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Geometry through symmetry

In his 1872 Erlangen Program, Felix Klein proposed that a geometry

is the study of properties of an abstract space X which are invariant
under a transitive group G of transformations of X .
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Geometry through symmetry

In his 1872 Erlangen Program, Felix Klein proposed that a geometry

is the study of properties of an abstract space X which are invariant
under a transitive group G of transformations of X .

Euclidean geometry: X = R
n and G its group of isometries.

Preserves distance, angle, area, straight lines, parallelism..

Affine geometry: X = R
n and G its group of affine transformations

x
γ7−→ Ax + b.

Preserves parallelism, geodesics (curves of zero acceleration).
When the linear part L(γ) = A is orthogonal, then γ is an isometry.

() Geometric Structures
IV Latin-American Congress on Lie Groups and

/ 35



Geometry through symmetry

In his 1872 Erlangen Program, Felix Klein proposed that a geometry

is the study of properties of an abstract space X which are invariant
under a transitive group G of transformations of X .

Euclidean geometry: X = R
n and G its group of isometries.

Preserves distance, angle, area, straight lines, parallelism..

Affine geometry: X = R
n and G its group of affine transformations

x
γ7−→ Ax + b.

Preserves parallelism, geodesics (curves of zero acceleration).
When the linear part L(γ) = A is orthogonal, then γ is an isometry.

Projective geometry: X = RP
n and G its group of collineations.
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Geometry through symmetry

In his 1872 Erlangen Program, Felix Klein proposed that a geometry

is the study of properties of an abstract space X which are invariant
under a transitive group G of transformations of X .

Euclidean geometry: X = R
n and G its group of isometries.

Preserves distance, angle, area, straight lines, parallelism..

Affine geometry: X = R
n and G its group of affine transformations

x
γ7−→ Ax + b.

Preserves parallelism, geodesics (curves of zero acceleration).
When the linear part L(γ) = A is orthogonal, then γ is an isometry.

Projective geometry: X = RP
n and G its group of collineations.

Preserves (unparametrized) straight lines, incidence...
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Deformation spaces of geometric structures

Ehresmann structure on a manifold: a geometric structure defined by
an atlas of local coordinate charts into a fixed homogeneous space.
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an atlas of local coordinate charts into a fixed homogeneous space.

For example, every flat Riemannian manifold is locally isometric to
Euclidean space...
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Deformation spaces of geometric structures

Ehresmann structure on a manifold: a geometric structure defined by
an atlas of local coordinate charts into a fixed homogeneous space.

For example, every flat Riemannian manifold is locally isometric to
Euclidean space...

and can be locally modeled on Euclidean space.

How to classify these structures, given a fixed topology and geometry
(homogeneous space)?

Ideally would like a space whose points classify these geometries...
Whatever can go wrong in defining such a space will go wrong, for
certain choices of Σ and (G ,X ).
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Deformation spaces of geometric structures

Ehresmann structure on a manifold: a geometric structure defined by
an atlas of local coordinate charts into a fixed homogeneous space.

For example, every flat Riemannian manifold is locally isometric to
Euclidean space...

and can be locally modeled on Euclidean space.

How to classify these structures, given a fixed topology and geometry
(homogeneous space)?

Ideally would like a space whose points classify these geometries...
Whatever can go wrong in defining such a space will go wrong, for
certain choices of Σ and (G ,X ).
Quotients of (possibly singular) R-algebraic sets by algebraic group
actions which are neither locally free nor proper...
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Deformation spaces of geometric structures

Ehresmann structure on a manifold: a geometric structure defined by
an atlas of local coordinate charts into a fixed homogeneous space.

For example, every flat Riemannian manifold is locally isometric to
Euclidean space...

and can be locally modeled on Euclidean space.

How to classify these structures, given a fixed topology and geometry
(homogeneous space)?

Ideally would like a space whose points classify these geometries...
Whatever can go wrong in defining such a space will go wrong, for
certain choices of Σ and (G ,X ).
Quotients of (possibly singular) R-algebraic sets by algebraic group
actions which are neither locally free nor proper...
and then by discrete groups which don’t act properly.
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Putting geometric structure on a topological space

Topology: Smooth manifold Σ with coordinate patches Uα;
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Topology: Smooth manifold Σ with coordinate patches Uα;
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On components of Uα ∩ Uβ , ∃g ∈ G such that
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Charts — diffeomorphisms

Uα
ψα−−→ ψα(Uα) ⊂ X

On components of Uα ∩ Uβ , ∃g ∈ G such that

g ◦ ψα = ψβ .

Local (G ,X )-geometry independent of patch.
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Putting geometric structure on a topological space

Topology: Smooth manifold Σ with coordinate patches Uα;

Charts — diffeomorphisms

Uα
ψα−−→ ψα(Uα) ⊂ X

On components of Uα ∩ Uβ , ∃g ∈ G such that

g ◦ ψα = ψβ .

Local (G ,X )-geometry independent of patch.

(Ehresmann 1936): Geometric manifold M modeled on X .
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Geometrization in 2 and 3 dimensions

Dimension 2: every surface has exactly one of:

Spherical geometry (if χ(Σ) > 0);
Euclidean geometry (if χ(Σ) = 0);
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Geometrization in 2 and 3 dimensions

Dimension 2: every surface has exactly one of:

Spherical geometry (if χ(Σ) > 0);
Euclidean geometry (if χ(Σ) = 0);
Hyperbolic geometry (if χ(Σ) < 0).
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Hyperbolic geometry (if χ(Σ) < 0).

Equivalently, Riemannian metrics of constant curvature +1, 0, −1.
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Geometrization in 2 and 3 dimensions

Dimension 2: every surface has exactly one of:

Spherical geometry (if χ(Σ) > 0);
Euclidean geometry (if χ(Σ) = 0);
Hyperbolic geometry (if χ(Σ) < 0).

Equivalently, Riemannian metrics of constant curvature +1, 0, −1.
Locally homogeneous Riemannian geometries, modeled on X = G/H,
H compact.

(Thurston 1976): 3-manifolds canonically decompose into locally

homogeneous Riemannian pieces (8 types). (proved by Perelman)
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Classification of geometric structures

Basic question: Given a topology Σ and a geometry X = G/H,
determine all possible ways of providing Σ with the local geometry of
(X ,G ).
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Basic question: Given a topology Σ and a geometry X = G/H,
determine all possible ways of providing Σ with the local geometry of
(X ,G ).

Example: The 2-sphere admits no Euclidean structure:
6 ∃ metrically accurate world atlas.
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Classification of geometric structures

Basic question: Given a topology Σ and a geometry X = G/H,
determine all possible ways of providing Σ with the local geometry of
(X ,G ).

Example: The 2-sphere admits no Euclidean structure:
6 ∃ metrically accurate world atlas.
Example: The 2-torus admits a moduli space of Euclidean structures.
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Connection with connections

A Euclidean structure is a flat Riemannian metric.
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Connection with connections

A Euclidean structure is a flat Riemannian metric.

An affine structure is a flat torsionfree affine connection.

A projective structure is a flat normal projective connection.

In general, Ehresmann structures are examples of Cartan connections
for which the local invariants (curvature) vanish.
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Connection with connections

A Euclidean structure is a flat Riemannian metric.

An affine structure is a flat torsionfree affine connection.

A projective structure is a flat normal projective connection.

In general, Ehresmann structures are examples of Cartan connections
for which the local invariants (curvature) vanish.

Cartan connections exist on fiber bundles and an Ehresmann structure
determines a flat connection on this fiber bundle with a canonical
section describing the local coordinates.
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Connection with connections

A Euclidean structure is a flat Riemannian metric.

An affine structure is a flat torsionfree affine connection.

A projective structure is a flat normal projective connection.

In general, Ehresmann structures are examples of Cartan connections
for which the local invariants (curvature) vanish.

Cartan connections exist on fiber bundles and an Ehresmann structure
determines a flat connection on this fiber bundle with a canonical
section describing the local coordinates.
Local deformation theory of geometric structures ⇐⇒
local deformation theory of flat connections
— representations of π1(Σ).
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Quotients of domains

Suppose that Ω ⊂ X is an open subset invariant under a subgroup
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Quotients of domains

Suppose that Ω ⊂ X is an open subset invariant under a subgroup
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Γ acts properly and freely on Ω

Then M = Ω/Γ is a (G ,X )-manifold covered by Ω.

() Geometric Structures
IV Latin-American Congress on Lie Groups and

/ 35



Quotients of domains

Suppose that Ω ⊂ X is an open subset invariant under a subgroup
Γ ⊂ G such that:

Γ is discrete;
Γ acts properly and freely on Ω

Then M = Ω/Γ is a (G ,X )-manifold covered by Ω.

Convex RP
n-structures: Ω ⊂ RP

n convex domain.
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Quotients of domains

Suppose that Ω ⊂ X is an open subset invariant under a subgroup
Γ ⊂ G such that:

Γ is discrete;
Γ acts properly and freely on Ω

Then M = Ω/Γ is a (G ,X )-manifold covered by Ω.

Convex RP
n-structures: Ω ⊂ RP

n convex domain.

Projective geometry inside a quadric Ω is hyperbolic geometry.

Hyperbolic distance is defined by cross-ratios: d(x , y) = log[A, x , y ,B].
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Suppose that Ω ⊂ X is an open subset invariant under a subgroup
Γ ⊂ G such that:

Γ is discrete;
Γ acts properly and freely on Ω

Then M = Ω/Γ is a (G ,X )-manifold covered by Ω.
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Projective geometry contains hyperbolic geometry.
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Quotients of domains

Suppose that Ω ⊂ X is an open subset invariant under a subgroup
Γ ⊂ G such that:

Γ is discrete;
Γ acts properly and freely on Ω

Then M = Ω/Γ is a (G ,X )-manifold covered by Ω.

Convex RP
n-structures: Ω ⊂ RP

n convex domain.

Projective geometry inside a quadric Ω is hyperbolic geometry.

Hyperbolic distance is defined by cross-ratios: d(x , y) = log[A, x , y ,B].
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Projective geometry contains hyperbolic geometry.

Hyperbolic structures are convex RP
n-structures.
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Projective deformation of equilateral 60o-triangle tiling

This tesselation of the open triangular region in RP
2 is equivalent to the

tiling of the Euclidean plane by equilateral triangles.
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Example: Projective deformation of a hyperbolic tiling

Both domains are tiled by 60o ,60o ,45o)-triangles, invariant under a
Coxeter group Γ(3, 3, 4). First is bounded by a conic (hyperbolic
geometry). Second is invariant under Weyl group associated to





2 −1 −2
−1 2 −1
−1 −1 2





with domain bounded by C 1+α-convex curve where 0 < α < 1.
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Example: Hyperbolic structure on genus two surface
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Example: Hyperbolic structure on genus two surface

Identify sides of an octagon to form a closed genus two surface.

 
a1

b1

a2

b2
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Example: Hyperbolic structure on genus two surface

Identify sides of an octagon to form a closed genus two surface.

 
a1

b1

a2

b2
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a1b1

a2
b2

Realize these identifications isometrically for a regular 45o-octagon.
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Example: Quasi-Fuchsian CP
1-structure
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Example: Quasi-Fuchsian CP
1-structure

Start with a hyperbolic structure on a surface Σ represented as a
quotient H2/Γ0 where Γ0 ⊂ PSL(2,R) = Isom+(H2). Regard H2 as
an open hemisphere in CP

1 invariant under PSL(2,R).
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Start with a hyperbolic structure on a surface Σ represented as a
quotient H2/Γ0 where Γ0 ⊂ PSL(2,R) = Isom+(H2). Regard H2 as
an open hemisphere in CP

1 invariant under PSL(2,R).
Hyperbolic structure =⇒ CP

1-structure.
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Example: Quasi-Fuchsian CP
1-structure

Start with a hyperbolic structure on a surface Σ represented as a
quotient H2/Γ0 where Γ0 ⊂ PSL(2,R) = Isom+(H2). Regard H2 as
an open hemisphere in CP

1 invariant under PSL(2,R).
Hyperbolic structure =⇒ CP

1-structure.

Deform the representation of Γ0 in PSL(2,C) ⊃ PSL(2,R).
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Example: Quasi-Fuchsian CP
1-structure

Start with a hyperbolic structure on a surface Σ represented as a
quotient H2/Γ0 where Γ0 ⊂ PSL(2,R) = Isom+(H2). Regard H2 as
an open hemisphere in CP

1 invariant under PSL(2,R).
Hyperbolic structure =⇒ CP

1-structure.

Deform the representation of Γ0 in PSL(2,C) ⊃ PSL(2,R).
For Γt sufficiently near Γ0, the deformation Γt arises from an
embedding of Γ0 as a discrete group acting properly an open subset
Ω ⊂ CP

1. Unless Γt is Fuchsian, ∂Ω is a fractal Jordan curve of
Hausdorff dimension > 1 (Bowen).
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Example: Anti-de Sitter structures
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Example: Anti-de Sitter structures

Anti-de Sitter space AdSn is the model space of constant negative
curvature Lorentzian geometry.
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Example: Anti-de Sitter structures

Anti-de Sitter space AdSn is the model space of constant negative
curvature Lorentzian geometry.

AdSn ∼= O(n − 1, 2)/
(

O(n − 2)× O(1, 2)
)

.
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Example: Anti-de Sitter structures

Anti-de Sitter space AdSn is the model space of constant negative
curvature Lorentzian geometry.

AdSn ∼= O(n − 1, 2)/
(

O(n − 2)× O(1, 2)
)

.

Let H = PSL(2,R). For n = 3, anti-de Sitter geometry identifies with
G = H × H acting (isometrically) on X = H by left- and

right-multiplication:

(h1, h2) : x 7−→ h1xh
−1
2
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Example: Anti-de Sitter structures

Anti-de Sitter space AdSn is the model space of constant negative
curvature Lorentzian geometry.

AdSn ∼= O(n − 1, 2)/
(

O(n − 2)× O(1, 2)
)

.

Let H = PSL(2,R). For n = 3, anti-de Sitter geometry identifies with
G = H × H acting (isometrically) on X = H by left- and

right-multiplication:

(h1, h2) : x 7−→ h1xh
−1
2

A closed 3-dimensional AdS-manifold is a quotient X/graph(ρ) where
Γ ⊂ H is a cocompact lattice and

graph(ρ) = {
(

γ, ρ(γ)
)

| γ ∈ Γ}

is the graph of ρ. (Kulkarni-Raymond 1985)
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Example:Flat Lorentz 3-Manifolds
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Example:Flat Lorentz 3-Manifolds

Minkowski space E
n,1 is the model space for flat Lorentzian geometry.
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Example:Flat Lorentz 3-Manifolds

Minkowski space E
n,1 is the model space for flat Lorentzian geometry.

Its isometries are affine transformations whose linear part lies in the
orthogonal group O(n − 1, 1).

() Geometric Structures
IV Latin-American Congress on Lie Groups and

/ 35



Example:Flat Lorentz 3-Manifolds

Minkowski space E
n,1 is the model space for flat Lorentzian geometry.

Its isometries are affine transformations whose linear part lies in the
orthogonal group O(n − 1, 1).

Let H = PSL(2,R) as before. For n = 3, this geometry is that of the
tangent bundle G = TH = H ⋉Ad h acting on X = G/H ∼= E

n,1.
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Analogy with quasi-Fuchsian deformations
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Analogy with quasi-Fuchsian deformations

Every noncompact semisimple Lie group (locally) contains SL(2,R).
A rich source of geometries arise from deforming hyperbolic geometry.
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Analogy with quasi-Fuchsian deformations

Every noncompact semisimple Lie group (locally) contains SL(2,R).
A rich source of geometries arise from deforming hyperbolic geometry.

Let i =
√
−1. Quasi-Fuchsian deformations arise from deforming

PSL(2,R) →֒ PSL(2,R[i ]) = PSL(2,C).
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Analogy with quasi-Fuchsian deformations
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Every noncompact semisimple Lie group (locally) contains SL(2,R).
A rich source of geometries arise from deforming hyperbolic geometry.

Let i =
√
−1. Quasi-Fuchsian deformations arise from deforming

PSL(2,R) →֒ PSL(2,R[i ]) = PSL(2,C).

Affine deformations (isometric actions on Minkowski space) arise from
deforming in

PSL(2,R) →֒ TPSL(2,R) = PSL(2,R[ǫ]) ∼= Isom0(E2,1),

where ǫ2 = 0, corresponding to infinitesimal deformations of
hyperbolic geometry.

Anti-de Sitter deformations arise from

PSL(2,R) →֒ O(2, 2) = PSL(2,R[υ]) ∼= PSL(2,R)× PSL(2,R)

where υ2 = +1.
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Modeling structures on representations of π1

Marked (G ,X )-structure on Σ: diffeomorphism Σ
f−→ M where M is a

(G ,X )-manifold.

Define deformation space

D(G ,X )(Σ) :=

{

Marked (G ,X )-structures on Σ

}

/Isotopy

Mapping class group

Mod(Σ) := π0
(

Diff(Σ)
)

acts on D(G ,X )(Σ).
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Representation varieties

Let π = 〈X1, . . . ,Xn〉 be finitely generated and G ⊂ GL(N,R) a linear
algebraic group.
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Representation varieties

Let π = 〈X1, . . . ,Xn〉 be finitely generated and G ⊂ GL(N,R) a linear
algebraic group.

The set Hom(π,G ) of homomorphisms

π −→ G

enjoys the natural structure of an affine algebraic variety

Invariant under Aut(π)× Aut(G).
Action of Out(π) := Aut(π)/Inn(π) on

Hom(π,G)/G := Hom(π,G)/({1} × Inn(G))
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A marked structure determines a developing map Σ̃ −→ X and a
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A marked structure determines a developing map Σ̃ −→ X and a
holonomy representation π −→ G .

Globalize the coordinate charts and coordinate changes respectively.

Holonomy defines a mapping

D(G ,X )(Σ)
hol−−→ Hom(π,G )/G

Equivariant respecting

Mod(Σ) −→ Out
(

π1(Σ)
)

(Thurston): The mapping hol is a local homeomorphism.
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Holonomy

A marked structure determines a developing map Σ̃ −→ X and a
holonomy representation π −→ G .

Globalize the coordinate charts and coordinate changes respectively.

Holonomy defines a mapping

D(G ,X )(Σ)
hol−−→ Hom(π,G )/G

Equivariant respecting

Mod(Σ) −→ Out
(

π1(Σ)
)

(Thurston): The mapping hol is a local homeomorphism.

For quotient structures, hol is an embedding.
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Euclidean and hyperbolic structures

Euclidean geometry: When X = R
2 and G = Isom(R2), every only

closed orientable Euclidean surface ≈ T 2. The deformation space
D(G ,X )(Σ) identifies with H2 × R

+.
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Euclidean geometry: When X = R
2 and G = Isom(R2), every only

closed orientable Euclidean surface ≈ T 2. The deformation space
D(G ,X )(Σ) identifies with H2 × R

+.

The coordinate in R
+ corresponds to the area of the structure.

Mod(Σ) ∼= PSL(2,Z) acts properly discretely,

Hyperbolic geometry: When X = H2 and G = Isom(H2), the
deformation space D(G ,X )(Σ) identifies with Fricke space F(Σ).

Identifies with Teichmüller space T(Σ) (marked conformal structures)
via Klein-Koebe-Poincaré Uniformization Theorem.

hol embeds F(Σ) as a connected component of Hom(π,G )/G .

F(Σ) ≈ R
6g−6 and Mod(Σ) acts properly discretely.
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Projective structures

When X = CP
1 and G = PGL(2,C), Poincaré identified D(G ,X )(Σ)

with an affine bundle over T(Σ) whose fiber over Riemann surface R
is the vector space H0(R ,K 2) of holomorphic quadratic differentials.
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Projective structures

When X = CP
1 and G = PGL(2,C), Poincaré identified D(G ,X )(Σ)

with an affine bundle over T(Σ) whose fiber over Riemann surface R
is the vector space H0(R ,K 2) of holomorphic quadratic differentials.

Thus D(G ,X )(Σ) ≈ R12g−12 and Mod(Σ) acts properly discretely,
containing quasi-Fuchsian representations.
Alternate geometric description in terms of hyperbolic structures
“bent” along measured geodesic lamination in H3 (Thurston 1976).

When X = RP
2 and G = PGL(3,R), the deformation space

D(G ,X )(Σ) ≈ R
16g−16 × N (Choi-G 1990).

Convex structures comprise one component, which Labourie and Loftin
(1999) identify as vector bundle over F(Σ) whose fiber over Riemann
surface R is the vector space H0(R ,K 3) of holomorphic cubic

differentials.

“Teichmüller” component of Hom(π,G)/G , discovered for general
R-split groups G by Hitchin (1990), for G = PGL(3,R).
For general split real forms, these Hitchin representations are discrete
embeddings (Labourie 2005) and correspond to geometric structures
on compact manifolds (Guichard-Wienhard 2011).

() Geometric Structures
IV Latin-American Congress on Lie Groups and

/ 35



Example:Complete affine 3-manifolds

() Geometric Structures
IV Latin-American Congress on Lie Groups and

/ 35
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A complete affine manifold is a quotient

Mn = R
n/Γ

where Γ ⊂ Aff(n,R) is a discrete subgroup acting properly and freely.
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Example:Complete affine 3-manifolds

A complete affine manifold is a quotient

Mn = R
n/Γ

where Γ ⊂ Aff(n,R) is a discrete subgroup acting properly and freely.

In dimension 3, two types:

Γ solvable;
Γ free of rank ≥ 2.

Solvable case classified (late 1970’s, Fried-G)

includes compact M3 (T 2-bundles over S1)

Free case, first examples discovered by Margulis (early 1980’s),
answering question raised by Milnor.

Deformation space is a bundle of convex cones over the Fricke space
of hyperbolic structures (G-Labourie-Margulis 2010).
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Complete flat Lorentz manifolds

Complete affine 3-manifold R
3/Γ: proper affine deformation

Γ −→ SO(2, 1) ⋉R
2,1

γ 7−→
(

L(γ), u(γ)
)
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2,1

γ 7−→
(

L(γ), u(γ)
)

L embeds Γ onto Fuchsian group; noncompact quotient hyperbolic
surface (Fried-G, Mess 1990)

Σ = H2/L(Γ)

The cocycle u corresponds to an infinitesimal deformation

[u] ∈ H1(Γ,R2,1) ∼= H1(Σ, so(2, 1))

of the hyperbolic surface Σ such that every (laminar) geodesic
infinitesimally lengthens.
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Complete flat Lorentz manifolds

Complete affine 3-manifold R
3/Γ: proper affine deformation

Γ −→ SO(2, 1) ⋉R
2,1

γ 7−→
(

L(γ), u(γ)
)

L embeds Γ onto Fuchsian group; noncompact quotient hyperbolic
surface (Fried-G, Mess 1990)

Σ = H2/L(Γ)

The cocycle u corresponds to an infinitesimal deformation

[u] ∈ H1(Γ,R2,1) ∼= H1(Σ, so(2, 1))

of the hyperbolic surface Σ such that every (laminar) geodesic
infinitesimally lengthens.

Drumm (1990) Every noncompact complete hyperbolic surface Σ of
finite type admits a proper affine deformation, with quotient solid
handlebody.
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Ping-pong in H2
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A 2
+

A2
−

Start with mutually disjoint halfplanes h−1 , h
+
1 ,. . . , h

−
n , h

+
n

paired by isometries h−i
gi−→ H2 \ h+i .

g1, . . . , gn freely generate group with fundamental domain

H2 \
n
⋃

i=1

h±i .
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Cyclic groups

A boost identifying two parallel planes
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Cyclic groups

Most elements γ ∈ Γ are boosts, affine deformations of hyperbolic
elements of SO(2, 1). A fundamental domain is the parallel slab

bounded by two parallel planes.

A boost identifying two parallel planes
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Parallel slabs don’t work!

In H2, halfplanes h±i are disjoint;

Their complement is a fundamental domain.

In affine space, halfspaces disjoint ⇒ parallel!

Complements of parallel slabs always intersect,

Unsuitable for building Schottky groups!
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Drumm’s Schottky groups

The classical construction of Schottky groups fails using affine half-spaces
and slabs. Drumm’s geometric construction uses crooked planes, PL
hypersurfaces adapted to the Lorentz geometry which bound fundamental
polyhedra for Schottky groups.
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Proper affine deformation of level 2 congruence subgroup

of GL(2,Z)
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Proper affine deformation of level 2 congruence subgroup

of GL(2,Z)

Proper affine deformations exist even for lattices (Drumm).
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Classification

Deformation space is a bundle over the Fricke space F(Σ), with fiber
consisting of equivalence classes of proper affine deformations;
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() Geometric Structures
IV Latin-American Congress on Lie Groups and

/ 35



Classification

Deformation space is a bundle over the Fricke space F(Σ), with fiber
consisting of equivalence classes of proper affine deformations;

If ∂Σ has b components, then F(Σ) ≈ [0,∞)b × (0,∞)−3χ(Σ)−b.
Fibers open convex cones in R−3χ(Σ) defined by signed Lorentzian
lengths.

() Geometric Structures
IV Latin-American Congress on Lie Groups and

/ 35



Classification
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Fibers open convex cones in R−3χ(Σ) defined by signed Lorentzian
lengths.

Deformation space of complete affine structures on open solid
handlebody of genus two falls into 4 components depending on 4
topological types of surfaces with χ(Σ) = −1, and every structure has
natural decomposition by crooked planes (Charette-Drumm-G).
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Classification

Deformation space is a bundle over the Fricke space F(Σ), with fiber
consisting of equivalence classes of proper affine deformations;

If ∂Σ has b components, then F(Σ) ≈ [0,∞)b × (0,∞)−3χ(Σ)−b.
Fibers open convex cones in R−3χ(Σ) defined by signed Lorentzian
lengths.

Deformation space of complete affine structures on open solid
handlebody of genus two falls into 4 components depending on 4
topological types of surfaces with χ(Σ) = −1, and every structure has
natural decomposition by crooked planes (Charette-Drumm-G).

(2012) Choi and Danciger-Guéritaud-Kassel have announced,
independently, quite different proofs of Topological Tameness: Every
nonsolvable complete flat affine 3-manifold (Margulis spacetime) is
homeomorphic to a solid handlebody.
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Deformation spaces for surfaces with χ(Σ)

(k) Three-holed sphere (l) Two-holed RP
2

(m) One-holed torus (n) One-holed Klein bottle
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Tiling the deformation space
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Tiling the deformation space

When S ≈ Σ0,3,C0,2, then D(S) has 3 or 4 sides, and each ideal
triangulation can be realized crookedly.
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These surfaces have finite mapping class group and finitely many
isotopy classes of simple closed curves.
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When S ≈ Σ0,3,C0,2, then D(S) has 3 or 4 sides, and each ideal
triangulation can be realized crookedly.

These surfaces have finite mapping class group and finitely many
isotopy classes of simple closed curves.

In other cases, properness region bounded by infinitely many intervals,
each corresponding to simple loop.

∂-points lie on intervals or are points of strict convexity (irrational
laminations) (G-Margulis-Minsky).
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Tiling the deformation space

When S ≈ Σ0,3,C0,2, then D(S) has 3 or 4 sides, and each ideal
triangulation can be realized crookedly.

These surfaces have finite mapping class group and finitely many
isotopy classes of simple closed curves.

In other cases, properness region bounded by infinitely many intervals,
each corresponding to simple loop.

∂-points lie on intervals or are points of strict convexity (irrational
laminations) (G-Margulis-Minsky).

Birman-Series argument =⇒ For 1-holed torus, these points of strict
convexity have Hausdorff dimension zero.
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Realizing an ideal triangulation of the one-holed torus by

crooked planes
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Realizing an ideal triangulation of the one-holed torus by

crooked planes

Properness region tiled by triangles.

() Geometric Structures
IV Latin-American Congress on Lie Groups and

/ 35



Realizing an ideal triangulation of the one-holed torus by

crooked planes

Properness region tiled by triangles.

Triangles ←→ ideal triangulations of Σ.
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Realizing an ideal triangulation of the one-holed torus by

crooked planes

Properness region tiled by triangles.

Triangles ←→ ideal triangulations of Σ.

Flip of ideal triangulation ←→ moving to adjacent triangle.
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