# Locally homogeneous geometric structures 

William M. Goldman<br>Department of Mathematics University of Maryland

IV Latin-American Congress on Lie Groups and Geometry CIMAT, Guanajuato, Mexico

27 August 2012

Dedicated to the memory of Bill Thurston


## Outline

(1) Geometry through symmetry (Lie, Klein)
(2) Projective geometries: deforming 2-dimensional hyperbolic geometry
(3) Classification: Moduli spaces of geometric structures $\mathfrak{D}_{(G, X)}(\Sigma)$ associated to topology $\Sigma$ and homogeneous space ( $G, X=G / H$ )
(3) Examples: Euclidean, hyperbolic geometry
(3) Examples: Real, complex projective geometry
(0) Examples: Minkowski space, Anti-de Sitter space
(3) Moduli of surface group representations (higher Teichmüller theory)
(3) Classification of complete affine 3 -manifolds
(0. Margulis spacetimes, crooked geometry

## Geometry through symmetry

## Geometry through symmetry

- In his 1872 Erlangen Program, Felix Klein proposed that a geometry is the study of properties of an abstract space $X$ which are invariant under a transitive group $G$ of transformations of $X$.


## Geometry through symmetry

- In his 1872 Erlangen Program, Felix Klein proposed that a geometry is the study of properties of an abstract space $X$ which are invariant under a transitive group $G$ of transformations of $X$.
- Euclidean geometry: $X=\mathbb{R}^{n}$ and $G$ its group of isometries.


## Geometry through symmetry

- In his 1872 Erlangen Program, Felix Klein proposed that a geometry is the study of properties of an abstract space $X$ which are invariant under a transitive group $G$ of transformations of $X$.
- Euclidean geometry: $X=\mathbb{R}^{n}$ and $G$ its group of isometries.
- Preserves distance, angle, area, straight lines, parallelism..


## Geometry through symmetry

- In his 1872 Erlangen Program, Felix Klein proposed that a geometry is the study of properties of an abstract space $X$ which are invariant under a transitive group $G$ of transformations of $X$.
- Euclidean geometry: $X=\mathbb{R}^{n}$ and $G$ its group of isometries.
- Preserves distance, angle, area, straight lines, parallelism..
- Affine geometry: $X=\mathbb{R}^{n}$ and $G$ its group of affine transformations $x \stackrel{\gamma}{\longmapsto} A x+b$.


## Geometry through symmetry

- In his 1872 Erlangen Program, Felix Klein proposed that a geometry is the study of properties of an abstract space $X$ which are invariant under a transitive group $G$ of transformations of $X$.
- Euclidean geometry: $X=\mathbb{R}^{n}$ and $G$ its group of isometries.
- Preserves distance, angle, area, straight lines, parallelism..
- Affine geometry: $X=\mathbb{R}^{n}$ and $G$ its group of affine transformations $x \stackrel{\gamma}{\longmapsto} A x+b$.
- Preserves parallelism, geodesics (curves of zero acceleration).


## Geometry through symmetry

- In his 1872 Erlangen Program, Felix Klein proposed that a geometry is the study of properties of an abstract space $X$ which are invariant under a transitive group $G$ of transformations of $X$.
- Euclidean geometry: $X=\mathbb{R}^{n}$ and $G$ its group of isometries.
- Preserves distance, angle, area, straight lines, parallelism..
- Affine geometry: $X=\mathbb{R}^{n}$ and $G$ its group of affine transformations $x \stackrel{\gamma}{\longmapsto} A x+b$.
- Preserves parallelism, geodesics (curves of zero acceleration).
- When the linear part $L(\gamma)=A$ is orthogonal, then $\gamma$ is an isometry.


## Geometry through symmetry

- In his 1872 Erlangen Program, Felix Klein proposed that a geometry is the study of properties of an abstract space $X$ which are invariant under a transitive group $G$ of transformations of $X$.
- Euclidean geometry: $X=\mathbb{R}^{n}$ and $G$ its group of isometries.
- Preserves distance, angle, area, straight lines, parallelism..
- Affine geometry: $X=\mathbb{R}^{n}$ and $G$ its group of affine transformations $x \stackrel{\gamma}{\longmapsto} A x+b$.
- Preserves parallelism, geodesics (curves of zero acceleration).
- When the linear part $L(\gamma)=A$ is orthogonal, then $\gamma$ is an isometry.
- Projective geometry: $X=\mathbb{R P}^{n}$ and $G$ its group of collineations.


## Geometry through symmetry

- In his 1872 Erlangen Program, Felix Klein proposed that a geometry is the study of properties of an abstract space $X$ which are invariant under a transitive group $G$ of transformations of $X$.
- Euclidean geometry: $X=\mathbb{R}^{n}$ and $G$ its group of isometries.
- Preserves distance, angle, area, straight lines, parallelism..
- Affine geometry: $X=\mathbb{R}^{n}$ and $G$ its group of affine transformations $x \stackrel{\gamma}{\longmapsto} A x+b$.
- Preserves parallelism, geodesics (curves of zero acceleration).
- When the linear part $L(\gamma)=A$ is orthogonal, then $\gamma$ is an isometry.
- Projective geometry: $X=\mathbb{R P}^{n}$ and $G$ its group of collineations.
- Preserves (unparametrized) straight lines, incidence...


## Deformation spaces of geometric structures

## Deformation spaces of geometric structures

- Ehresmann structure on a manifold: a geometric structure defined by an atlas of local coordinate charts into a fixed homogeneous space.


## Deformation spaces of geometric structures

- Ehresmann structure on a manifold: a geometric structure defined by an atlas of local coordinate charts into a fixed homogeneous space.
- For example, every flat Riemannian manifold is locally isometric to Euclidean space...


## Deformation spaces of geometric structures

- Ehresmann structure on a manifold: a geometric structure defined by an atlas of local coordinate charts into a fixed homogeneous space.
- For example, every flat Riemannian manifold is locally isometric to Euclidean space...
- and can be locally modeled on Euclidean space.


## Deformation spaces of geometric structures

- Ehresmann structure on a manifold: a geometric structure defined by an atlas of local coordinate charts into a fixed homogeneous space.
- For example, every flat Riemannian manifold is locally isometric to Euclidean space...
- and can be locally modeled on Euclidean space.
- How to classify these structures, given a fixed topology and geometry (homogeneous space)?


## Deformation spaces of geometric structures

- Ehresmann structure on a manifold: a geometric structure defined by an atlas of local coordinate charts into a fixed homogeneous space.
- For example, every flat Riemannian manifold is locally isometric to Euclidean space...
- and can be locally modeled on Euclidean space.
- How to classify these structures, given a fixed topology and geometry (homogeneous space)?
- Ideally would like a space whose points classify these geometries...


## Deformation spaces of geometric structures

- Ehresmann structure on a manifold: a geometric structure defined by an atlas of local coordinate charts into a fixed homogeneous space.
- For example, every flat Riemannian manifold is locally isometric to Euclidean space...
- and can be locally modeled on Euclidean space.
- How to classify these structures, given a fixed topology and geometry (homogeneous space)?
- Ideally would like a space whose points classify these geometries...
- Whatever can go wrong in defining such a space will go wrong, for certain choices of $\Sigma$ and ( $G, X$ ).


## Deformation spaces of geometric structures

- Ehresmann structure on a manifold: a geometric structure defined by an atlas of local coordinate charts into a fixed homogeneous space.
- For example, every flat Riemannian manifold is locally isometric to Euclidean space...
- and can be locally modeled on Euclidean space.
- How to classify these structures, given a fixed topology and geometry (homogeneous space)?
- Ideally would like a space whose points classify these geometries...
- Whatever can go wrong in defining such a space will go wrong, for certain choices of $\Sigma$ and $(G, X)$.
- Quotients of (possibly singular) $\mathbb{R}$-algebraic sets by algebraic group actions which are neither locally free nor proper...


## Deformation spaces of geometric structures

- Ehresmann structure on a manifold: a geometric structure defined by an atlas of local coordinate charts into a fixed homogeneous space.
- For example, every flat Riemannian manifold is locally isometric to Euclidean space...
- and can be locally modeled on Euclidean space.
- How to classify these structures, given a fixed topology and geometry (homogeneous space)?
- Ideally would like a space whose points classify these geometries...
- Whatever can go wrong in defining such a space will go wrong, for certain choices of $\Sigma$ and $(G, X)$.
- Quotients of (possibly singular) $\mathbb{R}$-algebraic sets by algebraic group actions which are neither locally free nor proper...
- and then by discrete groups which don't act properly.


## Putting geometric structure on a topological space

## Putting geometric structure on a topological space

- Topology: Smooth manifold $\Sigma$ with coordinate patches $U_{\alpha}$;


## Putting geometric structure on a topological space

- Topology: Smooth manifold $\Sigma$ with coordinate patches $U_{\alpha}$;
- Charts - diffeomorphisms

$$
U_{\alpha} \xrightarrow{\psi_{\alpha}} \psi_{\alpha}\left(U_{\alpha}\right) \subset X
$$

## Putting geometric structure on a topological space

- Topology: Smooth manifold $\Sigma$ with coordinate patches $U_{\alpha}$;
- Charts - diffeomorphisms

$$
U_{\alpha} \xrightarrow{\psi_{\alpha}} \psi_{\alpha}\left(U_{\alpha}\right) \subset X
$$

- On components of $U_{\alpha} \cap U_{\beta}, \exists g \in G$ such that

$$
g \circ \psi_{\alpha}=\psi_{\beta} .
$$

## Putting geometric structure on a topological space

- Topology: Smooth manifold $\Sigma$ with coordinate patches $U_{\alpha}$;
- Charts - diffeomorphisms

$$
U_{\alpha} \xrightarrow{\psi_{\alpha}} \psi_{\alpha}\left(U_{\alpha}\right) \subset X
$$

- On components of $U_{\alpha} \cap U_{\beta}, \exists g \in G$ such that

$$
g \circ \psi_{\alpha}=\psi_{\beta} .
$$

- Local $(G, X)$-geometry independent of patch.


## Putting geometric structure on a topological space

- Topology: Smooth manifold $\Sigma$ with coordinate patches $U_{\alpha}$;
- Charts - diffeomorphisms

$$
U_{\alpha} \xrightarrow{\psi_{\alpha}} \psi_{\alpha}\left(U_{\alpha}\right) \subset X
$$

- On components of $U_{\alpha} \cap U_{\beta}, \exists g \in G$ such that

$$
g \circ \psi_{\alpha}=\psi_{\beta} .
$$

- Local $(G, X)$-geometry independent of patch.
- (Ehresmann 1936): Geometric manifold $M$ modeled on $X$.


## Geometrization in 2 and 3 dimensions

## Geometrization in 2 and 3 dimensions

- Dimension 2: every surface has exactly one of:


## Geometrization in 2 and 3 dimensions

- Dimension 2: every surface has exactly one of:
- Spherical geometry (if $\chi(\Sigma)>0$ );


## Geometrization in 2 and 3 dimensions

- Dimension 2: every surface has exactly one of:
- Spherical geometry (if $\chi(\Sigma)>0$ );
- Euclidean geometry (if $\chi(\Sigma)=0$ );


## Geometrization in 2 and 3 dimensions

- Dimension 2: every surface has exactly one of:
- Spherical geometry (if $\chi(\Sigma)>0$ );
- Euclidean geometry (if $\chi(\Sigma)=0$ );
- Hyperbolic geometry (if $\chi(\Sigma)<0$ ).


## Geometrization in 2 and 3 dimensions

- Dimension 2: every surface has exactly one of:
- Spherical geometry (if $\chi(\Sigma)>0$ );
- Euclidean geometry (if $\chi(\Sigma)=0$ );
- Hyperbolic geometry (if $\chi(\Sigma)<0$ ).
- Equivalently, Riemannian metrics of constant curvature $+1,0,-1$.


## Geometrization in 2 and 3 dimensions

- Dimension 2: every surface has exactly one of:
- Spherical geometry (if $\chi(\Sigma)>0$ );
- Euclidean geometry (if $\chi(\Sigma)=0$ );
- Hyperbolic geometry (if $\chi(\Sigma)<0$ ).
- Equivalently, Riemannian metrics of constant curvature $+1,0,-1$.
- Locally homogeneous Riemannian geometries, modeled on $X=G / H$, $H$ compact.


## Geometrization in 2 and 3 dimensions

- Dimension 2: every surface has exactly one of:
- Spherical geometry (if $\chi(\Sigma)>0$ );
- Euclidean geometry (if $\chi(\Sigma)=0$ );
- Hyperbolic geometry (if $\chi(\Sigma)<0$ ).
- Equivalently, Riemannian metrics of constant curvature $+1,0,-1$.
- Locally homogeneous Riemannian geometries, modeled on $X=G / H$, H compact.
- (Thurston 1976): 3-manifolds canonically decompose into locally homogeneous Riemannian pieces (8 types). (proved by Perelman)


## Classification of geometric structures

## Classification of geometric structures

- Basic question: Given a topology $\Sigma$ and a geometry $X=G / H$, determine all possible ways of providing $\Sigma$ with the local geometry of $(X, G)$.



## Classification of geometric structures

- Basic question: Given a topology $\Sigma$ and a geometry $X=G / H$, determine all possible ways of providing $\Sigma$ with the local geometry of $(X, G)$.
- Example: The 2-sphere admits no Euclidean structure: $\nexists$ metrically accurate world atlas.



## Classification of geometric structures

- Basic question: Given a topology $\Sigma$ and a geometry $X=G / H$, determine all possible ways of providing $\Sigma$ with the local geometry of $(X, G)$.
- Example: The 2-sphere admits no Euclidean structure:

A metrically accurate world atlas.

- Example: The 2-torus admits a moduli space of Euclidean structures.



## Connection with connections

## Connection with connections

- A Euclidean structure is a flat Riemannian metric.


## Connection with connections

- A Euclidean structure is a flat Riemannian metric.
- An affine structure is a flat torsionfree affine connection.


## Connection with connections

- A Euclidean structure is a flat Riemannian metric.
- An affine structure is a flat torsionfree affine connection.
- A projective structure is a flat normal projective connection.


## Connection with connections

- A Euclidean structure is a flat Riemannian metric.
- An affine structure is a flat torsionfree affine connection.
- A projective structure is a flat normal projective connection.
- In general, Ehresmann structures are examples of Cartan connections for which the local invariants (curvature) vanish.


## Connection with connections

- A Euclidean structure is a flat Riemannian metric.
- An affine structure is a flat torsionfree affine connection.
- A projective structure is a flat normal projective connection.
- In general, Ehresmann structures are examples of Cartan connections for which the local invariants (curvature) vanish.
- Cartan connections exist on fiber bundles and an Ehresmann structure determines a flat connection on this fiber bundle with a canonical section describing the local coordinates.


## Connection with connections

- A Euclidean structure is a flat Riemannian metric.
- An affine structure is a flat torsionfree affine connection.
- A projective structure is a flat normal projective connection.
- In general, Ehresmann structures are examples of Cartan connections for which the local invariants (curvature) vanish.
- Cartan connections exist on fiber bundles and an Ehresmann structure determines a flat connection on this fiber bundle with a canonical section describing the local coordinates.
- Local deformation theory of geometric structures $\Longleftrightarrow$ local deformation theory of flat connections - representations of $\pi_{1}(\Sigma)$.


## Quotients of domains

## Quotients of domains

- Suppose that $\Omega \subset X$ is an open subset invariant under a subgroup $\Gamma \subset G$ such that:


## Quotients of domains

- Suppose that $\Omega \subset X$ is an open subset invariant under a subgroup $\Gamma \subset G$ such that:
- 「 is discrete;


## Quotients of domains

- Suppose that $\Omega \subset X$ is an open subset invariant under a subgroup $\Gamma \subset G$ such that:
- 「 is discrete;- 「 acts properly and freely on $\Omega$


## Quotients of domains

- Suppose that $\Omega \subset X$ is an open subset invariant under a subgroup $\Gamma \subset G$ such that:
- 「 is discrete;
- $\Gamma$ acts properly and freely on $\Omega$
- Then $M=\Omega / \Gamma$ is a $(G, X)$-manifold covered by $\Omega$.


## Quotients of domains

- Suppose that $\Omega \subset X$ is an open subset invariant under a subgroup $\Gamma \subset G$ such that:
- 「 is discrete;- 「 acts properly and freely on $\Omega$
- Then $M=\Omega / \Gamma$ is a $(G, X)$-manifold covered by $\Omega$.
- Convex $\mathbb{R P}^{n}$-structures: $\Omega \subset \mathbb{R P}^{n}$ convex domain.


## Quotients of domains

- Suppose that $\Omega \subset X$ is an open subset invariant under a subgroup $\Gamma \subset G$ such that:
- 「 is discrete;- 「 acts properly and freely on $\Omega$
- Then $M=\Omega / \Gamma$ is a $(G, X)$-manifold covered by $\Omega$.
- Convex $\mathbb{R}^{n}$-structures: $\Omega \subset \mathbb{R} \mathbb{P}^{n}$ convex domain.
- Projective geometry inside a quadric $\Omega$ is hyperbolic geometry.


## Quotients of domains

- Suppose that $\Omega \subset X$ is an open subset invariant under a subgroup $\Gamma \subset G$ such that:
- 「 is discrete;- 「 acts properly and freely on $\Omega$
- Then $M=\Omega / \Gamma$ is a $(G, X)$-manifold covered by $\Omega$.
- Convex $\mathbb{R}^{n}$-structures: $\Omega \subset \mathbb{R P}^{n}$ convex domain.
- Projective geometry inside a quadric $\Omega$ is hyperbolic geometry.
- Hyperbolic distance is defined by cross-ratios: $d(x, y)=\log [A, x, y, B]$.



## Quotients of domains

- Suppose that $\Omega \subset X$ is an open subset invariant under a subgroup $\Gamma \subset G$ such that:
- 「 is discrete;- 「 acts properly and freely on $\Omega$
- Then $M=\Omega / \Gamma$ is a $(G, X)$-manifold covered by $\Omega$.
- Convex $\mathbb{R}^{n}$-structures: $\Omega \subset \mathbb{R} \mathbb{P}^{n}$ convex domain.
- Projective geometry inside a quadric $\Omega$ is hyperbolic geometry.
- Hyperbolic distance is defined by cross-ratios: $d(x, y)=\log [A, x, y, B]$.

- Projective geometry contains hyperbolic geometry.


## Quotients of domains

- Suppose that $\Omega \subset X$ is an open subset invariant under a subgroup $\Gamma \subset G$ such that:
- 「 is discrete;- 「 acts properly and freely on $\Omega$
- Then $M=\Omega / \Gamma$ is a $(G, X)$-manifold covered by $\Omega$.
- Convex $\mathbb{R}^{n}$-structures: $\Omega \subset \mathbb{R} \mathbb{P}^{n}$ convex domain.
- Projective geometry inside a quadric $\Omega$ is hyperbolic geometry.
- Hyperbolic distance is defined by cross-ratios: $d(x, y)=\log [A, x, y, B]$.

- Projective geometry contains hyperbolic geometry.
- Hyperbolic structures are convex $\mathbb{R P}^{n}$-structures.


## Projective deformation of equilateral $60^{\circ}$-triangle tiling



This tesselation of the open triangular region in $\mathbb{R} \mathbb{P}^{2}$ is equivalent to the tiling of the Euclidean plane by equilateral triangles.

## Example: Projective deformation of a hyperbolic tiling



Both domains are tiled by $60^{\circ}, 60^{\circ}, 45^{\circ}$ )-triangles, invariant under a Coxeter group $\Gamma(3,3,4)$. First is bounded by a conic (hyperbolic geometry). Second is invariant under Weyl group associated to

$$
\left[\begin{array}{ccc}
2 & -1 & -2 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right]
$$

with domain bounded by $C^{1+\alpha}$-convex curve where $0 \leqslant \alpha<1$.

## Example: Hyperbolic structure on genus two surface

## Example: Hyperbolic structure on genus two surface

- Identify sides of an octagon to form a closed genus two surface.



## Example: Hyperbolic structure on genus two surface

- Identify sides of an octagon to form a closed genus two surface.

- Realize these identifications isometrically for a regular $45^{\circ}$-octagon.



## Example: Quasi-Fuchsian $\mathbb{C P}^{1}$-structure



## Example: Quasi-Fuchsian $\mathbb{C P}^{1}$-structure

- Start with a hyperbolic structure on a surface $\Sigma$ represented as a quotient $\mathrm{H}^{2} / \Gamma_{0}$ where $\Gamma_{0} \subset \operatorname{PSL}(2, \mathbb{R})=$ Isom ${ }^{+}\left(\mathrm{H}^{2}\right)$. Regard $\mathrm{H}^{2}$ as an open hemisphere in $\mathbb{C P}^{1}$ invariant under $\operatorname{PSL}(2, \mathbb{R})$.



## Example: Quasi-Fuchsian $\mathbb{C P}^{1}$-structure

- Start with a hyperbolic structure on a surface $\Sigma$ represented as a quotient $\mathrm{H}^{2} / \Gamma_{0}$ where $\Gamma_{0} \subset \operatorname{PSL}(2, \mathbb{R})=\operatorname{Isom}{ }^{+}\left(\mathrm{H}^{2}\right)$. Regard $\mathrm{H}^{2}$ as an open hemisphere in $\mathbb{C P}^{1}$ invariant under $\operatorname{PSL}(2, \mathbb{R})$.
- Hyperbolic structure $\Longrightarrow \mathbb{C P}^{1}$-structure.



## Example: Quasi-Fuchsian $\mathbb{C P}^{1}$-structure

- Start with a hyperbolic structure on a surface $\Sigma$ represented as a quotient $\mathrm{H}^{2} / \Gamma_{0}$ where $\Gamma_{0} \subset \operatorname{PSL}(2, \mathbb{R})=\operatorname{Isom}{ }^{+}\left(\mathrm{H}^{2}\right)$. Regard $\mathrm{H}^{2}$ as an open hemisphere in $\mathbb{C P}^{1}$ invariant under $\operatorname{PSL}(2, \mathbb{R})$.
- Hyperbolic structure $\Longrightarrow \mathbb{C P}^{1}$-structure.
- Deform the representation of $\Gamma_{0}$ in $\operatorname{PSL}(2, \mathbb{C}) \supset \operatorname{PSL}(2, \mathbb{R})$.



## Example: Quasi-Fuchsian $\mathbb{C P}^{1}$-structure

- Start with a hyperbolic structure on a surface $\Sigma$ represented as a quotient $\mathrm{H}^{2} / \Gamma_{0}$ where $\Gamma_{0} \subset \operatorname{PSL}(2, \mathbb{R})=\operatorname{lsom}{ }^{+}\left(\mathrm{H}^{2}\right)$. Regard $\mathrm{H}^{2}$ as an open hemisphere in $\mathbb{C P}^{1}$ invariant under $\operatorname{PSL}(2, \mathbb{R})$.
- Hyperbolic structure $\Longrightarrow \mathbb{C P}^{1}$-structure.
- Deform the representation of $\Gamma_{0}$ in $\operatorname{PSL}(2, \mathbb{C}) \supset \operatorname{PSL}(2, \mathbb{R})$.
- For $\Gamma_{t}$ sufficiently near $\Gamma_{0}$, the deformation $\Gamma_{t}$ arises from an embedding of $\Gamma_{0}$ as a discrete group acting properly an open subset $\Omega \subset \mathbb{C P}^{1}$. Unless $\Gamma_{t}$ is Fuchsian, $\partial \Omega$ is a fractal Jordan curve of Hausdorff dimension $>1$ (Bowen).



## Example: Anti-de Sitter structures

## Example: Anti-de Sitter structures

- Anti-de Sitter space AdS $^{n}$ is the model space of constant negative curvature Lorentzian geometry.


## Example: Anti-de Sitter structures

- Anti-de Sitter space AdS $^{n}$ is the model space of constant negative curvature Lorentzian geometry.
- $\mathrm{AdS}^{n} \cong \mathrm{O}(n-1,2) /(\mathrm{O}(n-2) \times \mathrm{O}(1,2))$.


## Example: Anti-de Sitter structures

- Anti-de Sitter space AdS $^{n}$ is the model space of constant negative curvature Lorentzian geometry.
- $\mathrm{AdS}^{n} \cong \mathrm{O}(n-1,2) /(\mathrm{O}(n-2) \times \mathrm{O}(1,2))$.
- Let $H=\operatorname{PSL}(2, \mathbb{R})$. For $n=3$, anti-de Sitter geometry identifies with $G=H \times H$ acting (isometrically) on $X=H$ by left- and right-multiplication:

$$
\left(h_{1}, h_{2}\right): x \longmapsto h_{1} x h_{2}^{-1}
$$

## Example: Anti-de Sitter structures

- Anti-de Sitter space AdS $^{n}$ is the model space of constant negative curvature Lorentzian geometry.
- $\mathrm{AdS}^{n} \cong \mathrm{O}(n-1,2) /(\mathrm{O}(n-2) \times \mathrm{O}(1,2))$.
- Let $H=\operatorname{PSL}(2, \mathbb{R})$. For $n=3$, anti-de Sitter geometry identifies with $G=H \times H$ acting (isometrically) on $X=H$ by left- and right-multiplication:

$$
\left(h_{1}, h_{2}\right): x \longmapsto h_{1} x h_{2}^{-1}
$$

- A closed 3-dimensional $\operatorname{AdS}$-manifold is a quotient $X / \operatorname{graph}(\rho)$ where $\Gamma \subset H$ is a cocompact lattice and

$$
\operatorname{graph}(\rho)=\{(\gamma, \rho(\gamma)) \mid \gamma \in \Gamma\}
$$

is the graph of $\rho$. (Kulkarni-Raymond 1985)

## Example:Flat Lorentz 3-Manifolds

## Example:Flat Lorentz 3-Manifolds

- Minkowski space $\mathbb{E}^{n, 1}$ is the model space for flat Lorentzian geometry.


## Example:Flat Lorentz 3-Manifolds

- Minkowski space $\mathbb{E}^{n, 1}$ is the model space for flat Lorentzian geometry.
- Its isometries are affine transformations whose linear part lies in the orthogonal group $\mathrm{O}(n-1,1)$.


## Example:Flat Lorentz 3-Manifolds

- Minkowski space $\mathbb{E}^{n, 1}$ is the model space for flat Lorentzian geometry.
- Its isometries are affine transformations whose linear part lies in the orthogonal group $\mathrm{O}(n-1,1)$.
- Let $H=\operatorname{PSL}(2, \mathbb{R})$ as before. For $n=3$, this geometry is that of the tangent bundle $G=T H=H \ltimes_{A d} \mathfrak{h}$ acting on $X=G / H \cong \mathbb{E}^{n, 1}$.


## Analogy with quasi-Fuchsian deformations

## Analogy with quasi-Fuchsian deformations

- Every noncompact semisimple Lie group (locally) contains $\operatorname{SL}(2, \mathbb{R})$. A rich source of geometries arise from deforming hyperbolic geometry.


## Analogy with quasi-Fuchsian deformations

- Every noncompact semisimple Lie group (locally) contains $\operatorname{SL}(2, \mathbb{R})$. A rich source of geometries arise from deforming hyperbolic geometry.
- Let $i=\sqrt{-1}$. Quasi-Fuchsian deformations arise from deforming

$$
\operatorname{PSL}(2, \mathbb{R}) \hookrightarrow \operatorname{PSL}(2, \mathbb{R}[i])=\operatorname{PSL}(2, \mathbb{C})
$$

## Analogy with quasi-Fuchsian deformations

- Every noncompact semisimple Lie group (locally) contains $\operatorname{SL}(2, \mathbb{R})$. A rich source of geometries arise from deforming hyperbolic geometry.
- Let $i=\sqrt{-1}$. Quasi-Fuchsian deformations arise from deforming

$$
\operatorname{PSL}(2, \mathbb{R}) \hookrightarrow \operatorname{PSL}(2, \mathbb{R}[i])=\operatorname{PSL}(2, \mathbb{C})
$$

- Affine deformations (isometric actions on Minkowski space) arise from deforming in

$$
\operatorname{PSL}(2, \mathbb{R}) \hookrightarrow \operatorname{TPSL}(2, \mathbb{R})=\operatorname{PSL}(2, \mathbb{R}[\epsilon]) \cong \operatorname{lsom}^{0}\left(\mathbb{E}^{2,1}\right)
$$

where $\epsilon^{2}=0$, corresponding to infinitesimal deformations of hyperbolic geometry.

## Analogy with quasi-Fuchsian deformations

- Every noncompact semisimple Lie group (locally) contains $\operatorname{SL}(2, \mathbb{R})$. A rich source of geometries arise from deforming hyperbolic geometry.
- Let $i=\sqrt{-1}$. Quasi-Fuchsian deformations arise from deforming

$$
\operatorname{PSL}(2, \mathbb{R}) \hookrightarrow \operatorname{PSL}(2, \mathbb{R}[i])=\operatorname{PSL}(2, \mathbb{C})
$$

- Affine deformations (isometric actions on Minkowski space) arise from deforming in

$$
\operatorname{PSL}(2, \mathbb{R}) \hookrightarrow \operatorname{TPSL}(2, \mathbb{R})=\operatorname{PSL}(2, \mathbb{R}[\epsilon]) \cong \operatorname{lsom}^{0}\left(\mathbb{E}^{2,1}\right)
$$

where $\epsilon^{2}=0$, corresponding to infinitesimal deformations of hyperbolic geometry.

- Anti-de Sitter deformations arise from

$$
\operatorname{PSL}(2, \mathbb{R}) \hookrightarrow \mathrm{O}(2,2)=\operatorname{PSL}(2, \mathbb{R}[v]) \cong \operatorname{PSL}(2, \mathbb{R}) \times \operatorname{PSL}(2, \mathbb{R})
$$

where $v^{2}=+1$.

## Modeling structures on representations of $\pi_{1}$

## Modeling structures on representations of $\pi_{1}$

- Marked $(G, X)$-structure on $\Sigma:$ diffeomorphism $\Sigma \xrightarrow{f} M$ where $M$ is a $(G, X)$-manifold.


## Modeling structures on representations of $\pi_{1}$

- Marked $(G, X)$-structure on $\Sigma:$ diffeomorphism $\Sigma \xrightarrow{f} M$ where $M$ is a $(G, X)$-manifold.
- Define deformation space

$$
\mathfrak{D}_{(G, X)}(\Sigma):=\{\text { Marked }(G, X) \text {-structures on } \Sigma\} / \text { Isotopy }
$$

## Modeling structures on representations of $\pi_{1}$

- Marked $(G, X)$-structure on $\Sigma:$ diffeomorphism $\Sigma \xrightarrow{f} M$ where $M$ is a $(G, X)$-manifold.
- Define deformation space

$$
\mathfrak{D}_{(G, X)}(\Sigma):=\{\text { Marked }(G, X) \text {-structures on } \Sigma\} / \text { Isotopy }
$$

- Mapping class group

$$
\operatorname{Mod}(\Sigma):=\pi_{0}(\operatorname{Diff}(\Sigma))
$$

acts on $\mathfrak{D}_{(G, X)}(\Sigma)$.

## Representation varieties

## Representation varieties

- Let $\pi=\left\langle X_{1}, \ldots, X_{n}\right\rangle$ be finitely generated and $G \subset G L(N, \mathbb{R})$ a linear algebraic group.


## Representation varieties

- Let $\pi=\left\langle X_{1}, \ldots, X_{n}\right\rangle$ be finitely generated and $G \subset G L(N, \mathbb{R})$ a linear algebraic group.
- The set $\operatorname{Hom}(\pi, G)$ of homomorphisms

$$
\pi \longrightarrow G
$$

enjoys the natural structure of an affine algebraic variety

## Representation varieties

- Let $\pi=\left\langle X_{1}, \ldots, X_{n}\right\rangle$ be finitely generated and $G \subset G L(N, \mathbb{R})$ a linear algebraic group.
- The set $\operatorname{Hom}(\pi, G)$ of homomorphisms

$$
\pi \longrightarrow G
$$

enjoys the natural structure of an affine algebraic variety

- Invariant under $\operatorname{Aut}(\pi) \times \operatorname{Aut}(G)$.


## Representation varieties

- Let $\pi=\left\langle X_{1}, \ldots, X_{n}\right\rangle$ be finitely generated and $G \subset G L(N, \mathbb{R})$ a linear algebraic group.
- The set $\operatorname{Hom}(\pi, G)$ of homomorphisms

$$
\pi \longrightarrow G
$$

enjoys the natural structure of an affine algebraic variety

- Invariant under $\operatorname{Aut}(\pi) \times \operatorname{Aut}(G)$.
- Action of $\operatorname{Out}(\pi):=\operatorname{Aut}(\pi) / \operatorname{lnn}(\pi)$ on

$$
\operatorname{Hom}(\pi, G) / G:=\operatorname{Hom}(\pi, G) /(\{1\} \times \operatorname{Inn}(G))
$$

## Holonomy

## Holonomy

- A marked structure determines a developing map $\tilde{\Sigma} \longrightarrow X$ and a holonomy representation $\pi \longrightarrow G$.


## Holonomy

- A marked structure determines a developing map $\tilde{\Sigma} \longrightarrow X$ and a holonomy representation $\pi \longrightarrow G$.
- Globalize the coordinate charts and coordinate changes respectively.


## Holonomy

- A marked structure determines a developing map $\tilde{\Sigma} \longrightarrow X$ and a holonomy representation $\pi \longrightarrow G$.
- Globalize the coordinate charts and coordinate changes respectively.
- Holonomy defines a mapping

$$
\mathfrak{D}_{(G, X)}(\Sigma) \xrightarrow{\text { hol }} \operatorname{Hom}(\pi, G) / G
$$

## Holonomy

- A marked structure determines a developing map $\tilde{\Sigma} \longrightarrow X$ and a holonomy representation $\pi \longrightarrow G$.
- Globalize the coordinate charts and coordinate changes respectively.
- Holonomy defines a mapping

$$
\mathfrak{D}_{(G, X)}(\Sigma) \xrightarrow{\text { hol }} \operatorname{Hom}(\pi, G) / G
$$

## Holonomy

- A marked structure determines a developing map $\tilde{\Sigma} \longrightarrow X$ and a holonomy representation $\pi \longrightarrow G$.
- Globalize the coordinate charts and coordinate changes respectively.
- Holonomy defines a mapping

$$
\mathfrak{D}_{(G, X)}(\Sigma) \xrightarrow{\text { hol }} \operatorname{Hom}(\pi, G) / G
$$

- Equivariant respecting

$$
\operatorname{Mod}(\Sigma) \longrightarrow \operatorname{Out}\left(\pi_{1}(\Sigma)\right)
$$

## Holonomy

- A marked structure determines a developing map $\tilde{\Sigma} \longrightarrow X$ and a holonomy representation $\pi \longrightarrow G$.
- Globalize the coordinate charts and coordinate changes respectively.
- Holonomy defines a mapping

$$
\mathfrak{D}_{(G, X)}(\Sigma) \xrightarrow{\text { hol }} \operatorname{Hom}(\pi, G) / G
$$

- Equivariant respecting

$$
\operatorname{Mod}(\Sigma) \longrightarrow \operatorname{Out}\left(\pi_{1}(\Sigma)\right)
$$

- (Thurston): The mapping hol is a local homeomorphism.


## Holonomy

- A marked structure determines a developing map $\tilde{\Sigma} \longrightarrow X$ and a holonomy representation $\pi \longrightarrow G$.
- Globalize the coordinate charts and coordinate changes respectively.
- Holonomy defines a mapping

$$
\mathfrak{D}_{(G, X)}(\Sigma) \xrightarrow{\text { hol }} \operatorname{Hom}(\pi, G) / G
$$

- Equivariant respecting

$$
\operatorname{Mod}(\Sigma) \longrightarrow \operatorname{Out}\left(\pi_{1}(\Sigma)\right)
$$

- (Thurston): The mapping hol is a local homeomorphism.
- For quotient structures, hol is an embedding.


## Euclidean and hyperbolic structures

## Euclidean and hyperbolic structures

- Euclidean geometry: When $X=\mathbb{R}^{2}$ and $G=\operatorname{Isom}\left(\mathbb{R}^{2}\right)$, every only closed orientable Euclidean surface $\approx T^{2}$. The deformation space $\mathfrak{D}_{(G, X)}(\Sigma)$ identifies with $\mathrm{H}^{2} \times \mathbb{R}^{+}$.


## Euclidean and hyperbolic structures

- Euclidean geometry: When $X=\mathbb{R}^{2}$ and $G=\operatorname{Isom}\left(\mathbb{R}^{2}\right)$, every only closed orientable Euclidean surface $\approx T^{2}$. The deformation space $\mathfrak{D}_{(G, X)}(\Sigma)$ identifies with $\mathrm{H}^{2} \times \mathbb{R}^{+}$.
- The coordinate in $\mathbb{R}^{+}$corresponds to the area of the structure.


## Euclidean and hyperbolic structures

- Euclidean geometry: When $X=\mathbb{R}^{2}$ and $G=\operatorname{Isom}\left(\mathbb{R}^{2}\right)$, every only closed orientable Euclidean surface $\approx T^{2}$. The deformation space $\mathfrak{D}_{(G, X)}(\Sigma)$ identifies with $\mathrm{H}^{2} \times \mathbb{R}^{+}$.
- The coordinate in $\mathbb{R}^{+}$corresponds to the area of the structure.
- $\operatorname{Mod}(\Sigma) \cong \operatorname{PSL}(2, \mathbb{Z})$ acts properly discretely,


## Euclidean and hyperbolic structures

- Euclidean geometry: When $X=\mathbb{R}^{2}$ and $G=\operatorname{Isom}\left(\mathbb{R}^{2}\right)$, every only closed orientable Euclidean surface $\approx T^{2}$. The deformation space $\mathfrak{D}_{(G, X)}(\Sigma)$ identifies with $\mathrm{H}^{2} \times \mathbb{R}^{+}$.
- The coordinate in $\mathbb{R}^{+}$corresponds to the area of the structure.
- $\operatorname{Mod}(\Sigma) \cong \operatorname{PSL}(2, \mathbb{Z})$ acts properly discretely,
- Hyperbolic geometry: When $X=\mathrm{H}^{2}$ and $G=\operatorname{Isom}\left(\mathrm{H}^{2}\right)$, the deformation space $\mathfrak{D}_{(G, X)}(\Sigma)$ identifies with Fricke space $\mathfrak{F}(\Sigma)$.


## Euclidean and hyperbolic structures

- Euclidean geometry: When $X=\mathbb{R}^{2}$ and $G=\operatorname{Isom}\left(\mathbb{R}^{2}\right)$, every only closed orientable Euclidean surface $\approx T^{2}$. The deformation space $\mathfrak{D}_{(G, X)}(\Sigma)$ identifies with $\mathrm{H}^{2} \times \mathbb{R}^{+}$.
- The coordinate in $\mathbb{R}^{+}$corresponds to the area of the structure.
- $\operatorname{Mod}(\Sigma) \cong \operatorname{PSL}(2, \mathbb{Z})$ acts properly discretely,
- Hyperbolic geometry: When $X=\mathrm{H}^{2}$ and $G=\operatorname{Isom}\left(\mathrm{H}^{2}\right)$, the deformation space $\mathfrak{D}_{(G, X)}(\Sigma)$ identifies with Fricke space $\mathfrak{F}(\Sigma)$.
- Identifies with Teichmüller space $\mathfrak{T}(\Sigma)$ (marked conformal structures) via Klein-Koebe-Poincaré Uniformization Theorem.


## Euclidean and hyperbolic structures

- Euclidean geometry: When $X=\mathbb{R}^{2}$ and $G=\operatorname{Isom}\left(\mathbb{R}^{2}\right)$, every only closed orientable Euclidean surface $\approx T^{2}$. The deformation space $\mathfrak{D}_{(G, X)}(\Sigma)$ identifies with $\mathrm{H}^{2} \times \mathbb{R}^{+}$.
- The coordinate in $\mathbb{R}^{+}$corresponds to the area of the structure.
- $\operatorname{Mod}(\Sigma) \cong \operatorname{PSL}(2, \mathbb{Z})$ acts properly discretely,
- Hyperbolic geometry: When $X=\mathrm{H}^{2}$ and $G=\operatorname{Isom}\left(\mathrm{H}^{2}\right)$, the deformation space $\mathfrak{D}_{(G, X)}(\Sigma)$ identifies with Fricke space $\mathfrak{F}(\Sigma)$.
- Identifies with Teichmüller space $\mathfrak{T}(\Sigma)$ (marked conformal structures) via Klein-Koebe-Poincaré Uniformization Theorem.
- hol embeds $\mathfrak{F}(\Sigma)$ as a connected component of $\operatorname{Hom}(\pi, G) / G$.


## Euclidean and hyperbolic structures

- Euclidean geometry: When $X=\mathbb{R}^{2}$ and $G=\operatorname{Isom}\left(\mathbb{R}^{2}\right)$, every only closed orientable Euclidean surface $\approx T^{2}$. The deformation space $\mathfrak{D}_{(G, X)}(\Sigma)$ identifies with $\mathrm{H}^{2} \times \mathbb{R}^{+}$.
- The coordinate in $\mathbb{R}^{+}$corresponds to the area of the structure.
- $\operatorname{Mod}(\Sigma) \cong \operatorname{PSL}(2, \mathbb{Z})$ acts properly discretely,
- Hyperbolic geometry: When $X=\mathrm{H}^{2}$ and $G=\operatorname{Isom}\left(\mathrm{H}^{2}\right)$, the deformation space $\mathfrak{D}_{(G, X)}(\Sigma)$ identifies with Fricke space $\mathfrak{F}(\Sigma)$.
- Identifies with Teichmüller space $\mathfrak{T}(\Sigma)$ (marked conformal structures) via Klein-Koebe-Poincaré Uniformization Theorem.
- hol embeds $\mathfrak{F}(\Sigma)$ as a connected component of $\operatorname{Hom}(\pi, G) / G$.
- $\mathfrak{F}(\Sigma) \approx \mathbb{R}^{6 g-6}$ and $\operatorname{Mod}(\Sigma)$ acts properly discretely.


## Projective structures

## Projective structures

- When $X=\mathbb{C P}^{1}$ and $G=\operatorname{PGL}(2, \mathbb{C})$, Poincaré identified $\mathfrak{D}_{(G, X)}(\Sigma)$ with an affine bundle over $\mathfrak{T}(\Sigma)$ whose fiber over Riemann surface $R$ is the vector space $H^{0}\left(R, K^{2}\right)$ of holomorphic quadratic differentials.


## Projective structures

- When $X=\mathbb{C P}^{1}$ and $G=\operatorname{PGL}(2, \mathbb{C})$, Poincaré identified $\mathfrak{D}_{(G, X)}(\Sigma)$ with an affine bundle over $\mathfrak{T}(\Sigma)$ whose fiber over Riemann surface $R$ is the vector space $H^{0}\left(R, K^{2}\right)$ of holomorphic quadratic differentials.
- Thus $\mathfrak{D}_{(G, X)}(\Sigma) \approx \mathbb{R}^{12 g-12}$ and $\operatorname{Mod}(\Sigma)$ acts properly discretely, containing quasi-Fuchsian representations.


## Projective structures

- When $X=\mathbb{C P}^{1}$ and $G=\operatorname{PGL}(2, \mathbb{C})$, Poincaré identified $\mathfrak{D}_{(G, X)}(\Sigma)$ with an affine bundle over $\mathfrak{T}(\Sigma)$ whose fiber over Riemann surface $R$ is the vector space $H^{0}\left(R, K^{2}\right)$ of holomorphic quadratic differentials.
- Thus $\mathfrak{D}_{(G, X)}(\Sigma) \approx \mathbb{R}^{12 g-12}$ and $\operatorname{Mod}(\Sigma)$ acts properly discretely, containing quasi-Fuchsian representations.
- Alternate geometric description in terms of hyperbolic structures "bent" along measured geodesic lamination in $\mathrm{H}^{3}$ (Thurston 1976).


## Projective structures

- When $X=\mathbb{C P}^{1}$ and $G=\operatorname{PGL}(2, \mathbb{C})$, Poincaré identified $\mathfrak{D}_{(G, X)}(\Sigma)$ with an affine bundle over $\mathfrak{T}(\Sigma)$ whose fiber over Riemann surface $R$ is the vector space $H^{0}\left(R, K^{2}\right)$ of holomorphic quadratic differentials.
- Thus $\mathfrak{D}_{(G, X)}(\Sigma) \approx \mathbb{R}^{12 g-12}$ and $\operatorname{Mod}(\Sigma)$ acts properly discretely, containing quasi-Fuchsian representations.
- Alternate geometric description in terms of hyperbolic structures "bent" along measured geodesic lamination in $\mathrm{H}^{3}$ (Thurston 1976).
- When $X=\mathbb{R} \mathbb{P}^{2}$ and $G=\operatorname{PGL}(3, \mathbb{R})$, the deformation space $\mathfrak{D}_{(G, X)}(\Sigma) \approx \mathbb{R}^{16 g-16} \times \mathbb{N}($ Choi-G 1990) .


## Projective structures

- When $X=\mathbb{C P}^{1}$ and $G=\operatorname{PGL}(2, \mathbb{C})$, Poincaré identified $\mathfrak{D}_{(G, X)}(\Sigma)$ with an affine bundle over $\mathfrak{T}(\Sigma)$ whose fiber over Riemann surface $R$ is the vector space $H^{0}\left(R, K^{2}\right)$ of holomorphic quadratic differentials.
- Thus $\mathfrak{D}_{(G, X)}(\Sigma) \approx \mathbb{R}^{12 g-12}$ and $\operatorname{Mod}(\Sigma)$ acts properly discretely, containing quasi-Fuchsian representations.
- Alternate geometric description in terms of hyperbolic structures "bent" along measured geodesic lamination in $\mathrm{H}^{3}$ (Thurston 1976).
- When $X=\mathbb{R P}^{2}$ and $G=\operatorname{PGL}(3, \mathbb{R})$, the deformation space $\mathfrak{D}_{(G, X)}(\Sigma) \approx \mathbb{R}^{16 g-16} \times \mathbb{N}($ Choi-G 1990) .
- Convex structures comprise one component, which Labourie and Loftin (1999) identify as vector bundle over $\mathfrak{F}(\Sigma)$ whose fiber over Riemann surface $R$ is the vector space $H^{0}\left(R, K^{3}\right)$ of holomorphic cubic differentials.


## Projective structures

- When $X=\mathbb{C P}^{1}$ and $G=\operatorname{PGL}(2, \mathbb{C})$, Poincaré identified $\mathfrak{D}_{(G, X)}(\Sigma)$ with an affine bundle over $\mathfrak{T}(\Sigma)$ whose fiber over Riemann surface $R$ is the vector space $H^{0}\left(R, K^{2}\right)$ of holomorphic quadratic differentials.
- Thus $\mathfrak{D}_{(G, X)}(\Sigma) \approx \mathbb{R}^{12 g-12}$ and $\operatorname{Mod}(\Sigma)$ acts properly discretely, containing quasi-Fuchsian representations.
- Alternate geometric description in terms of hyperbolic structures "bent" along measured geodesic lamination in $\mathrm{H}^{3}$ (Thurston 1976).
- When $X=\mathbb{R P}^{2}$ and $G=\operatorname{PGL}(3, \mathbb{R})$, the deformation space $\mathfrak{D}_{(G, X)}(\Sigma) \approx \mathbb{R}^{16 g-16} \times \mathbb{N}($ Choi-G 1990) .
- Convex structures comprise one component, which Labourie and Loftin (1999) identify as vector bundle over $\mathfrak{F}(\Sigma)$ whose fiber over Riemann surface $R$ is the vector space $H^{0}\left(R, K^{3}\right)$ of holomorphic cubic differentials.
- "Teichmüller" component of $\operatorname{Hom}(\pi, G) / G$, discovered for general $\mathbb{R}$-split groups $G$ by Hitchin (1990), for $G=\operatorname{PGL}(3, \mathbb{R})$.


## Projective structures

- When $X=\mathbb{C P}^{1}$ and $G=\operatorname{PGL}(2, \mathbb{C})$, Poincaré identified $\mathfrak{D}_{(G, X)}(\Sigma)$ with an affine bundle over $\mathfrak{T}(\Sigma)$ whose fiber over Riemann surface $R$ is the vector space $H^{0}\left(R, K^{2}\right)$ of holomorphic quadratic differentials.
- Thus $\mathfrak{D}_{(G, X)}(\Sigma) \approx \mathbb{R}^{12 g-12}$ and $\operatorname{Mod}(\Sigma)$ acts properly discretely, containing quasi-Fuchsian representations.
- Alternate geometric description in terms of hyperbolic structures "bent" along measured geodesic lamination in $\mathrm{H}^{3}$ (Thurston 1976).
- When $X=\mathbb{R P}^{2}$ and $G=\operatorname{PGL}(3, \mathbb{R})$, the deformation space $\mathfrak{D}_{(G, X)}(\Sigma) \approx \mathbb{R}^{16 g-16} \times \mathbb{N}($ Choi-G 1990) .
- Convex structures comprise one component, which Labourie and Loftin (1999) identify as vector bundle over $\mathfrak{F}(\Sigma)$ whose fiber over Riemann surface $R$ is the vector space $H^{0}\left(R, K^{3}\right)$ of holomorphic cubic differentials.
- "Teichmüller" component of $\operatorname{Hom}(\pi, G) / G$, discovered for general $\mathbb{R}$-split groups $G$ by Hitchin (1990), for $G=\operatorname{PGL}(3, \mathbb{R})$.
- For general split real forms, these Hitchin representations are discrete embeddings (Labourie 2005) and correspond to geometric structures on compact manifolds (Guichard-Wienhard 2011).


## Example:Complete affine 3-manifolds

## Example:Complete affine 3-manifolds

- A complete affine manifold is a quotient

$$
M^{n}=\mathbb{R}^{n} / \Gamma
$$

where $\Gamma \subset \operatorname{Aff}(n, \mathbb{R})$ is a discrete subgroup acting properly and freely.

## Example:Complete affine 3-manifolds

- A complete affine manifold is a quotient

$$
M^{n}=\mathbb{R}^{n} / \Gamma
$$

where $\Gamma \subset \operatorname{Aff}(n, \mathbb{R})$ is a discrete subgroup acting properly and freely.

- In dimension 3, two types:


## Example:Complete affine 3-manifolds

- A complete affine manifold is a quotient

$$
M^{n}=\mathbb{R}^{n} / \Gamma
$$

where $\Gamma \subset \operatorname{Aff}(n, \mathbb{R})$ is a discrete subgroup acting properly and freely.

- In dimension 3, two types:
- 「 solvable;


## Example:Complete affine 3-manifolds

- A complete affine manifold is a quotient

$$
M^{n}=\mathbb{R}^{n} / \Gamma
$$

where $\Gamma \subset \operatorname{Aff}(n, \mathbb{R})$ is a discrete subgroup acting properly and freely.

- In dimension 3, two types:
- 「 solvable;- 「 free of rank $\geq 2$.


## Example:Complete affine 3-manifolds

- A complete affine manifold is a quotient

$$
M^{n}=\mathbb{R}^{n} / \Gamma
$$

where $\Gamma \subset \operatorname{Aff}(n, \mathbb{R})$ is a discrete subgroup acting properly and freely.

- In dimension 3, two types:
- 「 solvable;- 「 free of rank $\geq 2$.
- Solvable case classified (late 1970's, Fried-G)


## Example:Complete affine 3-manifolds

- A complete affine manifold is a quotient

$$
M^{n}=\mathbb{R}^{n} / \Gamma
$$

where $\Gamma \subset \operatorname{Aff}(n, \mathbb{R})$ is a discrete subgroup acting properly and freely.

- In dimension 3, two types:
- 「 solvable;- 「 free of rank $\geq 2$.
- Solvable case classified (late 1970's, Fried-G)
- includes compact $M^{3}$ ( $T^{2}$-bundles over $S^{1}$ )


## Example:Complete affine 3-manifolds

- A complete affine manifold is a quotient

$$
M^{n}=\mathbb{R}^{n} / \Gamma
$$

where $\Gamma \subset \operatorname{Aff}(n, \mathbb{R})$ is a discrete subgroup acting properly and freely.

- In dimension 3, two types:
- 「 solvable;- 「 free of rank $\geq 2$.
- Solvable case classified (late 1970's, Fried-G)
- includes compact $M^{3}$ ( $T^{2}$-bundles over $S^{1}$ )


## Example:Complete affine 3-manifolds

- A complete affine manifold is a quotient

$$
M^{n}=\mathbb{R}^{n} / \Gamma
$$

where $\Gamma \subset \operatorname{Aff}(n, \mathbb{R})$ is a discrete subgroup acting properly and freely.

- In dimension 3, two types:
- 「 solvable;- 「 free of rank $\geq 2$.
- Solvable case classified (late 1970's, Fried-G)
- includes compact $M^{3}$ ( $T^{2}$-bundles over $S^{1}$ )
- Free case, first examples discovered by Margulis (early 1980's), answering question raised by Milnor.


## Example:Complete affine 3-manifolds

- A complete affine manifold is a quotient

$$
M^{n}=\mathbb{R}^{n} / \Gamma
$$

where $\Gamma \subset \operatorname{Aff}(n, \mathbb{R})$ is a discrete subgroup acting properly and freely.

- In dimension 3, two types:
- 「 solvable;- 「 free of rank $\geq 2$.
- Solvable case classified (late 1970's, Fried-G)
- includes compact $M^{3}$ ( $T^{2}$-bundles over $S^{1}$ )
- Free case, first examples discovered by Margulis (early 1980's), answering question raised by Milnor.
- Deformation space is a bundle of convex cones over the Fricke space of hyperbolic structures (G-Labourie-Margulis 2010).


## Complete flat Lorentz manifolds

## Complete flat Lorentz manifolds

- Complete affine 3-manifold $\mathbb{R}^{3} / \Gamma$ : proper affine deformation

$$
\begin{aligned}
& \Gamma \longrightarrow \mathrm{SO}(2,1) \ltimes \mathbb{R}^{2,1} \\
& \gamma \longmapsto(\mathbb{L}(\gamma), u(\gamma))
\end{aligned}
$$

## Complete flat Lorentz manifolds

- Complete affine 3-manifold $\mathbb{R}^{3} / \Gamma$ : proper affine deformation

$$
\begin{aligned}
& \Gamma \longrightarrow \mathrm{SO}(2,1) \ltimes \mathbb{R}^{2,1} \\
& \gamma \longmapsto(\mathbb{L}(\gamma), u(\gamma))
\end{aligned}
$$

- $\mathbb{L}$ embeds $\Gamma$ onto Fuchsian group; noncompact quotient hyperbolic surface (Fried-G, Mess 1990)

$$
\Sigma=H^{2} / \mathbb{L}(\Gamma)
$$

## Complete flat Lorentz manifolds

- Complete affine 3-manifold $\mathbb{R}^{3} / \Gamma$ : proper affine deformation

$$
\begin{aligned}
& \Gamma \longrightarrow \mathrm{SO}(2,1) \ltimes \mathbb{R}^{2,1} \\
& \gamma \longmapsto(\mathbb{L}(\gamma), u(\gamma))
\end{aligned}
$$

- $\mathbb{L}$ embeds $\Gamma$ onto Fuchsian group; noncompact quotient hyperbolic surface (Fried-G, Mess 1990)

$$
\Sigma=\mathrm{H}^{2} / \mathbb{L}(\Gamma)
$$

- The cocycle $u$ corresponds to an infinitesimal deformation

$$
[u] \in H^{1}\left(\Gamma, \mathbb{R}^{2,1}\right) \cong H^{1}(\Sigma, \mathfrak{s o}(2,1))
$$

of the hyperbolic surface $\Sigma$ such that every (laminar) geodesic infinitesimally lengthens.

## Complete flat Lorentz manifolds

- Complete affine 3-manifold $\mathbb{R}^{3} / \Gamma$ : proper affine deformation

$$
\begin{aligned}
& \Gamma \longrightarrow \mathrm{SO}(2,1) \ltimes \mathbb{R}^{2,1} \\
& \gamma \longmapsto(\mathbb{L}(\gamma), u(\gamma))
\end{aligned}
$$

- $\mathbb{L}$ embeds $\Gamma$ onto Fuchsian group; noncompact quotient hyperbolic surface (Fried-G, Mess 1990)

$$
\Sigma=\mathrm{H}^{2} / \mathbb{L}(\Gamma)
$$

- The cocycle $u$ corresponds to an infinitesimal deformation

$$
[u] \in H^{1}\left(\Gamma, \mathbb{R}^{2,1}\right) \cong H^{1}(\Sigma, \mathfrak{s o}(2,1))
$$

of the hyperbolic surface $\Sigma$ such that every (laminar) geodesic infinitesimally lengthens.

- Drumm (1990) Every noncompact complete hyperbolic surface $\Sigma$ of finite type admits a proper affine deformation, with quotient solid handlebody.


## Ping-pong in $\mathrm{H}^{2}$



## Ping-pong in $\mathrm{H}^{2}$



- Start with mutually disjoint halfplanes $\mathfrak{h}_{1}^{-}, \mathfrak{h}_{1}^{+}, \ldots, \mathfrak{h}_{n}^{-}, \mathfrak{h}_{n}^{+}$


## Ping-pong in $\mathrm{H}^{2}$



- Start with mutually disjoint halfplanes $\mathfrak{h}_{1}^{-}, \mathfrak{h}_{1}^{+}, \ldots, \mathfrak{h}_{n}^{-}, \mathfrak{h}_{n}^{+}$ - paired by isometries $\mathfrak{h}_{i}^{-} \xrightarrow{g_{i}} \mathrm{H}^{2} \backslash \mathfrak{h}_{i}^{+}$.


## Ping-pong in $\mathrm{H}^{2}$



- Start with mutually disjoint halfplanes $\mathfrak{h}_{1}^{-}, \mathfrak{h}_{1}^{+}, \ldots, \mathfrak{h}_{n}^{-}, \mathfrak{h}_{n}^{+}$
- paired by isometries $\mathfrak{h}_{i}^{-} \xrightarrow{g_{i}} \mathrm{H}^{2} \backslash \mathfrak{h}_{i}^{+}$.
- $g_{1}, \ldots, g_{n}$ freely generate group with fundamental domain

$$
\mathrm{H}^{2} \backslash \bigcup_{i=1}^{n} \mathfrak{h}_{i}^{ \pm}
$$

## Cyclic groups



A boost identifying two parallel planes

## Cyclic groups

- Most elements $\gamma \in \Gamma$ are boosts, affine deformations of hyperbolic elements of $\mathrm{SO}(2,1)$. A fundamental domain is the parallel slab bounded by two parallel planes.


A boost identifying two parallel planes

## Parallel slabs don't work!



## Parallel slabs don't work!



- In $\mathrm{H}^{2}$, halfplanes $\mathfrak{h}_{i}^{ \pm}$are disjoint;


## Parallel slabs don't work!



- In $\mathrm{H}^{2}$, halfplanes $\mathfrak{h}_{i}^{ \pm}$are disjoint;
- Their complement is a fundamental domain.


## Parallel slabs don't work!



- In $\mathrm{H}^{2}$, halfplanes $\mathfrak{h}_{i}^{ \pm}$are disjoint;
- Their complement is a fundamental domain.
- In affine space, halfspaces disjoint $\Rightarrow$ parallel!


## Parallel slabs don't work!



- In $\mathrm{H}^{2}$, halfplanes $\mathfrak{h}_{i}^{ \pm}$are disjoint;
- Their complement is a fundamental domain.
- In affine space, halfspaces disjoint $\Rightarrow$ parallel!
- Complements of parallel slabs always intersect,


## Parallel slabs don't work!



- In $\mathrm{H}^{2}$, halfplanes $\mathfrak{h}_{i}^{ \pm}$are disjoint;
- Their complement is a fundamental domain.
- In affine space, halfspaces disjoint $\Rightarrow$ parallel!
- Complements of parallel slabs always intersect,
- Unsuitable for building Schottky groups!


## Drumm's Schottky groups

The classical construction of Schottky groups fails using affine half-spaces and slabs. Drumm's geometric construction uses crooked planes, PL hypersurfaces adapted to the Lorentz geometry which bound fundamental polyhedra for Schottky groups.


## Proper affine deformation of level 2 congruence subgroup of GL(2, Z $)$



## Proper affine deformation of level 2 congruence subgroup of $\operatorname{GL}(2, \mathbb{Z})$



Proper affine deformations exist even for lattices (Drumm).

## Classification

## Classification

- Deformation space is a bundle over the Fricke space $\mathfrak{F}(\Sigma)$, with fiber consisting of equivalence classes of proper affine deformations;


## Classification

- Deformation space is a bundle over the Fricke space $\mathfrak{F}(\Sigma)$, with fiber consisting of equivalence classes of proper affine deformations;
- If $\partial \Sigma$ has $b$ components, then $\mathfrak{F}(\Sigma) \approx[0, \infty)^{b} \times(0, \infty)^{-3 \chi(\Sigma)-b}$.


## Classification

- Deformation space is a bundle over the Fricke space $\mathfrak{F}(\Sigma)$, with fiber consisting of equivalence classes of proper affine deformations;
- If $\partial \Sigma$ has $b$ components, then $\mathfrak{F}(\Sigma) \approx[0, \infty)^{b} \times(0, \infty)^{-3 \chi(\Sigma)-b}$.
- Fibers open convex cones in $\mathbb{R}^{-3 \chi(\Sigma)}$ defined by signed Lorentzian lengths.


## Classification

- Deformation space is a bundle over the Fricke space $\mathfrak{F}(\Sigma)$, with fiber consisting of equivalence classes of proper affine deformations;
- If $\partial \Sigma$ has $b$ components, then $\mathfrak{F}(\Sigma) \approx[0, \infty)^{b} \times(0, \infty)^{-3 \chi(\Sigma)-b}$.
- Fibers open convex cones in $\mathbb{R}^{-3 \chi(\Sigma)}$ defined by signed Lorentzian lengths.
- Deformation space of complete affine structures on open solid handlebody of genus two falls into 4 components depending on 4 topological types of surfaces with $\chi(\Sigma)=-1$, and every structure has natural decomposition by crooked planes (Charette-Drumm-G).


## Classification

- Deformation space is a bundle over the Fricke space $\mathfrak{F}(\Sigma)$, with fiber consisting of equivalence classes of proper affine deformations;
- If $\partial \Sigma$ has $b$ components, then $\mathfrak{F}(\Sigma) \approx[0, \infty)^{b} \times(0, \infty)^{-3 \chi(\Sigma)-b}$.
- Fibers open convex cones in $\mathbb{R}^{-3 \chi(\Sigma)}$ defined by signed Lorentzian lengths.
- Deformation space of complete affine structures on open solid handlebody of genus two falls into 4 components depending on 4 topological types of surfaces with $\chi(\Sigma)=-1$, and every structure has natural decomposition by crooked planes (Charette-Drumm-G).
- (2012) Choi and Danciger-Guéritaud-Kassel have announced, independently, quite different proofs of Topological Tameness: Every nonsolvable complete flat affine 3-manifold (Margulis spacetime) is homeomorphic to a solid handlebody.


## Deformation spaces for surfaces with $\chi(\Sigma)$


(k) Three-holed sphere

(m) One-holed torus

(I) Two-holed $\mathbb{R P}^{2}$

(n) One-holed Klein bottle

## Tiling the deformation space

## Tiling the deformation space

- When $S \approx \Sigma_{0,3}, C_{0,2}$, then $\mathcal{D}(S)$ has 3 or 4 sides, and each ideal triangulation can be realized crookedly.


## Tiling the deformation space

- When $S \approx \Sigma_{0,3}, C_{0,2}$, then $\mathcal{D}(S)$ has 3 or 4 sides, and each ideal triangulation can be realized crookedly.
- These surfaces have finite mapping class group and finitely many isotopy classes of simple closed curves.


## Tiling the deformation space

- When $S \approx \Sigma_{0,3}, C_{0,2}$, then $\mathcal{D}(S)$ has 3 or 4 sides, and each ideal triangulation can be realized crookedly.
- These surfaces have finite mapping class group and finitely many isotopy classes of simple closed curves.
- In other cases, properness region bounded by infinitely many intervals, each corresponding to simple loop.
- $\partial$-points lie on intervals or are points of strict convexity (irrational laminations) (G-Margulis-Minsky).


## Tiling the deformation space

- When $S \approx \Sigma_{0,3}, C_{0,2}$, then $\mathcal{D}(S)$ has 3 or 4 sides, and each ideal triangulation can be realized crookedly.
- These surfaces have finite mapping class group and finitely many isotopy classes of simple closed curves.
- In other cases, properness region bounded by infinitely many intervals, each corresponding to simple loop.
- $\partial$-points lie on intervals or are points of strict convexity (irrational laminations) (G-Margulis-Minsky).
- Birman-Series argument $\Longrightarrow$ For 1-holed torus, these points of strict convexity have Hausdorff dimension zero.

Realizing an ideal triangulation of the one-holed torus by crooked planes


# Realizing an ideal triangulation of the one-holed torus by crooked planes 



- Properness region tiled by triangles.


## Realizing an ideal triangulation of the one-holed torus by crooked planes



- Properness region tiled by triangles.
- Triangles $\longleftrightarrow$ ideal triangulations of $\Sigma$.


## Realizing an ideal triangulation of the one-holed torus by crooked planes



- Properness region tiled by triangles.
- Triangles $\longleftrightarrow$ ideal triangulations of $\Sigma$.
- Flip of ideal triangulation $\longleftrightarrow$ moving to adjacent triangle.

