Locally homogeneous geometric structures

William M. Goldman

Department of Mathematics University of Maryland

IV Latin-American Congress on Lie Groups and Geometry CIMAT, Guanajuato, Mexico 27 August 2012

Dedicated to the memory of Bill Thurston

< 口 > < 同

Э

A B K A B K

- Geometry through symmetry (Lie, Klein)
- Projective geometries: deforming 2-dimensional hyperbolic geometry
- Solution: Moduli spaces of geometric structures $\mathfrak{D}_{(G,X)}(\Sigma)$ associated to topology Σ and homogeneous space (G, X = G/H)
- Examples: Euclidean, hyperbolic geometry
- S Examples: Real, complex projective geometry
- Sexamples: Minkowski space, Anti-de Sitter space
- Moduli of surface group representations (higher Teichmüller theory)
- Olassification of complete affine 3-manifolds
- Margulis spacetimes, crooked geometry

伺下 イヨト イヨト

Geometry through symmetry

()

1

イロン イ理と イヨン ・ ヨン

• In his 1872 *Erlangen Program*, Felix Klein proposed that a *geometry* is the study of properties of an abstract space X which are invariant under a transitive group G of transformations of X.

- In his 1872 *Erlangen Program*, Felix Klein proposed that a *geometry* is the study of properties of an abstract space X which are invariant under a transitive group G of transformations of X.
- Euclidean geometry: $X = \mathbb{R}^n$ and G its group of isometries.

- In his 1872 *Erlangen Program*, Felix Klein proposed that a *geometry* is the study of properties of an abstract space X which are invariant under a transitive group G of transformations of X.
- Euclidean geometry: $X = \mathbb{R}^n$ and G its group of isometries.
 - Preserves distance, angle, area, straight lines, parallelism..

- In his 1872 *Erlangen Program*, Felix Klein proposed that a *geometry* is the study of properties of an abstract space X which are invariant under a transitive group G of transformations of X.
- Euclidean geometry: $X = \mathbb{R}^n$ and G its group of isometries.
 - Preserves distance, angle, area, straight lines, parallelism..
- Affine geometry: $X = \mathbb{R}^n$ and G its group of affine transformations $x \xrightarrow{\gamma} Ax + b$.

- In his 1872 *Erlangen Program*, Felix Klein proposed that a *geometry* is the study of properties of an abstract space X which are invariant under a transitive group G of transformations of X.
- Euclidean geometry: $X = \mathbb{R}^n$ and G its group of isometries.
 - Preserves distance, angle, area, straight lines, parallelism..
- Affine geometry: $X = \mathbb{R}^n$ and G its group of affine transformations $x \xrightarrow{\gamma} Ax + b$.
 - Preserves parallelism, geodesics (curves of zero acceleration).

- In his 1872 *Erlangen Program*, Felix Klein proposed that a *geometry* is the study of properties of an abstract space X which are invariant under a transitive group G of transformations of X.
- Euclidean geometry: $X = \mathbb{R}^n$ and G its group of isometries.
 - Preserves distance, angle, area, straight lines, parallelism..
- Affine geometry: $X = \mathbb{R}^n$ and G its group of affine transformations $x \stackrel{\gamma}{\longmapsto} Ax + b$.
 - Preserves parallelism, geodesics (curves of zero acceleration).
 - When the *linear part* $L(\gamma) = A$ is orthogonal, then γ is an isometry.

- In his 1872 *Erlangen Program*, Felix Klein proposed that a *geometry* is the study of properties of an abstract space X which are invariant under a transitive group G of transformations of X.
- Euclidean geometry: $X = \mathbb{R}^n$ and G its group of isometries.
 - Preserves distance, angle, area, straight lines, parallelism..
- Affine geometry: $X = \mathbb{R}^n$ and G its group of affine transformations $x \stackrel{\gamma}{\longmapsto} Ax + b$.
 - Preserves parallelism, geodesics (curves of zero acceleration).
 - When the *linear part* $L(\gamma) = A$ is orthogonal, then γ is an isometry.
- Projective geometry: $X = \mathbb{RP}^n$ and G its group of collineations.

- In his 1872 *Erlangen Program*, Felix Klein proposed that a *geometry* is the study of properties of an abstract space X which are invariant under a transitive group G of transformations of X.
- Euclidean geometry: $X = \mathbb{R}^n$ and G its group of isometries.
 - Preserves distance, angle, area, straight lines, parallelism..
- Affine geometry: $X = \mathbb{R}^n$ and G its group of affine transformations $x \stackrel{\gamma}{\longmapsto} Ax + b$.
 - Preserves parallelism, geodesics (curves of zero acceleration).
 - When the *linear part* $L(\gamma) = A$ is orthogonal, then γ is an isometry.
- Projective geometry: $X = \mathbb{RP}^n$ and G its group of collineations.
 - Preserves (unparametrized) straight lines, incidence...

▲聞▶ ▲臣▶ ▲臣▶

Geometric Structures

★ 문 ► ★ 문 ►

• *Ehresmann structure* on a manifold: a geometric structure defined by an atlas of local coordinate charts into a fixed homogeneous space.

- *Ehresmann structure* on a manifold: a geometric structure defined by an atlas of local coordinate charts into a fixed homogeneous space.
- For example, every flat Riemannian manifold is *locally isometric* to Euclidean space...

- *Ehresmann structure* on a manifold: a geometric structure defined by an atlas of local coordinate charts into a fixed homogeneous space.
- For example, every flat Riemannian manifold is *locally isometric* to Euclidean space...
 - and can be *locally modeled* on Euclidean space.

- *Ehresmann structure* on a manifold: a geometric structure defined by an atlas of local coordinate charts into a fixed homogeneous space.
- For example, every flat Riemannian manifold is *locally isometric* to Euclidean space...
 - and can be *locally modeled* on Euclidean space.
- How to classify these structures, given a fixed topology and geometry (homogeneous space)?

- *Ehresmann structure* on a manifold: a geometric structure defined by an atlas of local coordinate charts into a fixed homogeneous space.
- For example, every flat Riemannian manifold is *locally isometric* to Euclidean space...
 - and can be *locally modeled* on Euclidean space.
- How to classify these structures, given a fixed topology and geometry (homogeneous space)?
 - Ideally would like a space whose points classify these geometries...

- *Ehresmann structure* on a manifold: a geometric structure defined by an atlas of local coordinate charts into a fixed homogeneous space.
- For example, every flat Riemannian manifold is *locally isometric* to Euclidean space...
 - and can be *locally modeled* on Euclidean space.
- How to classify these structures, given a fixed topology and geometry (homogeneous space)?
 - Ideally would like a space whose points classify these geometries...
 - Whatever can go wrong in defining such a space will go wrong, for certain choices of Σ and (G, X).

3 K K 3 K

- *Ehresmann structure* on a manifold: a geometric structure defined by an atlas of local coordinate charts into a fixed homogeneous space.
- For example, every flat Riemannian manifold is *locally isometric* to Euclidean space...
 - and can be *locally modeled* on Euclidean space.
- How to classify these structures, given a fixed topology and geometry (homogeneous space)?
 - Ideally would like a space whose points classify these geometries...
 - Whatever can go wrong in defining such a space will go wrong, for certain choices of Σ and (G, X).
 - Quotients of (possibly singular) \mathbb{R} -algebraic sets by algebraic group actions which are neither locally free nor proper...

4 B K 4 B K

- *Ehresmann structure* on a manifold: a geometric structure defined by an atlas of local coordinate charts into a fixed homogeneous space.
- For example, every flat Riemannian manifold is *locally isometric* to Euclidean space...
 - and can be *locally modeled* on Euclidean space.
- How to classify these structures, given a fixed topology and geometry (homogeneous space)?
 - Ideally would like a space whose points classify these geometries...
 - Whatever can go wrong in defining such a space will go wrong, for certain choices of Σ and (G, X).
 - Quotients of (possibly singular) \mathbb{R} -algebraic sets by algebraic group actions which are neither locally free nor proper...
 - and then by discrete groups which don't act properly.

4 B K 4 B K

Putting geometric structure on a topological space

> < 프 > < 프 >

• Topology: Smooth manifold Σ with coordinate patches U_{α} ;

個 と く ヨ と く ヨ と …

$$U_{lpha} \xrightarrow{\psi_{lpha}} \psi_{lpha}(U_{lpha}) \subset X$$

★ E ► < E ►</p>

$$U_{\alpha} \xrightarrow{\psi_{\alpha}} \psi_{\alpha}(U_{\alpha}) \subset X$$

• On components of $U_lpha \cap U_eta$, $\exists g \in G$ such that

$$g \circ \psi_{\alpha} = \psi_{\beta}.$$

個 と く ヨ と く ヨ と …

$$U_{lpha} \xrightarrow{\psi_{lpha}} \psi_{lpha}(U_{lpha}) \subset X$$

• On components of $U_lpha \cap U_eta$, $\exists g \in G$ such that

$$g \circ \psi_{\alpha} = \psi_{\beta}.$$

• Local (G, X)-geometry independent of patch.

▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ …

$$U_{lpha} \xrightarrow{\psi_{lpha}} \psi_{lpha}(U_{lpha}) \subset X$$

• On components of $U_lpha \cap U_eta$, $\exists g \in G$ such that

$$g \circ \psi_{\alpha} = \psi_{\beta}.$$

- Local (G, X)-geometry independent of patch.
- (Ehresmann 1936): Geometric manifold *M* modeled on *X*.

・聞き ・ ほき・ ・ ほき・

Geometrization in 2 and 3 dimensions

イロト イ部ト イヨト イヨト 三日

• Dimension 2: every surface has *exactly one* of:

< 注▶ < 注▶ -

- Dimension 2: every surface has *exactly one* of:
 - Spherical geometry (if $\chi(\Sigma) > 0$);

▶ < 문 ► < E ► -

- Dimension 2: every surface has *exactly one* of:
 - Spherical geometry (if $\chi(\Sigma) > 0$);
 - Euclidean geometry (if $\chi(\Sigma) = 0$);

'문▶' < 문▶ -

- Dimension 2: every surface has *exactly one* of:
 - Spherical geometry (if $\chi(\Sigma) > 0$);
 - Euclidean geometry (if $\chi(\Sigma) = 0$);
 - Hyperbolic geometry (if $\chi(\Sigma) < 0$).

'문▶' < 문▶ -

- Dimension 2: every surface has *exactly one* of:
 - Spherical geometry (if $\chi(\Sigma) > 0$);
 - Euclidean geometry (if $\chi(\Sigma) = 0$);
 - Hyperbolic geometry (if $\chi(\Sigma) < 0$).
- Equivalently, Riemannian metrics of constant curvature +1, 0, -1.

個 と く ヨ と く ヨ と …

- Dimension 2: every surface has *exactly one* of:
 - Spherical geometry (if $\chi(\Sigma) > 0$);
 - Euclidean geometry (if $\chi(\Sigma) = 0$);
 - Hyperbolic geometry (if $\chi(\Sigma) < 0$).
- Equivalently, Riemannian metrics of constant curvature +1, 0, -1.
- Locally homogeneous Riemannian geometries, modeled on X = G/H, H compact.

- Dimension 2: every surface has *exactly one* of:
 - Spherical geometry (if χ(Σ) > 0);
 - Euclidean geometry (if $\chi(\Sigma) = 0$);
 - Hyperbolic geometry (if $\chi(\Sigma) < 0$).
- Equivalently, Riemannian metrics of constant curvature +1, 0, -1.
- Locally homogeneous Riemannian geometries, modeled on X = G/H, H compact.
- (Thurston 1976): 3-manifolds canonically decompose into *locally* homogeneous Riemannian pieces (8 types). (proved by Perelman)

Geometric Structures

★ 문 ▶ ★ 문 ▶
Classification of geometric structures

 Basic question: Given a topology Σ and a geometry X = G/H, determine all possible ways of providing Σ with the local geometry of (X, G).

Classification of geometric structures

- Basic question: Given a topology Σ and a geometry X = G/H, determine all possible ways of providing Σ with the local geometry of (X, G).

Classification of geometric structures

- Basic question: Given a topology Σ and a geometry X = G/H, determine all possible ways of providing Σ with the local geometry of (X, G).

 - Example: The 2-torus admits a moduli space of Euclidean structures.

()

Geometric Structures

イロト イ部ト イヨト イヨト 三日

• A Euclidean structure is a flat Riemannian metric.

< E ► < E ►

- A Euclidean structure is a flat Riemannian metric.
- An affine structure is a flat torsionfree affine connection.

- A Euclidean structure is a flat Riemannian metric.
- An affine structure is a flat torsionfree affine connection.
- A projective structure is a flat normal projective connection.

- A Euclidean structure is a flat Riemannian metric.
- An affine structure is a flat torsionfree affine connection.
- A projective structure is a flat normal projective connection.
- In general, Ehresmann structures are examples of *Cartan connections* for which the local invariants (curvature) vanish.

- A Euclidean structure is a flat Riemannian metric.
- An *affine structure* is a flat torsionfree *affine connection*.
- A projective structure is a flat normal projective connection.
- In general, Ehresmann structures are examples of *Cartan connections* for which the local invariants (curvature) vanish.
 - Cartan connections exist on fiber bundles and an Ehresmann structure determines a flat connection on this fiber bundle with a canonical section describing the local coordinates.

- A Euclidean structure is a flat Riemannian metric.
- An affine structure is a flat torsionfree affine connection.
- A projective structure is a flat normal projective connection.
- In general, Ehresmann structures are examples of *Cartan connections* for which the local invariants (curvature) vanish.
 - Cartan connections exist on fiber bundles and an Ehresmann structure determines a flat connection on this fiber bundle with a canonical section describing the local coordinates.
 - Local deformation theory of geometric structures \iff local deformation theory of flat connections

— representations of $\pi_1(\Sigma)$.

()

Geometric Structures

▲ロト ▲圖ト ▲国ト ▲国ト 三国

 Suppose that Ω ⊂ X is an open subset invariant under a subgroup Γ ⊂ G such that:

- Suppose that $\Omega \subset X$ is an open subset invariant under a subgroup $\Gamma \subset G$ such that:
 - Γ is discrete;

4 B K 4 B K

- Suppose that $\Omega \subset X$ is an open subset invariant under a subgroup $\Gamma \subset G$ such that:
 - Γ is discrete;
 - Γ acts properly and freely on Ω

글 에 에 글 어

- Suppose that $\Omega \subset X$ is an open subset invariant under a subgroup $\Gamma \subset G$ such that:
 - Γ is discrete;
 - Γ acts properly and freely on Ω
- Then $M = \Omega/\Gamma$ is a (G, X)-manifold covered by Ω .

4 B K 4 B K

- Suppose that $\Omega \subset X$ is an open subset invariant under a subgroup $\Gamma \subset G$ such that:
 - Γ is discrete;
 - Γ acts properly and freely on Ω
- Then $M = \Omega/\Gamma$ is a (G, X)-manifold covered by Ω .
- Convex \mathbb{RP}^n -structures: $\Omega \subset \mathbb{RP}^n$ convex domain.

ヨト イヨト

- Suppose that $\Omega \subset X$ is an open subset invariant under a subgroup $\Gamma \subset G$ such that:
 - Γ is discrete;
 - Γ acts properly and freely on Ω
- Then $M = \Omega/\Gamma$ is a (G, X)-manifold covered by Ω .
- Convex \mathbb{RP}^n -structures: $\Omega \subset \mathbb{RP}^n$ convex domain.
 - Projective geometry inside a quadric Ω is hyperbolic geometry.

- Suppose that $\Omega \subset X$ is an open subset invariant under a subgroup $\Gamma \subset G$ such that:
 - Γ is discrete;
 - Γ acts properly and freely on Ω
- Then $M = \Omega/\Gamma$ is a (G, X)-manifold covered by Ω .
- Convex \mathbb{RP}^n -structures: $\Omega \subset \mathbb{RP}^n$ convex domain.
 - Projective geometry inside a quadric Ω is hyperbolic geometry.
 - Hyperbolic distance is defined by cross-ratios: $d(x, y) = \log[A, x, y, B]$.

- Suppose that $\Omega \subset X$ is an open subset invariant under a subgroup $\Gamma \subset G$ such that:
 - Γ is discrete;
 - Γ acts properly and freely on Ω
- Then $M = \Omega/\Gamma$ is a (G, X)-manifold covered by Ω .
- Convex \mathbb{RP}^n -structures: $\Omega \subset \mathbb{RP}^n$ convex domain.
 - Projective geometry inside a quadric Ω is hyperbolic geometry.
 - Hyperbolic distance is defined by cross-ratios: $d(x, y) = \log[A, x, y, B]$.

• Projective geometry contains hyperbolic geometry.

- Suppose that $\Omega \subset X$ is an open subset invariant under a subgroup $\Gamma \subset G$ such that:
 - Γ is discrete;
 - Γ acts properly and freely on Ω
- Then $M = \Omega/\Gamma$ is a (G, X)-manifold covered by Ω .
- Convex \mathbb{RP}^n -structures: $\Omega \subset \mathbb{RP}^n$ convex domain.
 - Projective geometry inside a quadric Ω is hyperbolic geometry.
 - Hyperbolic distance is defined by cross-ratios: $d(x, y) = \log[A, x, y, B]$.

- Projective geometry contains hyperbolic geometry.
 - Hyperbolic structures *are* convex \mathbb{RP}^n -structures.

Projective deformation of equilateral 60°-triangle tiling

This tesselation of the open triangular region in \mathbb{RP}^2 is equivalent to the tiling of the Euclidean plane by equilateral triangles.

Example: Projective deformation of a hyperbolic tiling

Both domains are tiled by $60^{\circ}, 60^{\circ}, 45^{\circ}$)-triangles, invariant under a Coxeter group $\Gamma(3, 3, 4)$. First is bounded by a conic (hyperbolic geometry). Second is invariant under Weyl group associated to

$$\begin{bmatrix} 2 & -1 & -2 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$$

with domain bounded by $C^{1+\alpha}$ -convex curve where $0 \leq \alpha \leq 1$.

Example: Hyperbolic structure on genus two surface

()

▶ < 문 ▶ < 문 ▶</p>

Example: Hyperbolic structure on genus two surface

• Identify sides of an octagon to form a closed genus two surface.

Example: Hyperbolic structure on genus two surface

• Identify sides of an octagon to form a closed genus two surface.

• Realize these identifications isometrically for a regular 45°-octagon.

э

• Start with a hyperbolic structure on a surface Σ represented as a quotient H^2/Γ_0 where $\Gamma_0 \subset PSL(2,\mathbb{R}) = Isom^+(H^2)$. Regard H^2 as an open hemisphere in \mathbb{CP}^1 invariant under $PSL(2,\mathbb{R})$.

- Start with a hyperbolic structure on a surface Σ represented as a quotient H^2/Γ_0 where $\Gamma_0 \subset PSL(2,\mathbb{R}) = Isom^+(H^2)$. Regard H^2 as an open hemisphere in \mathbb{CP}^1 invariant under $PSL(2,\mathbb{R})$.
 - Hyperbolic structure $\Longrightarrow \mathbb{CP}^1$ -structure.

- Start with a hyperbolic structure on a surface Σ represented as a quotient H^2/Γ_0 where $\Gamma_0 \subset PSL(2,\mathbb{R}) = Isom^+(H^2)$. Regard H^2 as an open hemisphere in \mathbb{CP}^1 invariant under $PSL(2,\mathbb{R})$.
 - Hyperbolic structure $\Longrightarrow \mathbb{CP}^1$ -structure.
- Deform the representation of Γ_0 in $PSL(2, \mathbb{C}) \supset PSL(2, \mathbb{R})$.

- Start with a hyperbolic structure on a surface Σ represented as a quotient H^2/Γ_0 where $\Gamma_0 \subset PSL(2,\mathbb{R}) = Isom^+(H^2)$. Regard H^2 as an open hemisphere in \mathbb{CP}^1 invariant under $PSL(2,\mathbb{R})$.
 - Hyperbolic structure $\Longrightarrow \mathbb{CP}^1$ -structure.
- Deform the representation of Γ_0 in $PSL(2, \mathbb{C}) \supset PSL(2, \mathbb{R})$.
- For Γ_t sufficiently near Γ₀, the deformation Γ_t arises from an embedding of Γ₀ as a discrete group acting properly an open subset Ω ⊂ ℂℙ¹. Unless Γ_t is Fuchsian, ∂Ω is a fractal Jordan curve of Hausdorff dimension > 1 (Bowen).

()

Geometric Structures

臣

Example: Anti-de Sitter structures

• Anti-de Sitter space AdSⁿ is the model space of constant negative curvature Lorentzian geometry.

→ < ∃→

Example: Anti-de Sitter structures

• Anti-de Sitter space AdSⁿ is the model space of constant negative curvature Lorentzian geometry.

•
$$AdS^n \cong O(n-1,2)/(O(n-2) \times O(1,2)).$$

→ < ∃→

Example: Anti-de Sitter structures

• Anti-de Sitter space AdSⁿ is the model space of constant negative curvature Lorentzian geometry.

•
$$\operatorname{AdS}^n \cong \operatorname{O}(n-1,2)/(\operatorname{O}(n-2) \times \operatorname{O}(1,2)).$$

Let H = PSL(2, ℝ). For n = 3, anti-de Sitter geometry identifies with G = H × H acting (isometrically) on X = H by left- and right-multiplication:

$$(h_1, h_2): x \longmapsto h_1 x h_2^{-1}$$

• Anti-de Sitter space AdSⁿ is the model space of constant negative curvature Lorentzian geometry.

•
$$\operatorname{AdS}^n \cong \operatorname{O}(n-1,2)/(\operatorname{O}(n-2) \times \operatorname{O}(1,2)).$$

Let H = PSL(2, ℝ). For n = 3, anti-de Sitter geometry identifies with G = H × H acting (isometrically) on X = H by left- and right-multiplication:

$$(h_1, h_2): x \longmapsto h_1 x h_2^{-1}$$

 A closed 3-dimensional AdS-manifold is a quotient X/graph(ρ) where Γ ⊂ H is a cocompact lattice and

$$graph(\rho) = \{(\gamma, \rho(\gamma)) \mid \gamma \in \Gamma\}$$

is the graph of ρ . (Kulkarni-Raymond 1985)

Geometric Structures

臣

イロン イ理と イヨン ・ ヨン
• Minkowski space $\mathbb{E}^{n,1}$ is the model space for flat Lorentzian geometry.

★ E ► < E ►</p>

- Minkowski space $\mathbb{E}^{n,1}$ is the model space for flat Lorentzian geometry.
- Its isometries are affine transformations whose linear part lies in the orthogonal group O(n 1, 1).

- Minkowski space $\mathbb{E}^{n,1}$ is the model space for flat Lorentzian geometry.
- Its isometries are affine transformations whose linear part lies in the orthogonal group O(n 1, 1).
- Let H = PSL(2, ℝ) as before. For n = 3, this geometry is that of the tangent bundle G = TH = H κ_{Ad} h acting on X = G/H ≅ ℝ^{n,1}.

1

・ロト ・聞 ト ・ ヨト ・ ヨト …

Every noncompact semisimple Lie group (locally) contains SL(2, ℝ).
 A rich source of geometries arise from deforming hyperbolic geometry.

.

- Every noncompact semisimple Lie group (locally) contains SL(2, ℝ).
 A rich source of geometries arise from deforming hyperbolic geometry.
- Let $i = \sqrt{-1}$. Quasi-Fuchsian deformations arise from deforming

 $\mathsf{PSL}(2,\mathbb{R}) \hookrightarrow \mathsf{PSL}(2,\mathbb{R}[i]) = \mathsf{PSL}(2,\mathbb{C}).$

▲御 → ▲ 唐 → ▲ 唐 → 二 唐

- Every noncompact semisimple Lie group (locally) contains SL(2, ℝ).
 A rich source of geometries arise from deforming hyperbolic geometry.
- Let $i = \sqrt{-1}$. Quasi-Fuchsian deformations arise from deforming

 $\mathsf{PSL}(2,\mathbb{R}) \hookrightarrow \mathsf{PSL}(2,\mathbb{R}[i]) = \mathsf{PSL}(2,\mathbb{C}).$

 Affine deformations (isometric actions on Minkowski space) arise from deforming in

 $\mathsf{PSL}(2,\mathbb{R}) \hookrightarrow T\mathsf{PSL}(2,\mathbb{R}) = \mathsf{PSL}(2,\mathbb{R}[\epsilon]) \cong \mathsf{Isom}^0(\mathbb{E}^{2,1}),$

where $\epsilon^2 = 0$, corresponding to *infinitesimal deformations* of hyperbolic geometry.

▲口> ▲圖> ▲理> ▲理> 三連

- Every noncompact semisimple Lie group (locally) contains SL(2, ℝ).
 A rich source of geometries arise from deforming hyperbolic geometry.
- Let $i = \sqrt{-1}$. Quasi-Fuchsian deformations arise from deforming

 $\mathsf{PSL}(2,\mathbb{R}) \hookrightarrow \mathsf{PSL}(2,\mathbb{R}[i]) = \mathsf{PSL}(2,\mathbb{C}).$

 Affine deformations (isometric actions on Minkowski space) arise from deforming in

 $\mathsf{PSL}(2,\mathbb{R}) \hookrightarrow T\mathsf{PSL}(2,\mathbb{R}) = \mathsf{PSL}(2,\mathbb{R}[\epsilon]) \cong \mathsf{Isom}^0(\mathbb{E}^{2,1}),$

where $\epsilon^2 = 0$, corresponding to *infinitesimal deformations* of hyperbolic geometry.

• Anti-de Sitter deformations arise from

 $\mathsf{PSL}(2,\mathbb{R}) \hookrightarrow \mathsf{O}(2,2) = \mathsf{PSL}(2,\mathbb{R}[\upsilon]) \cong \mathsf{PSL}(2,\mathbb{R}) \times \mathsf{PSL}(2,\mathbb{R})$

where $v^2 = +1$.

▲口> ▲圖> ▲注> ▲注> 三注

()

- 4 回 ト - 4 回 ト - 4 回 ト

Marked (G, X)-structure on Σ: diffeomorphism Σ → M where M is a (G, X)-manifold.

▶ ▲ 돈 ▶ ▲ 돈 ▶ ...

- Marked (G, X)-structure on Σ: diffeomorphism Σ → M where M is a (G, X)-manifold.
- Define *deformation space*

$$\mathfrak{D}_{(G,X)}(\Sigma) := \left\{ \mathsf{Marked} \ (G,X) \text{-structures on } \Sigma \right\} / \mathsf{Isotopy}$$

3 K K 3 K

- Marked (G, X)-structure on Σ: diffeomorphism Σ → M where M is a (G, X)-manifold.
- Define *deformation space*

$$\mathfrak{D}_{(G,X)}(\Sigma) := \left\{ \mathsf{Marked} \ (G,X) \text{-structures on } \Sigma \right\} / \mathsf{Isotopy}$$

Mapping class group

$$\mathsf{Mod}(\Sigma) := \pi_0(\mathsf{Diff}(\Sigma))$$

acts on $\mathfrak{D}_{(G,X)}(\Sigma)$.

Representation varieties

()

Geometric Structures

1

イロン イ理と イヨン ・ ヨン

Let π = ⟨X₁,..., X_n⟩ be finitely generated and G ⊂ GL(N, ℝ) a linear algebraic group.

★聞▶ ★ 国▶ ★ 国▶ …

- Let π = ⟨X₁,..., X_n⟩ be finitely generated and G ⊂ GL(N, ℝ) a linear algebraic group.
- The set $\operatorname{Hom}(\pi, G)$ of homomorphisms

$$\pi \longrightarrow G$$

enjoys the natural structure of an affine algebraic variety

▲圖▶ ▲ 国▶ ▲ 国▶ -

- Let π = ⟨X₁,..., X_n⟩ be finitely generated and G ⊂ GL(N, ℝ) a linear algebraic group.
- The set $\operatorname{Hom}(\pi, G)$ of homomorphisms

$$\pi \longrightarrow {\cal G}$$

enjoys the natural structure of an affine algebraic variety

• Invariant under $Aut(\pi) \times Aut(G)$.

- Let π = ⟨X₁,..., X_n⟩ be finitely generated and G ⊂ GL(N, ℝ) a linear algebraic group.
- The set $Hom(\pi, G)$ of homomorphisms

$$\pi \longrightarrow G$$

enjoys the natural structure of an affine algebraic variety

- Invariant under $Aut(\pi) \times Aut(G)$.
- Action of $\mathsf{Out}(\pi) := \mathsf{Aut}(\pi)/\mathsf{Inn}(\pi)$ on

 $\operatorname{Hom}(\pi,G)/G := \operatorname{Hom}(\pi,G)/(\{1\} \times \operatorname{Inn}(G))$

▲口 ▶ ▲聞 ▶ ▲臣 ▶ ▲臣 ▶ ― 臣

()

Geometric Structures

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 三厘

• A marked structure determines a developing map $\tilde{\Sigma} \longrightarrow X$ and a holonomy representation $\pi \longrightarrow G$.

臣

|白田 | (田) (田)

- A marked structure determines a developing map $\tilde{\Sigma} \longrightarrow X$ and a holonomy representation $\pi \longrightarrow G$.
 - Globalize the coordinate charts and coordinate changes respectively.

- 4 聞 医 4 道 医 4 道 医 - -

- A marked structure determines a developing map $\tilde{\Sigma} \longrightarrow X$ and a holonomy representation $\pi \longrightarrow G$.
 - Globalize the coordinate charts and coordinate changes respectively.
- Holonomy defines a mapping

$$\mathfrak{D}_{(G,X)}(\Sigma) \xrightarrow{\mathsf{hol}} \mathsf{Hom}(\pi,G)/G$$

▲撮▶ ▲理▶ ▲理▶

- A marked structure determines a developing map $\tilde{\Sigma} \longrightarrow X$ and a holonomy representation $\pi \longrightarrow G$.
 - Globalize the coordinate charts and coordinate changes respectively.
- Holonomy defines a mapping

$$\mathfrak{D}_{(G,X)}(\Sigma) \xrightarrow{\mathsf{hol}} \mathsf{Hom}(\pi,G)/G$$

▲撮▶ ▲理≯ ▲理≯

- A marked structure determines a developing map $\tilde{\Sigma} \longrightarrow X$ and a holonomy representation $\pi \longrightarrow G$.
 - Globalize the coordinate charts and coordinate changes respectively.
- Holonomy defines a mapping

$$\mathfrak{D}_{(G,X)}(\Sigma) \xrightarrow{\mathsf{hol}} \mathsf{Hom}(\pi,G)/G$$

Equivariant respecting

$$\mathsf{Mod}(\Sigma) \longrightarrow \mathsf{Out}(\pi_1(\Sigma))$$

・聞き ・ ほき・ ・ ほき・ …

- A marked structure determines a developing map $\tilde{\Sigma} \longrightarrow X$ and a holonomy representation $\pi \longrightarrow G$.
 - Globalize the coordinate charts and coordinate changes respectively.
- Holonomy defines a mapping

$$\mathfrak{D}_{(G,X)}(\Sigma) \xrightarrow{\mathsf{hol}} \mathsf{Hom}(\pi,G)/G$$

Equivariant respecting

$$\mathsf{Mod}(\Sigma) \longrightarrow \mathsf{Out}(\pi_1(\Sigma))$$

• (Thurston): The mapping hol is a local homeomorphism.

- A marked structure determines a developing map $\tilde{\Sigma} \longrightarrow X$ and a holonomy representation $\pi \longrightarrow G$.
 - Globalize the coordinate charts and coordinate changes respectively.
- Holonomy defines a mapping

$$\mathfrak{D}_{(G,X)}(\Sigma) \xrightarrow{\mathsf{hol}} \mathsf{Hom}(\pi,G)/G$$

Equivariant respecting

$$\mathsf{Mod}(\Sigma) \longrightarrow \mathsf{Out}(\pi_1(\Sigma))$$

- (Thurston): The mapping hol is a local homeomorphism.
 - For quotient structures, hol is an embedding.

()

Geometric Structures

1

★ E ► < E ►</p>

Euclidean and hyperbolic structures

Euclidean geometry: When X = ℝ² and G = lsom(ℝ²), every only closed orientable Euclidean surface ≈ T². The deformation space D_(G,X)(Σ) identifies with H² × ℝ⁺.

Euclidean and hyperbolic structures

- Euclidean geometry: When X = ℝ² and G = lsom(ℝ²), every only closed orientable Euclidean surface ≈ T². The deformation space D_(G,X)(Σ) identifies with H² × ℝ⁺.
- The coordinate in \mathbb{R}^+ corresponds to the *area* of the structure.

Euclidean and hyperbolic structures

- Euclidean geometry: When X = ℝ² and G = lsom(ℝ²), every only closed orientable Euclidean surface ≈ T². The deformation space D_(G,X)(Σ) identifies with H² × ℝ⁺.
- The coordinate in \mathbb{R}^+ corresponds to the *area* of the structure.
- $\mathsf{Mod}(\Sigma) \cong \mathsf{PSL}(2,\mathbb{Z})$ acts properly discretely,

- Euclidean geometry: When X = ℝ² and G = lsom(ℝ²), every only closed orientable Euclidean surface ≈ T². The deformation space D_(G,X)(Σ) identifies with H² × ℝ⁺.
- The coordinate in \mathbb{R}^+ corresponds to the *area* of the structure.
- $\mathsf{Mod}(\Sigma) \cong \mathsf{PSL}(2,\mathbb{Z})$ acts properly discretely,
- Hyperbolic geometry: When X = H² and G = Isom(H²), the deformation space D_(G,X)(Σ) identifies with Fricke space F(Σ).

- Euclidean geometry: When X = ℝ² and G = lsom(ℝ²), every only closed orientable Euclidean surface ≈ T². The deformation space D_(G,X)(Σ) identifies with H² × ℝ⁺.
- The coordinate in \mathbb{R}^+ corresponds to the *area* of the structure.
- $\mathsf{Mod}(\Sigma) \cong \mathsf{PSL}(2,\mathbb{Z})$ acts properly discretely,
- Hyperbolic geometry: When X = H² and G = Isom(H²), the deformation space D_(G,X)(Σ) identifies with Fricke space F(Σ).
- Identifies with Teichmüller space *I*(Σ) (marked *conformal* structures) via Klein-Koebe-Poincaré Uniformization Theorem.

- Euclidean geometry: When X = ℝ² and G = lsom(ℝ²), every only closed orientable Euclidean surface ≈ T². The deformation space D_(G,X)(Σ) identifies with H² × ℝ⁺.
- The coordinate in \mathbb{R}^+ corresponds to the *area* of the structure.
- $\mathsf{Mod}(\Sigma) \cong \mathsf{PSL}(2,\mathbb{Z})$ acts properly discretely,
- Hyperbolic geometry: When X = H² and G = Isom(H²), the deformation space D_(G,X)(Σ) identifies with Fricke space F(Σ).
- Identifies with Teichmüller space *I*(Σ) (marked *conformal* structures) via Klein-Koebe-Poincaré Uniformization Theorem.
- hol embeds $\mathfrak{F}(\Sigma)$ as a *connected component* of Hom $(\pi, G)/G$.

イロン イ理と イヨン ・ ヨン

- Euclidean geometry: When X = ℝ² and G = lsom(ℝ²), every only closed orientable Euclidean surface ≈ T². The deformation space D_(G,X)(Σ) identifies with H² × ℝ⁺.
- The coordinate in \mathbb{R}^+ corresponds to the *area* of the structure.
- $\mathsf{Mod}(\Sigma) \cong \mathsf{PSL}(2,\mathbb{Z})$ acts properly discretely,
- Hyperbolic geometry: When X = H² and G = Isom(H²), the deformation space D_(G,X)(Σ) identifies with Fricke space F(Σ).
- Identifies with Teichmüller space *I*(Σ) (marked *conformal* structures) via Klein-Koebe-Poincaré Uniformization Theorem.
- hol embeds $\mathfrak{F}(\Sigma)$ as a *connected component* of Hom $(\pi, G)/G$.
- $\mathfrak{F}(\Sigma) \approx \mathbb{R}^{6g-6}$ and $\mathsf{Mod}(\Sigma)$ acts properly discretely.

Projective structures

()

Geometric Structures

3

イロン イ理と イヨン ・ ヨン

Projective structures

()

When X = CP¹ and G = PGL(2, C), Poincaré identified D_(G,X)(Σ) with an affine bundle over ℑ(Σ) whose fiber over Riemann surface R is the vector space H⁰(R, K²) of holomorphic quadratic differentials.

Projective structures

- When X = CP¹ and G = PGL(2, C), Poincaré identified D_(G,X)(Σ) with an affine bundle over ℑ(Σ) whose fiber over Riemann surface R is the vector space H⁰(R, K²) of holomorphic quadratic differentials.
 - Thus $\mathfrak{D}_{(G,X)}(\Sigma) \approx \mathbb{R}^{12g-12}$ and $Mod(\Sigma)$ acts properly discretely, containing quasi-Fuchsian representations.
- When X = CP¹ and G = PGL(2, C), Poincaré identified D_(G,X)(Σ) with an affine bundle over ℑ(Σ) whose fiber over Riemann surface R is the vector space H⁰(R, K²) of holomorphic quadratic differentials.
 - Thus $\mathfrak{D}_{(G,X)}(\Sigma) \approx \mathbb{R}^{12g-12}$ and $Mod(\Sigma)$ acts properly discretely, containing quasi-Fuchsian representations.
 - Alternate geometric description in terms of hyperbolic structures "bent" along measured geodesic lamination in H³ (Thurston 1976).

- When X = CP¹ and G = PGL(2, C), Poincaré identified D_(G,X)(Σ) with an affine bundle over ℑ(Σ) whose fiber over Riemann surface R is the vector space H⁰(R, K²) of holomorphic quadratic differentials.
 - Thus $\mathfrak{D}_{(G,X)}(\Sigma) \approx \mathbb{R}^{12g-12}$ and $Mod(\Sigma)$ acts properly discretely, containing quasi-Fuchsian representations.
 - Alternate geometric description in terms of hyperbolic structures "bent" along measured geodesic lamination in H³ (Thurston 1976).
- When $X = \mathbb{RP}^2$ and $G = PGL(3, \mathbb{R})$, the deformation space $\mathfrak{D}_{(G,X)}(\Sigma) \approx \mathbb{R}^{16g-16} \times \mathbb{N}$ (Choi-G 1990).

- * @ * * 图 * * 图 * _ 图

- When X = CP¹ and G = PGL(2, C), Poincaré identified D_(G,X)(Σ) with an affine bundle over ℑ(Σ) whose fiber over Riemann surface R is the vector space H⁰(R, K²) of holomorphic quadratic differentials.
 - Thus $\mathfrak{D}_{(G,X)}(\Sigma) \approx \mathbb{R}^{12g-12}$ and $Mod(\Sigma)$ acts properly discretely, containing quasi-Fuchsian representations.
 - Alternate geometric description in terms of hyperbolic structures "bent" along measured geodesic lamination in H³ (Thurston 1976).
- When $X = \mathbb{RP}^2$ and $G = PGL(3, \mathbb{R})$, the deformation space $\mathfrak{D}_{(G,X)}(\Sigma) \approx \mathbb{R}^{16g-16} \times \mathbb{N}$ (Choi-G 1990).
 - Convex structures comprise one component, which Labourie and Loftin (1999) identify as vector bundle over $\mathfrak{F}(\Sigma)$ whose fiber over Riemann surface R is the vector space $H^0(R, K^3)$ of holomorphic cubic differentials.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

- When X = CP¹ and G = PGL(2, C), Poincaré identified D_(G,X)(Σ) with an affine bundle over ℑ(Σ) whose fiber over Riemann surface R is the vector space H⁰(R, K²) of holomorphic quadratic differentials.
 - Thus $\mathfrak{D}_{(G,X)}(\Sigma) \approx \mathbb{R}^{12g-12}$ and $Mod(\Sigma)$ acts properly discretely, containing quasi-Fuchsian representations.
 - Alternate geometric description in terms of hyperbolic structures "bent" along measured geodesic lamination in H³ (Thurston 1976).
- When $X = \mathbb{RP}^2$ and $G = PGL(3, \mathbb{R})$, the deformation space $\mathfrak{D}_{(G,X)}(\Sigma) \approx \mathbb{R}^{16g-16} \times \mathbb{N}$ (Choi-G 1990).
 - Convex structures comprise one component, which Labourie and Loftin (1999) identify as vector bundle over $\mathfrak{F}(\Sigma)$ whose fiber over Riemann surface R is the vector space $H^0(R, K^3)$ of holomorphic cubic differentials.

《曰》《聞》《臣》《臣》

- When X = CP¹ and G = PGL(2, C), Poincaré identified D_(G,X)(Σ) with an affine bundle over ℑ(Σ) whose fiber over Riemann surface R is the vector space H⁰(R, K²) of holomorphic quadratic differentials.
 - Thus $\mathfrak{D}_{(G,X)}(\Sigma) \approx \mathbb{R}^{12g-12}$ and $Mod(\Sigma)$ acts properly discretely, containing quasi-Fuchsian representations.
 - Alternate geometric description in terms of hyperbolic structures "bent" along measured geodesic lamination in H³ (Thurston 1976).
- When $X = \mathbb{RP}^2$ and $G = PGL(3, \mathbb{R})$, the deformation space $\mathfrak{D}_{(G,X)}(\Sigma) \approx \mathbb{R}^{16g-16} \times \mathbb{N}$ (Choi-G 1990).
 - Convex structures comprise one component, which Labourie and Loftin (1999) identify as vector bundle over $\mathfrak{F}(\Sigma)$ whose fiber over Riemann surface R is the vector space $H^0(R, K^3)$ of holomorphic cubic differentials.
 - "Teichmüller" component of Hom $(\pi, G)/G$, discovered for general \mathbb{R} -split groups G by Hitchin (1990), for $G = PGL(3, \mathbb{R})$.
 - For general split real forms, these *Hitchin representations* are discrete embeddings (Labourie 2005) and correspond to geometric structures on compact manifolds (Guichard-Wienhard 2011).

臣

イロン イ理と イヨン ・ ヨン

• A complete affine manifold is a quotient

$$M^n = \mathbb{R}^n / \Gamma$$

where $\Gamma \subset Aff(n, \mathbb{R})$ is a discrete subgroup acting properly and freely.

個 と く ヨ と く ヨ と

• A complete affine manifold is a quotient

$$M^n = \mathbb{R}^n / \Gamma$$

where $\Gamma \subset Aff(n, \mathbb{R})$ is a discrete subgroup acting properly and freely. • In dimension 3, two types:

• A complete affine manifold is a quotient

$$M^n = \mathbb{R}^n / \Gamma$$

where $\Gamma \subset Aff(n, \mathbb{R})$ is a discrete subgroup acting properly and freely. • In dimension 3, two types:

Γ solvable;

• A complete affine manifold is a quotient

$$M^n = \mathbb{R}^n / \Gamma$$

where $\Gamma \subset Aff(n, \mathbb{R})$ is a discrete subgroup acting properly and freely. • In dimension 3, two types:

- Γ solvable;
- Γ free of rank \geq 2.

• A complete affine manifold is a quotient

```
M^n = \mathbb{R}^n / \Gamma
```

where $\Gamma \subset Aff(n, \mathbb{R})$ is a discrete subgroup acting properly and freely. • In dimension 3, two types:

- Γ solvable;
- Γ free of rank \geq 2.

• Solvable case classified (late 1970's, Fried-G)

• A complete affine manifold is a quotient

```
M^n = \mathbb{R}^n / \Gamma
```

where $\Gamma \subset Aff(n, \mathbb{R})$ is a discrete subgroup acting properly and freely.

- In dimension 3, two types:
 - Γ solvable;
 - Γ free of rank \geq 2.
- Solvable case classified (late 1970's, Fried-G)
 - includes compact M^3 (T^2 -bundles over S^1)

• A complete affine manifold is a quotient

```
M^n = \mathbb{R}^n / \Gamma
```

where $\Gamma \subset Aff(n, \mathbb{R})$ is a discrete subgroup acting properly and freely.

- In dimension 3, two types:
 - Γ solvable;
 - Γ free of rank \geq 2.
- Solvable case classified (late 1970's, Fried-G)
 - includes compact M^3 (T^2 -bundles over S^1)

• A complete affine manifold is a quotient

```
M^n = \mathbb{R}^n / \Gamma
```

where $\Gamma \subset Aff(n, \mathbb{R})$ is a discrete subgroup acting properly and freely.

- In dimension 3, two types:
 - Γ solvable;
 - Γ free of rank $\geq 2.$
- Solvable case classified (late 1970's, Fried-G)
 - includes compact M^3 (T^2 -bundles over S^1)
- Free case, first examples discovered by Margulis (early 1980's), answering question raised by Milnor.

• A complete affine manifold is a quotient

```
M^n = \mathbb{R}^n / \Gamma
```

where $\Gamma \subset Aff(n, \mathbb{R})$ is a discrete subgroup acting properly and freely.

- In dimension 3, two types:
 - Γ solvable;
 - Γ free of rank \geq 2.
- Solvable case classified (late 1970's, Fried-G)
 - includes compact M^3 (T^2 -bundles over S^1)
- Free case, first examples discovered by Margulis (early 1980's), answering question raised by Milnor.
- Deformation space is a bundle of convex cones over the Fricke space of hyperbolic structures (G-Labourie-Margulis 2010).

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

()

臣

イロン イ理と イヨン ・ ヨン

• Complete affine 3-manifold \mathbb{R}^3/Γ : proper affine deformation

$$\begin{array}{l} \mathsf{\Gamma} \longrightarrow \mathsf{SO}(2,1) \ltimes \mathbb{R}^{2,1} \\ \gamma \longmapsto \bigl(\mathbb{L}(\gamma), u(\gamma) \bigr) \end{array}$$

御 と く ヨ と く ヨ とし

• Complete affine 3-manifold $\mathbb{R}^3/\Gamma \colon$ proper affine deformation

$$\begin{array}{l} \mathsf{\Gamma} \longrightarrow \mathsf{SO}(2,1) \ltimes \mathbb{R}^{2,1} \\ \gamma \longmapsto \bigl(\mathbb{L}(\gamma), u(\gamma) \bigr) \end{array}$$

• L embeds Γ onto Fuchsian group; noncompact quotient hyperbolic surface (Fried-G, Mess 1990)

$$\Sigma = H^2/\mathbb{L}(\Gamma)$$

伺下 イヨト イヨト

• Complete affine 3-manifold \mathbb{R}^3/Γ : proper affine deformation

$$\gamma \longmapsto (\mathbb{L}(\gamma), u(\gamma))$$

• L embeds Γ onto Fuchsian group; noncompact quotient hyperbolic surface (Fried-G, Mess 1990)

$$\Sigma = H^2/\mathbb{L}(\Gamma)$$

• The cocycle *u* corresponds to an *infinitesimal deformation*

$$[u] \in H^1(\Gamma, \mathbb{R}^{2,1}) \cong H^1(\Sigma, \mathfrak{so}(2,1))$$

of the hyperbolic surface $\boldsymbol{\Sigma}$ such that every (laminar) geodesic infinitesimally lengthens.

• Complete affine 3-manifold \mathbb{R}^3/Γ : proper affine deformation

$$\Gamma \longrightarrow \mathsf{SO}(2,1) \ltimes \mathbb{R}^{2,1}$$
$$\gamma \longmapsto (\mathbb{L}(\gamma), u(\gamma))$$

• L embeds Γ onto Fuchsian group; noncompact quotient hyperbolic surface (Fried-G, Mess 1990)

$$\Sigma = H^2/\mathbb{L}(\Gamma)$$

• The cocycle *u* corresponds to an *infinitesimal deformation*

$$[u] \in H^1(\Gamma, \mathbb{R}^{2,1}) \cong H^1(\Sigma, \mathfrak{so}(2,1))$$

of the hyperbolic surface Σ such that every (laminar) geodesic infinitesimally lengthens.

 Drumm (1990) Every noncompact complete hyperbolic surface Σ of finite type admits a proper affine deformation, with quotient solid handlebody.

Ping-pong in H²

()

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Ping-pong in H^2

• Start with mutually disjoint halfplanes $\mathfrak{h}_1^-, \mathfrak{h}_1^+, \ldots, \mathfrak{h}_n^-, \mathfrak{h}_n^+$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Ping-pong in H²

Start with mutually disjoint halfplanes h⁻₁, h⁺₁,..., h⁻_n, h⁺_n
paired by isometries h⁻_i ^{g_i}→ H² \ h⁺_i.

★ E ► < E ►</p>

Ping-pong in H²

Start with mutually disjoint halfplanes \$\begin{pmatrix} -1 & \$\mathcal{h}_1\$, \$\begin{pmatrix} +1 & \$\mathcal{h}_n\$, \$\math

• g_1, \ldots, g_n freely generate group with fundamental domain

$$\mathsf{H}^2 \setminus \bigcup_{i=1}^n \mathfrak{h}_i^{\pm}.$$

・聞き ・ ほき・ ・ ほき・ …

A boost identifying two parallel planes

Э

▲日 ▶ ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

Cyclic groups

 Most elements γ ∈ Γ are *boosts*, affine deformations of hyperbolic elements of SO(2, 1). A fundamental domain is the *parallel slab* bounded by two parallel planes.

A boost identifying two parallel planes

()

Э

<ロト < 団ト < 団ト < 団ト

• In H², halfplanes \mathfrak{h}_i^{\pm} are disjoint;

- In H², halfplanes \mathfrak{h}_i^{\pm} are disjoint;
- Their complement is a fundamental domain.

- In H², halfplanes \mathfrak{h}_i^{\pm} are disjoint;
- Their complement is a fundamental domain.
- In affine space, halfspaces disjoint \Rightarrow parallel!

- In H², halfplanes \mathfrak{h}_i^{\pm} are disjoint;
- Their complement is a fundamental domain.
- In affine space, halfspaces disjoint ⇒ parallel!
- Complements of parallel slabs always intersect,

- In H², halfplanes \mathfrak{h}_i^{\pm} are disjoint;
- Their complement is a fundamental domain.
- In affine space, halfspaces disjoint ⇒ parallel!
- Complements of parallel slabs always intersect,
- Unsuitable for building Schottky groups!

Drumm's Schottky groups

The classical construction of Schottky groups fails using affine half-spaces and slabs. Drumm's geometric construction uses *crooked planes*, PL hypersurfaces adapted to the Lorentz geometry which bound fundamental polyhedra for Schottky groups.

Proper affine deformation of level 2 congruence subgroup of $GL(2,\mathbb{Z})$

Proper affine deformation of level 2 congruence subgroup of $\mathsf{GL}(2,\mathbb{Z})$

Proper affine deformations exist even for lattices (Drumm).

▶ 《 厘 ▶ …

()

Geometric Structures

▲ロト ▲圖ト ▲国ト ▲国ト 三国
Deformation space is a bundle over the Fricke space 𝔅(Σ), with fiber consisting of equivalence classes of *proper* affine deformations;

.

 Deformation space is a bundle over the Fricke space
 ³(Σ), with fiber consisting of equivalence classes of *proper* affine deformations;

• If $\partial \Sigma$ has b components, then $\mathfrak{F}(\Sigma) \approx [0,\infty)^b \times (0,\infty)^{-3\chi(\Sigma)-b}$.

▶ ▲ 돈 ▶ ▲ 돈 ▶ ...

- Deformation space is a bundle over the Fricke space
 ³(Σ), with fiber consisting of equivalence classes of *proper* affine deformations;
 - If $\partial \Sigma$ has b components, then $\mathfrak{F}(\Sigma) \approx [0,\infty)^b \times (0,\infty)^{-3\chi(\Sigma)-b}$.
 - Fibers open convex cones in $\mathbb{R}^{-3\chi(\hat{\Sigma})}$ defined by signed Lorentzian lengths.

- 4 同 ト 4 ヨ ト - 4 ヨ ト -

- Deformation space is a bundle over the Fricke space
 ³(Σ), with fiber consisting of equivalence classes of *proper* affine deformations;
 - If $\partial \Sigma$ has b components, then $\mathfrak{F}(\Sigma) \approx [0,\infty)^b \times (0,\infty)^{-3\chi(\Sigma)-b}$.
 - Fibers open convex cones in $\mathbb{R}^{-3\chi(\hat{\Sigma})}$ defined by signed Lorentzian lengths.
- Deformation space of complete affine structures on open solid handlebody of genus two falls into 4 components depending on 4 topological types of surfaces with $\chi(\Sigma) = -1$, and every structure has natural decomposition by crooked planes (Charette-Drumm-G).

イロト イ理ト イヨト イヨト

- Deformation space is a bundle over the Fricke space
 ³(Σ), with fiber consisting of equivalence classes of *proper* affine deformations;
 - If $\partial \Sigma$ has b components, then $\mathfrak{F}(\Sigma) \approx [0,\infty)^b \times (0,\infty)^{-3\chi(\Sigma)-b}$.
 - Fibers open convex cones in $\mathbb{R}^{-3\chi(\hat{\Sigma})}$ defined by signed Lorentzian lengths.
- Deformation space of complete affine structures on open solid handlebody of genus two falls into 4 components depending on 4 topological types of surfaces with $\chi(\Sigma) = -1$, and every structure has natural decomposition by crooked planes (Charette-Drumm-G).
- (2012) Choi and Danciger-Guéritaud-Kassel have announced, independently, quite different proofs of *Topological Tameness:* Every nonsolvable complete flat affine 3-manifold (Margulis spacetime) is homeomorphic to a solid handlebody.

・ロト ・聞 ト ・ ヨト ・ ヨト …

Deformation spaces for surfaces with $\chi(\Sigma)$

Tiling the deformation space

()

1

イロト イヨト イヨト イヨト

• When $S \approx \Sigma_{0,3}$, $C_{0,2}$, then $\mathcal{D}(S)$ has 3 or 4 sides, and each ideal triangulation can be realized crookedly.

▶ < 문 ▶ < 문 ▶</p>

- When $S \approx \Sigma_{0,3}$, $C_{0,2}$, then $\mathcal{D}(S)$ has 3 or 4 sides, and each ideal triangulation can be realized crookedly.
 - These surfaces have finite mapping class group and finitely many isotopy classes of simple closed curves.

• • = • • = •

- When $S \approx \Sigma_{0,3}$, $C_{0,2}$, then $\mathcal{D}(S)$ has 3 or 4 sides, and each ideal triangulation can be realized crookedly.
 - These surfaces have finite mapping class group and finitely many isotopy classes of simple closed curves.
- In other cases, properness region bounded by infinitely many intervals, each corresponding to simple loop.
- ∂ -points lie on intervals or are points of strict convexity (irrational laminations) (G-Margulis-Minsky).

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

- When $S \approx \Sigma_{0,3}$, $C_{0,2}$, then $\mathcal{D}(S)$ has 3 or 4 sides, and each ideal triangulation can be realized crookedly.
 - These surfaces have finite mapping class group and finitely many isotopy classes of simple closed curves.
- In other cases, properness region bounded by infinitely many intervals, each corresponding to simple loop.
- ∂ -points lie on intervals or are points of strict convexity (irrational laminations) (G-Margulis-Minsky).
- Birman-Series argument \implies For 1-holed torus, these points of strict convexity have Hausdorff dimension zero.

(4回) (4回) (4回)

• Properness region tiled by triangles.

- Properness region tiled by triangles.
- Triangles \longleftrightarrow ideal triangulations of Σ .

- Properness region tiled by triangles.
- Triangles \longleftrightarrow ideal triangulations of Σ .
- Flip of ideal triangulation ↔ moving to adjacent triangle.

Geometric Structures

()

▲ロト ▲聞 ▶ ▲臣 ▶ ▲臣 ▶ ▲臣 ● ⊘ Q (?)