphere

A great circle on S2 is the intersection with a plane thru
the origin.
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the origin.
These are circles of maximum diameter
The shortest curves between points (constant speed curves
of zero acceleration) are arcs of great circles.
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Tilings by triangles

Example: Take a triangle △ and try to tile the plane by
reflecting △ repeatedly in its sides.
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Example: Take a triangle △ and try to tile the plane by
reflecting △ repeatedly in its sides.

If the angles α, β, γ in △ are π/n, where n > 0 is an
integer, then the triangles tile the plane.
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Tilings by triangles

Example: Take a triangle △ and try to tile the plane by
reflecting △ repeatedly in its sides.

If the angles α, β, γ in △ are π/n, where n > 0 is an
integer, then the triangles tile the plane.

If the angles are π/p, π/q, π/r then the three reflections
R1,R2,R3 generate a group with presentation with
defining relations

(R1)
2 = (R2)

2 = (R3)
2 =

(R1R2)
p = (R2R3)

q = (R3R1)
r = I
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Trichotomy

If α + β + γ = π, then a Euclidean triangle exists with
these angles.

Such a triangle is unique up to similarity.

If π/α, etc. are integers > 1, reflected images of △ tile R2.

If α + β + γ > π, then a spherical triangle exists with
these angles.
These triangles tile S2.
The number of triangles equals

4π

α + β + γ − π
,

the numerator equals area(S2). and the denominator
equals area(△).
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Angle-Angle-Angle implies Congruence

If α + β + γ < π, then a hyperbolic triangle exists with
these angles.
These triangles tile H2.

In both spherical and hyperbolic geometry, the angles
(α, β, γ) determine △ up to congruence.
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Stereographic Projection
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0

Σ(z)

z = x + iy

Stereographic projection maps z = x + iy ∈ C to

Σ(z) :=
1

1 + |z |2

[

2z
−1 + |z |2

]
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Stereographic models for inversive geometry

Stereographic projection maps circles to circles

— and preserves angles.

Great circles are those which are symmetric about the
origin (maximum radius).

Euclidean straight lines those which pass through ∞ (the
North Pole).
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The coordinate planes intersect S2 in three orthogonal
great circles.
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The coordinate planes intersect S2 in three orthogonal
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Eight octants define triangles with three right angles.

Here is a stereogrphic projection of this tiling:
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All-right triangles on the sphere

The coordinate planes intersect S2 in three orthogonal
great circles.

Eight octants define triangles with three right angles.

Here is a stereogrphic projection of this tiling:
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Tiling the sphere by triangles with two right angles

Here is a tiling of S2 by 24 triangles with angles π/2, π/2 and
π/6.
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The tetrahedral tiling of the sphere by triangle

Inscribe a tetrahedron in a sphere and then join the centers of
its faces to the vertices to obtain a tiling of the sphere by 24
triangles. Each triangle has angles π/2, π/3, π/3.
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Stereographic projection of the tetrahedral tiling

Tiling the sphere by 24 triangles with angles π/2, π/3 and π/3.
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The Octahedral Tiling

Stereographic projection of the tiling of a sphere by 48 triangles
of angles π/2, π/3, π/4 corresponding to a regular octahedron
inscribed in the sphere.
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The Icosahedral Tiling

Tiling the sphere by 120 triangles of angles π/2, π/3, π/5
corresponding to an icosahedron.
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(Poincaré:) Hyperbolic geometry arises on a disc bounded by a
circle C∞. Geodesics are circular arcs orthogonal to C∞.
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circle C∞. Geodesics are circular arcs orthogonal to C∞.

Geodesic rays may be asymptotic if they remain a bounded
distance; they are represented by mutually tangent arcs.
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(Poincaré:) Hyperbolic geometry arises on a disc bounded by a
circle C∞. Geodesics are circular arcs orthogonal to C∞.

Geodesic rays may be asymptotic if they remain a bounded
distance; they are represented by mutually tangent arcs.
Otherwise they are ultraparallel , they diverge, and have a
common orthogonal.
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(Poincaré:) Hyperbolic geometry arises on a disc bounded by a
circle C∞. Geodesics are circular arcs orthogonal to C∞.

Geodesic rays may be asymptotic if they remain a bounded
distance; they are represented by mutually tangent arcs.
Otherwise they are ultraparallel , they diverge, and have a
common orthogonal.

Given α, β, γ ≥ 0 such that α + β + γ < π, a unique
triangle exists with these angles.
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Tiling H2 by triangles with angles π/2, π/4, π/8.
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Tiling the hyperbolic plane by π/6-equilateral triangles
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Tiling the hyperbolic plane by triangles with asymptotic sides

Finite area although sides have infinite length.
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Matrices as geometric objects

The group SL(2, C) of 2× 2 complex matrices of
determinant one:

[

a b

c d

]

, ad − bc = 1
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Matrices as geometric objects

The group SL(2, C) of 2× 2 complex matrices of
determinant one:

[

a b

c d

]

, ad − bc = 1

acts by linear fractional transformations

z
φ
7−→

az + b

cz + d

on C ∪ {∞}.
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φ(z) = Az + B

φ is a Euclidean similarity transformation:
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Subgroup corresponding to Euclidean geometry

Euclidean plane: complement of one point (∞) in S2.

If c = 0, then φ(∞) =∞.

For some A 6= 0,B ∈ C,

φ(z) = Az + B

φ is a Euclidean similarity transformation:

A composition of translations, rotations and dilations.
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Subgroup corresponding to Euclidean geometry

Euclidean plane: complement of one point (∞) in S2.

If c = 0, then φ(∞) =∞.

For some A 6= 0,B ∈ C,

φ(z) = Az + B

φ is a Euclidean similarity transformation:

A composition of translations, rotations and dilations.

Represented by

[

A B

0 1

]

.
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Subgroup corresponding to spherical geometry

Reflection in the origin in R
3 corresponds to the antipodal

map of S2:
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Subgroup corresponding to spherical geometry

Reflection in the origin in R
3 corresponds to the antipodal
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Under stereographic projection, corresponds to:

z
σ
7−→ −1/z̄

where z = x + iy and z̄ = x − iy .
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Subgroup corresponding to spherical geometry

Reflection in the origin in R
3 corresponds to the antipodal

map of S2:




x

y

z



 7−→





−x

−y

−z





Under stereographic projection, corresponds to:

z
σ
7−→ −1/z̄

where z = x + iy and z̄ = x − iy .

φ is a spherical isometry ⇐⇒ φ ◦ σ = σ ◦ φ
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Subgroup corresponding to hyperbolic geometry

A “hyperbolic geometry” arises by taking a circle C∞

(called the absolute) and a component of its complement
(call it H2).
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Subgroup corresponding to hyperbolic geometry

A “hyperbolic geometry” arises by taking a circle C∞

(called the absolute) and a component of its complement
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Subgroup corresponding to hyperbolic geometry

A “hyperbolic geometry” arises by taking a circle C∞

(called the absolute) and a component of its complement
(call it H2).

For example the real line R.

Inversion in R is just complex conjugation:

z
ιR7−→ z̄ = x − iy

φ is an isometry of H2 ⇐⇒ φ ◦ ιR = ιR ◦ φ,
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Subgroup corresponding to hyperbolic geometry

A “hyperbolic geometry” arises by taking a circle C∞

(called the absolute) and a component of its complement
(call it H2).

For example the real line R.

Inversion in R is just complex conjugation:

z
ιR7−→ z̄ = x − iy

φ is an isometry of H2 ⇐⇒ φ ◦ ιR = ιR ◦ φ,
that is, the matrix φ is real: a, b, c , d ∈ R.
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Every circle is fixed under a unique inversion.

The inversion in the circle of radius R centered at 0 is:

z 7→ R2/z̄

corresponding to
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0 iR

i/R 0

]
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Circles as matrices

Every circle is fixed under a unique inversion.

The inversion in the circle of radius R centered at 0 is:

z 7→ R2/z̄

corresponding to

[

0 iR

i/R 0

]

.

A straight line is a (degenerate) circle passing through ∞.

Its inversion is just Euclidean reflection.
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Circles as matrices

Every circle is fixed under a unique inversion.

The inversion in the circle of radius R centered at 0 is:

z 7→ R2/z̄

corresponding to

[

0 iR

i/R 0

]

.

A straight line is a (degenerate) circle passing through ∞.

Its inversion is just Euclidean reflection.

Inversion in e iθ
R is:

z 7→ e2iθ z̄
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Circles as matrices

Every circle is fixed under a unique inversion.

The inversion in the circle of radius R centered at 0 is:

z 7→ R2/z̄

corresponding to

[

0 iR

i/R 0

]

.

A straight line is a (degenerate) circle passing through ∞.

Its inversion is just Euclidean reflection.

Inversion in e iθ
R is:

z 7→ e2iθ z̄

corresponding to

[

e iθ 0
0 e−iθ

]

.
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The trace

A single matrix

X =

[

a b

c d

]

∈ SL(2, C)

is determined up to equivalence by its trace:

tr(X ) := a + d

.
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The trace

A single matrix

X =

[

a b

c d

]

∈ SL(2, C)

is determined up to equivalence by its trace:

tr(X ) := a + d

.

Every complex number a ∈ C is the trace of some
A ∈ SL(2, C), for example:

A =

[

a −1
1 0

∣

∣

∣

∣

.
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Let Ri be inversion in Ci , represented as matrices in
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Products of reflections

Two distinct circles C1,C2 may intersect in two points, be
tangent, or be disjoint.

Let Ri be inversion in Ci , represented as matrices in
SL(2, C).

C1, C2 are tangent ⇐⇒ tr(R1R2) = ±2.
C1, C2 intersect in angle θ ⇐⇒ tr(R1R2) = ±2 cos(θ).
C1, C2 are disjoint θ ⇐⇒ tr(R1R2) > 2 or < −2.
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Let Ri be inversion in Ci , represented as matrices in
SL(2, C).

C1, C2 are tangent ⇐⇒ tr(R1R2) = ±2.
C1, C2 intersect in angle θ ⇐⇒ tr(R1R2) = ±2 cos(θ).
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In the latter case, C1 and C2 are orthogonal to a unique
circle C∞.
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Products of reflections

Two distinct circles C1,C2 may intersect in two points, be
tangent, or be disjoint.

Let Ri be inversion in Ci , represented as matrices in
SL(2, C).

C1, C2 are tangent ⇐⇒ tr(R1R2) = ±2.
C1, C2 intersect in angle θ ⇐⇒ tr(R1R2) = ±2 cos(θ).
C1, C2 are disjoint θ ⇐⇒ tr(R1R2) > 2 or < −2.

In the latter case, C1 and C2 are orthogonal to a unique
circle C∞.

Let H2 be a disc bounded by C∞.
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Products of reflections

Two distinct circles C1,C2 may intersect in two points, be
tangent, or be disjoint.

Let Ri be inversion in Ci , represented as matrices in
SL(2, C).

C1, C2 are tangent ⇐⇒ tr(R1R2) = ±2.
C1, C2 intersect in angle θ ⇐⇒ tr(R1R2) = ±2 cos(θ).
C1, C2 are disjoint θ ⇐⇒ tr(R1R2) > 2 or < −2.

In the latter case, C1 and C2 are orthogonal to a unique
circle C∞.

Let H2 be a disc bounded by C∞.
C1,C2 determine Poincaré geodesics at distance d :

tr(R1R2) = ±2 cosh(d).
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Triangle representations

If R1,R2,R3 satisfy (Ri )
2 = I , then

A := R1R2

B := R2R3

C := R3R1

satisfy ABC = I .
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Triangle representations

If R1,R2,R3 satisfy (Ri )
2 = I , then

A := R1R2

B := R2R3

C := R3R1

satisfy ABC = I .

Thus the problem of finding circles intersecting at angles
α, β, γ reduces to finding matrices A,B ,C satisfying
ABC = I and

tr(A) = 2 cos(α)

tr(B) = 2 cos(β)

tr(C ) = 2 cos(γ).
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The Lie product

If A,B ,C are found, then R1,R2,R3 can be reconstructed
by formulas:

R1 = CA− AC

R2 = AB − BA

R3 = BC − CB

to ensure that A = R1R2, etc.

The Lie product AB − BA is analogous to the cross

product A× B of vectors.
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The Vogt-Fricke-Klein Theorem (1889)

Central to all this theory is the fundamental result
characterizing pairs of unimodular 2× 2 complex matrices:
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The Vogt-Fricke-Klein Theorem (1889)

Central to all this theory is the fundamental result
characterizing pairs of unimodular 2× 2 complex matrices:

Let A,B ∈ SL(2, C), and define C = (AB)−1

a := tr(A)

b := tr(B)

c := tr(AB) = tr(C ).

Then if a2 + b2 + c2 − abc 6= 4, then any other pair
(A′,B ′) with the same traces (a, b, c) is conjugate to
(A,B).
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If a2 + b2 + c2 − abc = 4, then ∃P such that

PAP−1 =

[

α ∗
0 1/α

]

PBP−1 =

[

β ∗
0 1/β

]

.

so that

a = α + 1/α

b = β + 1/β

c = (αβ) + 1/(αβ)

parametrizing a2 + b2 + c2− abc = 4 by rational functions.



The Geometry

of 2 × 2

Matrices

William M.

Goldman

Algebraicizing

geometry

Euclidean

geometry

Spherical

geometry

Triangle tilings

Stereographic

projection

Hyperbolic

Geometry

Matrices as

geometric

objects

Conclusion

Conversely, given a, b, c satisfying a2 + b2 + c2 − abc 6= 4.
Choose γ so that

c = γ + 1/γ.

Then ∃P such that

PAP−1 =

[

a −1
1 0

]

PBP−1 =

[

0 γ
−1/γ b

]

PCP−1 =

[

γ −aγ + b

0 1/γ

]

.
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Building moduli spaces

Vogt’s theorem =⇒ traces of 2× 2 matrices give
coordinates for spaces of geometries.
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Building moduli spaces

Vogt’s theorem =⇒ traces of 2× 2 matrices give
coordinates for spaces of geometries.

C
3 parametrizes equivalence classes in SL(2, C)× SL(2, C).

Generalizes the Angle-Angle-Angle test for congruence in
non-Euclidean geometry.
Triangles are the building blocks for surfaces.

Geometry of matrices defines geometric structure on the
moduli space.
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Other Geometries and Higher Dimensions

Just the beginning of a more intricate picture.
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Other Geometries and Higher Dimensions

Just the beginning of a more intricate picture.

For example:

Groups with > 2 generators;
Manifolds of dimension 3, 4, . . . ;
More complicated Lie groups (SL(n, C) when n > 2).
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A (3,3,4)-triangle tiling in the real projective plane
G = SL(3, R).
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