Two papers which changed my life: Milnor's seminal work on flat manifolds

William M. Goldman

Department of Mathematics University of Maryland

Frontiers in Complex Dynamics A celebration of John Milnor's 80th Birthday Banff International Research Station February 24, 2011

A D M 4 目 M 4 日 M 4 1 H 4

Two of Milnor's papers on flat manifolds

- "On the existence of a connection with curvature zero," (Commentarii Mathematici Helvetici 1958) began a development of the theory of characteristic classes of flat bundles, foliations, and bounded cohomology.
- "On fundamental groups of complete affinely flat manifolds," (Advances in Mathematics 1977) clarified the theory of complete affine manifolds, and set the stage for startling examples of Margulis of 3-manifold quotients of Euclidean 3-space by free groups of affine transformations.

Two of Milnor's papers on flat manifolds

- "On the existence of a connection with curvature zero," (Commentarii Mathematici Helvetici 1958) began a development of the theory of characteristic classes of flat bundles, foliations, and bounded cohomology.
- "On fundamental groups of complete affinely flat manifolds," (Advances in Mathematics 1977) clarified the theory of complete affine manifolds, and set the stage for startling examples of Margulis of 3-manifold quotients of Euclidean 3-space by free groups of affine transformations.

Two of Milnor's papers on flat manifolds

- "On the existence of a connection with curvature zero," (Commentarii Mathematici Helvetici 1958) began a development of the theory of characteristic classes of flat bundles, foliations, and bounded cohomology.
- "On fundamental groups of complete affinely flat manifolds," (Advances in Mathematics 1977) clarified the theory of complete affine manifolds, and set the stage for startling examples of Margulis of 3-manifold quotients of Euclidean 3-space by free groups of affine transformations.

- Is there in ℝⁿ only a finite number of essentially different kinds of groups of motions with a compact fundamental domain?
- Such a group is a crystallographic group and the quotient is a compact Euclidean orbifold.

▲日▼▲□▼▲□▼▲□▼ □ のので

- Finitely covered by a *Euclidean manifold*.
- Equivalently, a *flat Riemannian manifold*.

- Is there in ℝⁿ only a finite number of essentially different kinds of groups of motions with a compact fundamental domain?
- Such a group is a crystallographic group and the quotient is a compact Euclidean orbifold.

- Finitely covered by a Euclidean manifold.
- Equivalently, a *flat Riemannian manifold*.

- Is there in ℝⁿ only a finite number of essentially different kinds of groups of motions with a compact fundamental domain?
- Such a group is a crystallographic group and the quotient is a compact Euclidean orbifold.

- Finitely covered by a *Euclidean manifold*.
- Equivalently, a *flat Riemannian manifold*.

- Is there in ℝⁿ only a finite number of essentially different kinds of groups of motions with a compact fundamental domain?
- Such a group is a crystallographic group and the quotient is a compact Euclidean orbifold.

- Finitely covered by a *Euclidean manifold*.
- Equivalently, a *flat Riemannian manifold*.

- Is there in ℝⁿ only a finite number of essentially different kinds of groups of motions with a compact fundamental domain?
- Such a group is a crystallographic group and the quotient is a compact Euclidean orbifold.

- Finitely covered by a *Euclidean manifold*.
- Equivalently, a *flat Riemannian manifold*.

- When can a group G act on ℝⁿ with quotient Mⁿ = ℝⁿ/G a compact (Hausdorff) manifold?
- (Bieberbach 1912): G acts by Euclidean isometries $\implies G$ finite extension of a subgroup of *translations* $G \cap \mathbb{R}^n \cong \mathbb{Z}^n$
- A Euclidean isometry is an *affine transformation*

$$\vec{x} \stackrel{\gamma}{\longmapsto} A\vec{x} + \vec{b}$$

$$A \in \mathrm{GL}(n,\mathbb{R}), \vec{b} \in \mathbb{R}^n,$$

where the linear part $\mathbb{L}(\gamma) = A$ is orthogonal. $(A \in O(n))$ Only finitely many topological types in each dimension.

- When can a group G act on Rⁿ with quotient Mⁿ = Rⁿ/G a compact (Hausdorff) manifold?
- (Bieberbach 1912): G acts by Euclidean isometries $\implies G$ finite extension of a subgroup of *translations* $G \cap \mathbb{R}^n \cong \mathbb{Z}^n$
- A Euclidean isometry is an *affine transformation*

$$\vec{x} \stackrel{\gamma}{\longmapsto} A\vec{x} + \vec{b}$$

$$A \in \mathrm{GL}(n,\mathbb{R}), \vec{b} \in \mathbb{R}^n,$$

where the linear part $\mathbb{L}(\gamma) = A$ is orthogonal. $(A \in O(n))$ Only finitely many topological types in each dimension.

- When can a group G act on ℝⁿ with quotient Mⁿ = ℝⁿ/G a compact (Hausdorff) manifold?
- (Bieberbach 1912): G acts by Euclidean isometries ⇒ G finite extension of a subgroup of *translations* G ∩ ℝⁿ ≅ ℤⁿ
- A Euclidean isometry is an affine transformation

 $\vec{x} \stackrel{\gamma}{\longmapsto} A\vec{x} + \vec{b}$

 $A \in \mathrm{GL}(n,\mathbb{R}), \vec{b} \in \mathbb{R}^n,$

where the linear part $\mathbb{L}(\gamma) = A$ is orthogonal. $(A \in O(n))$

Only finitely many topological types in each dimension.

- When can a group G act on ℝⁿ with quotient Mⁿ = ℝⁿ/G a compact (Hausdorff) manifold?
- (Bieberbach 1912): G acts by Euclidean isometries ⇒ G finite extension of a subgroup of *translations* G ∩ ℝⁿ ≅ ℤⁿ
- A Euclidean isometry is an *affine transformation*

 $\vec{x} \stackrel{\gamma}{\longmapsto} A\vec{x} + \vec{b}$

 $A \in \mathrm{GL}(n,\mathbb{R}), \vec{b} \in \mathbb{R}^n,$

where the linear part $\mathbb{L}(\gamma) = A$ is orthogonal. $(A \in O(n))$

• Only finitely many topological types in each dimension.

- When can a group G act on ℝⁿ with quotient Mⁿ = ℝⁿ/G a compact (Hausdorff) manifold?
- (Bieberbach 1912): G acts by Euclidean isometries ⇒ G finite extension of a subgroup of *translations* G ∩ ℝⁿ ≅ Zⁿ
- A Euclidean isometry is an *affine transformation*

$$\vec{x} \stackrel{\gamma}{\longmapsto} A\vec{x} + \vec{b}$$

$A \in \mathrm{GL}(n,\mathbb{R}), \vec{b} \in \mathbb{R}^n,$

where the *linear part* $\mathbb{L}(\gamma) = A$ is *orthogonal*. $(A \in O(n))$ Only finitely many topological types in each dimension.

- When can a group G act on ℝⁿ with quotient Mⁿ = ℝⁿ/G a compact (Hausdorff) manifold?
- (Bieberbach 1912): G acts by Euclidean isometries ⇒ G finite extension of a subgroup of *translations* G ∩ ℝⁿ ≃ Zⁿ
- A Euclidean isometry is an *affine transformation*

$$\vec{x} \stackrel{\gamma}{\longmapsto} A\vec{x} + \vec{b}$$

$$A \in \mathrm{GL}(n,\mathbb{R}), \vec{b} \in \mathbb{R}^n,$$

where the linear part $\mathbb{L}(\gamma) = A$ is orthogonal. $(A \in O(n))$

• Only finitely many topological types in each dimension.

- When can a group G act on ℝⁿ with quotient Mⁿ = ℝⁿ/G a compact (Hausdorff) manifold?
- (Bieberbach 1912): G acts by Euclidean isometries ⇒ G finite extension of a subgroup of *translations* G ∩ ℝⁿ ≃ Zⁿ
- A Euclidean isometry is an *affine transformation*

$$\vec{x} \stackrel{\gamma}{\longmapsto} A\vec{x} + \vec{b}$$

$$A \in \operatorname{GL}(n,\mathbb{R}), \vec{b} \in \mathbb{R}^n,$$

where the linear part $\mathbb{L}(\gamma) = A$ is orthogonal. $(A \in O(n))$

• Only finitely many topological types in each dimension.

- When can a group G act on ℝⁿ with quotient Mⁿ = ℝⁿ/G a compact (Hausdorff) manifold?
- (Bieberbach 1912): G acts by Euclidean isometries ⇒ G finite extension of a subgroup of *translations* G ∩ ℝⁿ ≅ Zⁿ
- A Euclidean isometry is an *affine transformation*

$$\vec{x} \stackrel{\gamma}{\longmapsto} A\vec{x} + \vec{b}$$

$$A \in \operatorname{GL}(n,\mathbb{R}), \vec{b} \in \mathbb{R}^n,$$

where the linear part $\mathbb{L}(\gamma) = A$ is orthogonal. $(A \in O(n))$ Only finitely many topological types in each dimension.

- Since closed Euclidean manifold *M* is finitely covered by a torus, its Euler characteristic vanishes.
 - This also follows from the Chern-Gauss-Bonnet theorem since the Riemannian metric has curvature zero.
 - Chern's integrand is an expression involving the curvature of an orthogonal connection.

▲日▼▲□▼▲□▼▲□▼ □ のので

■ An affine manifold is a manifold with a distinguished atlas of local coordinate charts mapping to ℝⁿ with locally affine coordinate changes.

Equivalently *M* has flat symmetric *linear* connection.

Conjecture: (Chern 1940's)

Since closed Euclidean manifold *M* is finitely covered by a torus, its Euler characteristic vanishes.

- This also follows from the Chern-Gauss-Bonnet theorem since the Riemannian metric has curvature zero.
- Chern's integrand is an expression involving the curvature of an orthogonal connection.

▲日▼▲□▼▲□▼▲□▼ □ のので

■ An affine manifold is a manifold with a distinguished atlas of local coordinate charts mapping to ℝⁿ with locally affine coordinate changes.

Equivalently *M* has flat symmetric *linear* connection.

Conjecture: (Chern 1940's)

- Since closed Euclidean manifold *M* is finitely covered by a torus, its Euler characteristic vanishes.
 - This also follows from the Chern-Gauss-Bonnet theorem since the Riemannian metric has curvature zero.
 - Chern's integrand is an expression involving the curvature of an *orthogonal* connection.

■ An affine manifold is a manifold with a distinguished atlas of local coordinate charts mapping to ℝⁿ with locally affine coordinate changes.

Equivalently *M* has flat symmetric *linear* connection.

Conjecture: (Chern 1940's)

- Since closed Euclidean manifold M is finitely covered by a torus, its Euler characteristic vanishes.
 - This also follows from the Chern-Gauss-Bonnet theorem since the Riemannian metric has curvature zero.
 - Chern's integrand is an expression involving the curvature of an *orthogonal* connection.

■ An affine manifold is a manifold with a distinguished atlas of local coordinate charts mapping to ℝⁿ with locally affine coordinate changes.

Equivalently *M* has flat symmetric *linear* connection.

Conjecture: (Chern 1940's)

- Since closed Euclidean manifold *M* is finitely covered by a torus, its Euler characteristic vanishes.
 - This also follows from the Chern-Gauss-Bonnet theorem since the Riemannian metric has curvature zero.
 - Chern's integrand is an expression involving the curvature of an *orthogonal* connection.

■ An affine manifold is a manifold with a distinguished atlas of local coordinate charts mapping to ℝⁿ with locally affine coordinate changes.

Equivalently *M* has flat symmetric *linear* connection.

Conjecture: (Chern 1940's)

- Since closed Euclidean manifold *M* is finitely covered by a torus, its Euler characteristic vanishes.
 - This also follows from the Chern-Gauss-Bonnet theorem since the Riemannian metric has curvature zero.
 - Chern's integrand is an expression involving the curvature of an *orthogonal* connection.

- An affine manifold is a manifold with a distinguished atlas of local coordinate charts mapping to ℝⁿ with locally affine coordinate changes.
 - Equivalently *M* has flat symmetric *linear* connection.
- **Conjecture:** (Chern 1940's) If *M* closed affine manifold, then $\chi(M) = 0$.

- Since closed Euclidean manifold *M* is finitely covered by a torus, its Euler characteristic vanishes.
 - This also follows from the Chern-Gauss-Bonnet theorem since the Riemannian metric has curvature zero.
 - Chern's integrand is an expression involving the curvature of an *orthogonal* connection.

■ An affine manifold is a manifold with a distinguished atlas of local coordinate charts mapping to ℝⁿ with locally affine coordinate changes.

• Equivalently *M* has flat symmetric *linear* connection.

Conjecture: (Chern 1940's)

- Benzecri (1955): A closed affine 2-manifold has $\chi = 0$.
- Milnor (1958): If ξ is an ℝ²-bundle over Σ²_g with flat connection, then |Euler(ξ)| < g.</p>
- Thus the tangent bundle of Σ_g does not even have a flat connection if g > 1.
 - Recall that an X-bundle ξ over M with a flat connection is defined by an action of $\pi_1(\Sigma)$ on X as the quotient $\widetilde{M} \times X$ by diagonal action of $\pi_1(M)$.
- Smillie (1976): For every *n* > 1, there are closed 2*n*-manifolds with flat tangent bundle with nonzero Euler characteristic.

Benzecri (1955): A closed affine 2-manifold has $\chi = 0$.

- Milnor (1958): If ξ is an ℝ²-bundle over Σ²_g with flat connection, then |Euler(ξ)| < g.</p>
- Thus the tangent bundle of Σ_g does not even have a flat connection if g > 1.
 - Recall that an X-bundle ξ over M with a flat connection is defined by an action of $\pi_1(\Sigma)$ on X as the quotient $\widetilde{M} \times X$ by diagonal action of $\pi_1(M)$.
- Smillie (1976): For every *n* > 1, there are closed 2*n*-manifolds with flat tangent bundle with nonzero Euler characteristic.

- Benzecri (1955): A closed affine 2-manifold has $\chi = 0$.
- Milnor (1958): If ξ is an ℝ²-bundle over Σ²_g with flat connection, then |Euler(ξ)| < g.</p>
- Thus the tangent bundle of Σ_g does not even have a flat connection if g > 1.
 - Recall that an X-bundle ξ over M with a flat connection is defined by an action of $\pi_1(\Sigma)$ on X as the quotient $\widetilde{M} \times X$ by diagonal action of $\pi_1(M)$.
- Smillie (1976): For every *n* > 1, there are closed 2*n*-manifolds with flat tangent bundle with nonzero Euler characteristic.

- Benzecri (1955): A closed affine 2-manifold has $\chi = 0$.
- Milnor (1958): If ξ is an ℝ²-bundle over Σ²_g with flat connection, then |Euler(ξ)| < g.</p>
- Thus the tangent bundle of Σ_g does not even have a flat connection if g > 1.
 - Recall that an X-bundle ξ over M with a flat connection is defined by an action of $\pi_1(\Sigma)$ on X as the quotient $\widetilde{M} \times X$ by diagonal action of $\pi_1(M)$.
- Smillie (1976): For every *n* > 1, there are closed 2*n*-manifolds with flat tangent bundle with nonzero Euler characteristic.

- Benzecri (1955): A closed affine 2-manifold has $\chi = 0$.
- Milnor (1958): If ξ is an ℝ²-bundle over Σ²_g with flat connection, then |Euler(ξ)| < g.</p>
- Thus the tangent bundle of Σ_g does not even have a flat connection if g > 1.
 - Recall that an X-bundle ξ over M with a flat connection is defined by an action of π₁(Σ) on X as the quotient M̃ × X by diagonal action of π₁(M).
- Smillie (1976): For every n > 1, there are closed 2n-manifolds with flat tangent bundle with nonzero Euler characteristic.

- Benzecri (1955): A closed affine 2-manifold has $\chi = 0$.
- Milnor (1958): If ξ is an ℝ²-bundle over Σ²_g with flat connection, then |Euler(ξ)| < g.</p>
- Thus the tangent bundle of Σ_g does not even have a flat connection if g > 1.
 - Recall that an X-bundle ξ over M with a flat connection is defined by an action of π₁(Σ) on X as the quotient M̃ × X by diagonal action of π₁(M).
- Smillie (1976): For every n > 1, there are closed 2n-manifolds with flat tangent bundle with nonzero Euler characteristic.

- Wood (1972): Replace $GL(2, \mathbb{R})$ by $Homeo^+(S^1)$: $|Euler(\xi)| \le |\chi(\Sigma)|$
- A representation $\pi_1(\Sigma) \xrightarrow{\rho} G$, where $G = \mathsf{PSL}(2,\mathbb{R})$, is maximal : $\iff |(\mathsf{Euler}(\xi))| = |\chi(\Sigma)|$.
- Goldman (1980): ρ is maximal if and only if ρ embeds $\pi_1(\Sigma)$ onto a discrete subgroup of G.
 - Equivalence classes of maximal representations form the Fricke space of marked hyperbolic structures on Σ.
 - More generally, connected components of Hom(π₁(Σ), G)/G are the (4g - 3) preimages

$$Euler^{-1}(2-2g), Euler^{-1}(3-2g), \dots, Euler^{-1}(2g-2).$$

Ghys: Maximal representations into Homeo⁺(S^1).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Wood (1972): Replace $GL(2, \mathbb{R})$ by $Homeo^+(S^1)$: $|Euler(\xi)| \le |\chi(\Sigma)|$

- A representation $\pi_1(\Sigma) \xrightarrow{\rho} G$, where $G = \mathsf{PSL}(2,\mathbb{R})$, is maximal : $\iff |(\mathsf{Euler}(\xi))| = |\chi(\Sigma)|$.
- Goldman (1980): ρ is maximal if and only if ρ embeds $\pi_1(\Sigma)$ onto a discrete subgroup of G.
 - Equivalence classes of maximal representations form the Fricke space of marked hyperbolic structures on Σ.
 - More generally, connected components of Hom(π₁(Σ), G)/G are the (4g - 3) preimages

$$Euler^{-1}(2-2g), Euler^{-1}(3-2g), \dots, Euler^{-1}(2g-2).$$

Ghys: Maximal representations into Homeo⁺(S^1).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

• Wood (1972): Replace $GL(2, \mathbb{R})$ by $Homeo^+(S^1)$: $|Euler(\xi)| \le |\chi(\Sigma)|$

- A representation $\pi_1(\Sigma) \xrightarrow{\rho} G$, where $G = \mathsf{PSL}(2, \mathbb{R})$, is maximal : $\iff |(\mathsf{Euler}(\xi))| = |\chi(\Sigma)|$.
- Goldman (1980): ρ is maximal if and only if ρ embeds $\pi_1(\Sigma)$ onto a discrete subgroup of G.
 - Equivalence classes of maximal representations form the Fricke space of marked hyperbolic structures on Σ.
 - More generally, connected components of Hom(π₁(Σ), G)/G are the (4g - 3) preimages

$$Euler^{-1}(2-2g), Euler^{-1}(3-2g), \dots, Euler^{-1}(2g-2).$$

Ghys: Maximal representations into Homeo⁺(S^1).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

■ Wood (1972): Replace GL(2, ℝ) by Homeo⁺(*S*¹): |Euler(ξ)| ≤ |χ(Σ)|

- A representation $\pi_1(\Sigma) \xrightarrow{\rho} G$, where $G = \mathsf{PSL}(2, \mathbb{R})$, is maximal : $\iff |(\mathsf{Euler}(\xi))| = |\chi(\Sigma)|$.
- Goldman (1980): ρ is maximal if and only if ρ embeds $\pi_1(\Sigma)$ onto a discrete subgroup of G.
 - Equivalence classes of maximal representations form the Fricke space of marked hyperbolic structures on Σ.
 - More generally, connected components of Hom(π₁(Σ), G)/G are the (4g - 3) preimages

$$Euler^{-1}(2-2g), Euler^{-1}(3-2g), \dots, Euler^{-1}(2g-2).$$

Ghys: Maximal representations into Homeo⁺(S^1).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Wood (1972): Replace $GL(2, \mathbb{R})$ by $Homeo^+(S^1)$: $|Euler(\xi)| \le |\chi(\Sigma)|$

- A representation $\pi_1(\Sigma) \xrightarrow{\rho} G$, where $G = \mathsf{PSL}(2, \mathbb{R})$, is maximal : $\iff |(\mathsf{Euler}(\xi))| = |\chi(\Sigma)|$.
- Goldman (1980): ρ is maximal if and only if ρ embeds $\pi_1(\Sigma)$ onto a discrete subgroup of G.
 - Equivalence classes of maximal representations form the Fricke space of marked hyperbolic structures on Σ.
 - More generally, connected components of Hom(π₁(Σ), G)/G are the (4g - 3) preimages

 $Euler^{-1}(2-2g), Euler^{-1}(3-2g), \dots, Euler^{-1}(2g-2).$

Ghys: Maximal representations into Homeo⁺(S^1).

• Wood (1972): Replace $GL(2, \mathbb{R})$ by $Homeo^+(S^1)$: $|Euler(\xi)| \le |\chi(\Sigma)|$

- A representation $\pi_1(\Sigma) \xrightarrow{\rho} G$, where $G = \mathsf{PSL}(2, \mathbb{R})$, is maximal : $\iff |(\mathsf{Euler}(\xi))| = |\chi(\Sigma)|$.
- Goldman (1980): ρ is maximal if and only if ρ embeds $\pi_1(\Sigma)$ onto a discrete subgroup of G.
 - Equivalence classes of maximal representations form the Fricke space of marked hyperbolic structures on Σ.
 - More generally, connected components of Hom(π₁(Σ), G)/G are the (4g 3) preimages

$$Euler^{-1}(2-2g), Euler^{-1}(3-2g), \dots, Euler^{-1}(2g-2).$$

Ghys: Maximal representations into Homeo⁺(S^1).

Milnor-Wood inequality

• Wood (1972): Replace $GL(2, \mathbb{R})$ by $Homeo^+(S^1)$: $|Euler(\xi)| \le |\chi(\Sigma)|$

- A representation $\pi_1(\Sigma) \xrightarrow{\rho} G$, where $G = \mathsf{PSL}(2, \mathbb{R})$, is maximal : $\iff |(\mathsf{Euler}(\xi))| = |\chi(\Sigma)|$.
- Goldman (1980): ρ is maximal if and only if ρ embeds $\pi_1(\Sigma)$ onto a discrete subgroup of G.
 - Equivalence classes of maximal representations form the Fricke space of marked hyperbolic structures on Σ.
 - More generally, connected components of Hom(π₁(Σ), G)/G are the (4g 3) preimages

$$Euler^{-1}(2-2g), Euler^{-1}(3-2g), \dots, Euler^{-1}(2g-2).$$

Ghys: Maximal representations into Homeo⁺(S^1).

- Rigidity for maximal surface group representations, bounded cohomology (Toledo, Burger-Iozzi-Wienhard)
- Morse theory on space of connections: global topology of representation spaces and Higgs bundles (Hitchin, Bradlow-Garcia-Prada-Gothen, Weitsman-Wentworth-Wilkin)

- Rigidity for maximal surface group representations, bounded cohomology (Toledo, Burger-Iozzi-Wienhard)
- Morse theory on space of connections: global topology of representation spaces and Higgs bundles (Hitchin, Bradlow-Garcia-Prada-Gothen, Weitsman-Wentworth-Wilkin)

- Rigidity for maximal surface group representations, bounded cohomology (Toledo, Burger-Iozzi-Wienhard)
- Morse theory on space of connections: global topology of representation spaces and Higgs bundles (Hitchin, Bradlow-Garcia-Prada-Gothen, Weitsman-Wentworth-Wilkin)

- Rigidity for maximal surface group representations, bounded cohomology (Toledo, Burger-Iozzi-Wienhard)
- Morse theory on space of connections: global topology of representation spaces and Higgs bundles (Hitchin, Bradlow-Garcia-Prada-Gothen, Weitsman-Wentworth-Wilkin)

- In general an affine structure on a *closed* manifold may be geodesically incomplete (unlike Riemannian manifolds):
 - Hopf manifold $(\mathbb{R}^n \setminus \{0\})/\langle \gamma \rangle$ where $\mathbb{R}^n \xrightarrow{\gamma} \mathbb{R}^n$ is a linear expansion.
 - Discrete holonomy;
 - Homeomorphic to $S^{n-1} \times S^1$
- Geodesics aimed at 0 seem to speed up (although their acceleration is zero) and eventually fly off the manifold in finite time.
- Henceforth we restrict to complete manifolds.
- *M* is complete $\iff M \cong \mathbb{R}^n$.

- In general an affine structure on a *closed* manifold may be geodesically incomplete (unlike Riemannian manifolds):
 - Hopf manifold $(\mathbb{R}^n \setminus \{0\})/\langle \gamma \rangle$ where $\mathbb{R}^n \xrightarrow{\gamma} \mathbb{R}^n$ is a linear expansion.
 - Discrete holonomy;
 - Homeomorphic to $S^{n-1} \times S^1$
- Geodesics aimed at 0 seem to speed up (although their acceleration is zero) and eventually fly off the manifold in finite time.
- Henceforth we restrict to complete manifolds.
- *M* is complete $\iff M \cong \mathbb{R}^n$.

- In general an affine structure on a *closed* manifold may be geodesically incomplete (unlike Riemannian manifolds):
 - Hopf manifold $(\mathbb{R}^n \setminus \{0\})/\langle \gamma \rangle$ where $\mathbb{R}^n \xrightarrow{\gamma} \mathbb{R}^n$ is a linear expansion.
 - Discrete holonomy;
 - Homeomorphic to $S^{n-1} \times S^1$
- Geodesics aimed at 0 seem to speed up (although their acceleration is zero) and eventually fly off the manifold in finite time.
- Henceforth we restrict to complete manifolds.
- *M* is complete $\iff M \cong \mathbb{R}^n$.

- In general an affine structure on a *closed* manifold may be geodesically incomplete (unlike Riemannian manifolds):
 - Hopf manifold $(\mathbb{R}^n \setminus \{0\})/\langle \gamma \rangle$ where $\mathbb{R}^n \xrightarrow{\gamma} \mathbb{R}^n$ is a linear expansion.
 - Discrete holonomy;
 - Homeomorphic to $S^{n-1} \times S^1$
- Geodesics aimed at 0 seem to speed up (although their acceleration is zero) and eventually fly off the manifold in finite time.
- Henceforth we restrict to complete manifolds.
- *M* is complete $\iff M \cong \mathbb{R}^n$.

- In general an affine structure on a *closed* manifold may be geodesically incomplete (unlike Riemannian manifolds):
 - Hopf manifold $(\mathbb{R}^n \setminus \{0\})/\langle \gamma \rangle$ where $\mathbb{R}^n \xrightarrow{\gamma} \mathbb{R}^n$ is a linear expansion.
 - Discrete holonomy;
 - Homeomorphic to $S^{n-1} \times S^1$
- Geodesics aimed at 0 seem to speed up (although their acceleration is zero) and eventually fly off the manifold in finite time.
- Henceforth we restrict to complete manifolds.
- *M* is complete $\iff M \cong \mathbb{R}^n$.

- In general an affine structure on a *closed* manifold may be geodesically incomplete (unlike Riemannian manifolds):
 - Hopf manifold $(\mathbb{R}^n \setminus \{0\})/\langle \gamma \rangle$ where $\mathbb{R}^n \xrightarrow{\gamma} \mathbb{R}^n$ is a linear expansion.
 - Discrete holonomy;
 - Homeomorphic to $S^{n-1} \times S^1$
- Geodesics aimed at 0 seem to speed up (although their acceleration is zero) and eventually fly off the manifold in finite time.

- Henceforth we restrict to complete manifolds.
- *M* is complete $\iff M \cong \mathbb{R}^n$.

- In general an affine structure on a *closed* manifold may be geodesically incomplete (unlike Riemannian manifolds):
 - Hopf manifold $(\mathbb{R}^n \setminus \{0\})/\langle \gamma \rangle$ where $\mathbb{R}^n \xrightarrow{\gamma} \mathbb{R}^n$ is a linear expansion.
 - Discrete holonomy;
 - Homeomorphic to $S^{n-1} \times S^1$
- Geodesics aimed at 0 seem to speed up (although their acceleration is zero) and eventually fly off the manifold in finite time.

- Henceforth we restrict to complete manifolds.
- *M* is complete $\iff M \cong \mathbb{R}^n$.

- In general an affine structure on a *closed* manifold may be geodesically incomplete (unlike Riemannian manifolds):
 - Hopf manifold $(\mathbb{R}^n \setminus \{0\})/\langle \gamma \rangle$ where $\mathbb{R}^n \xrightarrow{\gamma} \mathbb{R}^n$ is a linear expansion.
 - Discrete holonomy;
 - Homeomorphic to $S^{n-1} \times S^1$
- Geodesics aimed at 0 seem to speed up (although their acceleration is zero) and eventually fly off the manifold in finite time.
- Henceforth we restrict to complete manifolds.
- *M* is complete $\iff \widetilde{M} \cong \mathbb{R}^n$.

■ A complete affine manifold Mⁿ is a quotient ℝⁿ/G where G is a discrete group of affine transformations.

For *M* to be a (Hausdorff) smooth manifold, *G* must act:

Discretely: $(G \subset \text{Homeo}(\mathbb{R}^n) \text{ discrete});$

Freely: (No fixed points);

Properly: (Go to ∞ in $G \Longrightarrow$ go to ∞ in every orbit Gx).

More precisely, the map

$$G \times X \longrightarrow X \times X$$
$$(g, x) \longmapsto (gx, x)$$

- A complete affine manifold Mⁿ is a quotient ℝⁿ/G where G is a discrete group of affine transformations.
- For *M* to be a (Hausdorff) smooth manifold, *G* must act:

Discretely: $(G \subset \text{Homeo}(\mathbb{R}^n) \text{ discrete});$

Freely: (No fixed points);

Properly: (Go to ∞ in $G \Longrightarrow$ go to ∞ in every orbit Gx).

More precisely, the map

$$G \times X \longrightarrow X \times X$$
$$(g, x) \longmapsto (gx, x)$$

- A complete affine manifold Mⁿ is a quotient ℝⁿ/G where G is a discrete group of affine transformations.
- For *M* to be a (Hausdorff) smooth manifold, *G* must act:
 - **Discretely**: $(G \subset \text{Homeo}(\mathbb{R}^n) \text{ discrete});$
 - Freely: (No fixed points);
 - Properly: (Go to ∞ in $G \Longrightarrow$ go to ∞ in every orbit Gx).

More precisely, the map

$$G \times X \longrightarrow X \times X$$
$$(g, x) \longmapsto (gx, x)$$

- A complete affine manifold Mⁿ is a quotient ℝⁿ/G where G is a discrete group of affine transformations.
- For *M* to be a (Hausdorff) smooth manifold, *G* must act:
 - **Discretely**: $(G \subset \text{Homeo}(\mathbb{R}^n) \text{ discrete});$
 - Freely: (No fixed points);

Properly: (Go to ∞ in $G \Longrightarrow$ go to ∞ in every orbit Gx).

More precisely, the map

$$G \times X \longrightarrow X \times X$$
$$(g, x) \longmapsto (gx, x)$$

- A complete affine manifold Mⁿ is a quotient ℝⁿ/G where G is a discrete group of affine transformations.
- For *M* to be a (Hausdorff) smooth manifold, *G* must act:
 - **Discretely**: $(G \subset \text{Homeo}(\mathbb{R}^n) \text{ discrete});$
 - Freely: (No fixed points);
 - Properly: (Go to ∞ in $G \Longrightarrow$ go to ∞ in every orbit Gx).

More precisely, the map

$$G \times X \longrightarrow X \times X$$
$$(g, x) \longmapsto (gx, x)$$

- A complete affine manifold Mⁿ is a quotient ℝⁿ/G where G is a discrete group of affine transformations.
- For *M* to be a (Hausdorff) smooth manifold, *G* must act:
 - **Discretely**: $(G \subset \text{Homeo}(\mathbb{R}^n) \text{ discrete});$
 - Freely: (No fixed points);
 - Properly: (Go to ∞ in $G \Longrightarrow$ go to ∞ in every orbit Gx).

More precisely, the map

$$G imes X \longrightarrow X imes X$$

 $(g, x) \longmapsto (gx, x)$

- A complete affine manifold Mⁿ is a quotient ℝⁿ/G where G is a discrete group of affine transformations.
- For *M* to be a (Hausdorff) smooth manifold, *G* must act:
 - **Discretely**: $(G \subset \text{Homeo}(\mathbb{R}^n) \text{ discrete});$
 - Freely: (No fixed points);
 - Properly: (Go to ∞ in $G \Longrightarrow$ go to ∞ in every orbit Gx).

More precisely, the map

$$G \times X \longrightarrow X \times X$$

 $(g, x) \longmapsto (gx, x)$

- L. Auslander (1960's) claimed χ(M) = 0 for compact complete affine manifold M ≅ ℝⁿ/Γ.
- Kostant-Sullivan (1975): correct proof (Gauss-Bonnet).
- Auslander's approach:
 - Prove $\pi_1(M) = \Gamma$ virtually solvable.
 - Embed Γ in a finite extension of solvable Lie subgroup G of Aff (\mathbb{R}^n) .

▲日▼▲□▼▲□▼▲□▼ □ ののの

- *M* is finitely covered by $\mathbb{R}^n/(\Gamma \cap G^0)$.
- This approach is still plausible: Auslander's "conjecture" known in many cases, for example in dimension ≤ 6 (Abels-Margulis-Soifer, Tomanov, ...).
 - Compactness is essential.

- L. Auslander (1960's) claimed χ(M) = 0 for compact complete affine manifold M ≅ ℝⁿ/Γ.
- Kostant-Sullivan (1975): correct proof (Gauss-Bonnet).
- Auslander's approach:
 - Prove $\pi_1(M) = \Gamma$ virtually solvable.
 - Embed Γ in a finite extension of solvable Lie subgroup G of Aff (\mathbb{R}^n) .

- *M* is finitely covered by $\mathbb{R}^n/(\Gamma \cap G^0)$.
- This approach is still plausible: Auslander's "conjecture" known in many cases, for example in dimension ≤ 6 (Abels-Margulis-Soifer, Tomanov, ...).
 - Compactness is essential.

- L. Auslander (1960's) claimed χ(M) = 0 for compact complete affine manifold M ≅ ℝⁿ/Γ.
- Kostant-Sullivan (1975): correct proof (Gauss-Bonnet).
- Auslander's approach:
 - Prove $\pi_1(M) = \Gamma$ virtually solvable.
 - Embed Γ in a finite extension of solvable Lie subgroup G of Aff(ℝⁿ).

- *M* is finitely covered by $\mathbb{R}^n/(\Gamma \cap G^0)$.
- This approach is still plausible: Auslander's "conjecture" known in many cases, for example in dimension ≤ 6 (Abels-Margulis-Soifer, Tomanov, ...).
 - Compactness is essential.

- L. Auslander (1960's) claimed χ(M) = 0 for compact complete affine manifold M ≅ ℝⁿ/Γ.
- Kostant-Sullivan (1975): correct proof (Gauss-Bonnet).
- Auslander's approach:
 - Prove $\pi_1(M) = \Gamma$ virtually solvable.
 - Embed Γ in a finite extension of solvable Lie subgroup G of Aff(ℝⁿ).

- *M* is finitely covered by $\mathbb{R}^n/(\Gamma \cap G^0)$.
- This approach is still plausible: Auslander's "conjecture" known in many cases, for example in dimension ≤ 6 (Abels-Margulis-Soifer, Tomanov, ...).
 - Compactness is essential.

- L. Auslander (1960's) claimed χ(M) = 0 for compact complete affine manifold M ≅ ℝⁿ/Γ.
- Kostant-Sullivan (1975): correct proof (Gauss-Bonnet).
- Auslander's approach:
 - Prove $\pi_1(M) = \Gamma$ virtually solvable.
 - Embed Γ in a finite extension of solvable Lie subgroup G of Aff(ℝⁿ).

- *M* is finitely covered by $\mathbb{R}^n/(\Gamma \cap G^0)$.
- This approach is still plausible: Auslander's "conjecture" known in many cases, for example in dimension ≤ 6 (Abels-Margulis-Soifer, Tomanov, ...).
 - Compactness is essential.

- L. Auslander (1960's) claimed χ(M) = 0 for compact complete affine manifold M ≅ ℝⁿ/Γ.
- Kostant-Sullivan (1975): correct proof (Gauss-Bonnet).
- Auslander's approach:
 - Prove $\pi_1(M) = \Gamma$ virtually solvable.
 - Embed Γ in a finite extension of solvable Lie subgroup G of Aff(ℝⁿ).

- *M* is finitely covered by $\mathbb{R}^n/(\Gamma \cap G^0)$.
- This approach is still plausible: Auslander's "conjecture" known in many cases, for example in dimension ≤ 6 (Abels-Margulis-Soifer, Tomanov, ...).
 - Compactness is essential.

- L. Auslander (1960's) claimed χ(M) = 0 for compact complete affine manifold M ≅ ℝⁿ/Γ.
- Kostant-Sullivan (1975): correct proof (Gauss-Bonnet).
- Auslander's approach:
 - Prove $\pi_1(M) = \Gamma$ virtually solvable.
 - Embed Γ in a finite extension of solvable Lie subgroup G of Aff(ℝⁿ).

- *M* is finitely covered by $\mathbb{R}^n/(\Gamma \cap G^0)$.
- This approach is still plausible: Auslander's "conjecture" known in many cases, for example in dimension ≤ 6 (Abels-Margulis-Soifer, Tomanov, ...).
 - Compactness is essential.

- L. Auslander (1960's) claimed χ(M) = 0 for compact complete affine manifold M ≅ ℝⁿ/Γ.
- Kostant-Sullivan (1975): correct proof (Gauss-Bonnet).
- Auslander's approach:
 - Prove $\pi_1(M) = \Gamma$ virtually solvable.
 - Embed \[\Gamma\] in a finite extension of solvable Lie subgroup \(G\) of Aff(\(\mathbb{R}^n\)).
 - *M* is finitely covered by $\mathbb{R}^n/(\Gamma \cap G^0)$.
- This approach is still plausible: Auslander's "conjecture" known in many cases, for example in dimension ≤ 6 (Abels-Margulis-Soifer, Tomanov, ...).

Compactness is essential.

- L. Auslander (1960's) claimed χ(M) = 0 for compact complete affine manifold M ≅ ℝⁿ/Γ.
- Kostant-Sullivan (1975): correct proof (Gauss-Bonnet).
- Auslander's approach:
 - Prove $\pi_1(M) = \Gamma$ virtually solvable.
 - Embed \[\Gamma\] in a finite extension of solvable Lie subgroup \(G\) of Aff(\(\mathbb{R}^n\)).

- *M* is finitely covered by $\mathbb{R}^n/(\Gamma \cap G^0)$.
- This approach is still plausible: Auslander's "conjecture" known in many cases, for example in dimension ≤ 6 (Abels-Margulis-Soifer, Tomanov, ...).
 - Compactness is essential.

Can a nonabelian free group act properly, freely and discretely by affine transformations on \mathbb{R}^n ?

- Equivalently (Tits 1971): "Are there discrete groups other than virtually polycycic groups which act properly, affinely?"
 - If NO, M^n finitely covered by iterated S^1 -fibration
 - Dimension 3: M^3 closed $\implies M^3$ finitely covered by T^2 -bundle over S^1 (Fried-Goldman 1983)

▲日▼▲□▼▲□▼▲□▼ □ ののの

Can a nonabelian free group act properly, freely and discretely by affine transformations on \mathbb{R}^n ?

- Equivalently (Tits 1971): "Are there discrete groups other than virtually polycycic groups which act properly, affinely?"
 - If NO, M^n finitely covered by iterated S^1 -fibration
 - Dimension 3: M^3 closed $\implies M^3$ finitely covered by T^2 -bundle over S^1 (Fried-Goldman 1983)

Can a nonabelian free group act properly, freely and discretely by affine transformations on \mathbb{R}^n ?

- Equivalently (Tits 1971): "Are there discrete groups other than virtually polycycic groups which act properly, affinely?"
 - If NO, M^n finitely covered by iterated S^1 -fibration
 - Dimension 3: M^3 closed $\implies M^3$ finitely covered by T^2 -bundle over S^1 (Fried-Goldman 1983)

Can a nonabelian free group act properly, freely and discretely by affine transformations on \mathbb{R}^n ?

- Equivalently (Tits 1971): "Are there discrete groups other than virtually polycycic groups which act properly, affinely?"
 - If NO, M^n finitely covered by iterated S^1 -fibration
 - Dimension 3: M^3 closed $\implies M^3$ finitely covered by T^2 -bundle over S^1 (Fried-Goldman 1983)

Can a nonabelian free group act properly, freely and discretely by affine transformations on \mathbb{R}^n ?

- Equivalently (Tits 1971): "Are there discrete groups other than virtually polycycic groups which act properly, affinely?"
 - If NO, M^n finitely covered by iterated S^1 -fibration
 - Dimension 3: M³ closed ⇒ M³ finitely covered by T²-bundle over S¹ (Fried-Goldman 1983)

Can a nonabelian free group act properly, freely and discretely by affine transformations on \mathbb{R}^n ?

- Equivalently (Tits 1971): "Are there discrete groups other than virtually polycycic groups which act properly, affinely?"
 - If NO, M^n finitely covered by iterated S^1 -fibration
 - Dimension 3: M³ closed ⇒ M³ finitely covered by T²-bundle over S¹ (Fried-Goldman 1983)

"Evidence" for a negative answer to this question:

- Connected Lie group G admits a proper affine action
 ⇒ G is amenable (compact-by-solvable).
- Every virtually polycyclic group admits a proper affine action.

▲日▼▲□▼▲□▼▲□▼ □ ののの

"Evidence" for a negative answer to this question:

■ Connected Lie group G admits a proper affine action
 ⇒ G is amenable (compact-by-solvable).

Every virtually polycyclic group admits a proper affine action.

"Evidence" for a negative answer to this question:

- Connected Lie group G admits a proper affine action
 ⇒ G is amenable (compact-by-solvable).
- Every virtually polycyclic group admits a proper affine action.

Clearly a geometric problem: free groups act properly by isometries on H³ hence by diffeomorphisms of R³

These actions are *not* affine.

Milnor suggests:

Start with a free discrete subgroup of O(2,1) and add translation components to obtain a group of affine transformations which acts freely. However it seems difficult to decide whether the resulting group action is properly discontinuous.

 \blacksquare Clearly a geometric problem: free groups act properly by isometries on H^3 hence by diffeomorphisms of \mathbb{E}^3

These actions are not affine.

Milnor suggests:

Start with a free discrete subgroup of O(2,1) and add translation components to obtain a group of affine transformations which acts freely. However it seems difficult to decide whether the resulting group action is properly discontinuous.

Clearly a geometric problem: free groups act properly by isometries on H³ hence by diffeomorphisms of E³
 These actions are *not* affine.

Milnor suggests:

Start with a free discrete subgroup of O(2,1) and add translation components to obtain a group of affine transformations which acts freely. However it seems difficult to decide whether the resulting group action is properly discontinuous.

Clearly a geometric problem: free groups act properly by isometries on H³ hence by diffeomorphisms of E³
 These actions are *not* affine.

Milnor suggests:

Start with a free discrete subgroup of O(2,1) and add translation components to obtain a group of affine transformations which acts freely. However it seems difficult to decide whether the resulting group action is properly discontinuous.

 \blacksquare Clearly a geometric problem: free groups act properly by isometries on H^3 hence by diffeomorphisms of \mathbb{E}^3

These actions are not affine.

Milnor suggests:

Start with a free discrete subgroup of O(2,1) and add translation components to obtain a group of affine transformations which acts freely. However it seems difficult to decide whether the resulting group action is properly discontinuous.

■ Clearly a geometric problem: free groups act properly by isometries on H³ hence by diffeomorphisms of ℝ³

These actions are not affine.

Milnor suggests:

Start with a free discrete subgroup of O(2, 1) and add translation components to obtain a group of affine transformations which acts freely.

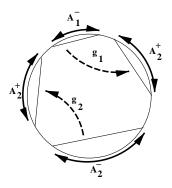
However it seems difficult to decide whether the resulting group action is properly discontinuous.

■ Clearly a geometric problem: free groups act properly by isometries on H³ hence by diffeomorphisms of ℝ³

These actions are not affine.

Milnor suggests:

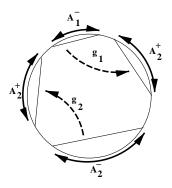
Start with a free discrete subgroup of O(2,1) and add translation components to obtain a group of affine transformations which acts freely. However it seems difficult to decide whether the resulting group action is properly discontinuous.



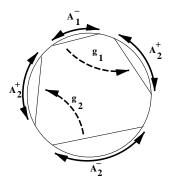
Generators g_1, g_2 pair half-spaces $A_i^- \longrightarrow H^2 \setminus A_i^+$.

 \blacksquare g_1, g_2 freely generate discrete group.

Action proper with fundamental domain $H^2 \setminus \bigcup_{i=1}^{4} A_i^{\pm}$.



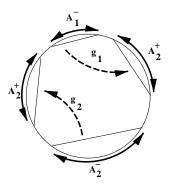
Generators g₁, g₂ pair half-spaces A_i⁻ → H² \ A_i⁺.
 g₁, g₂ freely generate discrete group.
 Action proper with fundamental domain H² \ UA[±].



Generators g_1, g_2 pair half-spaces $A_i^- \longrightarrow H^2 \setminus A_i^+$.

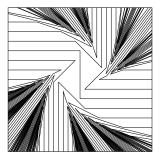
g₁, g_2 freely generate discrete group.

Action proper with fundamental domain $H^2 \setminus \bigcup A^{\pm}_{i=1}$



- Generators g_1, g_2 pair half-spaces $A_i^- \longrightarrow H^2 \setminus A_i^+$.
- **g**₁, g_2 freely generate discrete group.
- Action proper with fundamental domain $H^2 \setminus \bigcup_{i=1}^{\infty} A_{i=1}^{\pm}$.

Early 1980's: Margulis tried to answer Milnor's question negatively. Instead he proved that nonabelian free groups can act properly, affinely on \mathbb{R}^3 .



Affine action of level 2 congruence subgroup of $GL(2,\mathbb{Z})$

Early 1980's: Margulis tried to answer Milnor's question negatively. Instead he proved that nonabelian free groups can act properly, affinely on \mathbb{R}^3 .



Affine action of level 2 congruence subgroup of $GL(2,\mathbb{Z})$

Early 1980's: Margulis tried to answer Milnor's question negatively. Instead he proved that nonabelian free groups can act properly, affinely on \mathbb{R}^3 .



Affine action of level 2 congruence subgroup of $GL(2,\mathbb{Z})$

Early 1980's: Margulis tried to answer Milnor's question negatively. Instead he proved that nonabelian free groups can act properly, affinely on \mathbb{R}^3 .

Affine action of level 2 congruence subgroup of $GL(2,\mathbb{Z})$

→ □ → < □ → < □ → < □

Suppose that $\Gamma \subset Aff(\mathbb{R}^3)$ acts properly and is *not solvable*.

- (Fried-Goldman 1983): Let Γ → GL(3, ℝ) be the *linear part*.
 L(Γ) (conjugate to) a *discrete* subgroup of O(2, 1);
 L injective.
- Homotopy equivalence

$$M^3 := \mathbb{E}^{2,1}/\Gamma \longrightarrow \Sigma := \mathrm{H}^2/\mathbb{L}(\Gamma)$$

where Σ complete hyperbolic surface.

- Mess (1990): Σ not compact .
- Γ free;
- Milnor's suggestion is the only way to construct examples in dimension three.

Suppose that $\Gamma \subset Aff(\mathbb{R}^3)$ acts properly and is *not solvable*.

- (Fried-Goldman 1983): Let $\Gamma \xrightarrow{\mathbb{L}} GL(3, \mathbb{R})$ be the *linear part*.
 - L(Γ) (conjugate to) a *discrete* subgroup of O(2, 1);
 L injective.
- Homotopy equivalence

$$M^3 := \mathbb{E}^{2,1}/\Gamma \longrightarrow \Sigma := \mathrm{H}^2/\mathbb{L}(\Gamma)$$

where Σ complete hyperbolic surface.

- Mess (1990): ∑ not compact .
- Γ free;
- Milnor's suggestion is the only way to construct examples in dimension three.

Suppose that $\Gamma \subset Aff(\mathbb{R}^3)$ acts properly and is *not solvable*.

- (Fried-Goldman 1983): Let $\Gamma \xrightarrow{\mathbb{L}} GL(3, \mathbb{R})$ be the *linear part*.
 - L(Γ) (conjugate to) a *discrete* subgroup of O(2, 1);
 Linicative
 - L injective.

Homotopy equivalence

$$M^3 := \mathbb{E}^{2,1}/\Gamma \longrightarrow \Sigma := \mathrm{H}^2/\mathbb{L}(\Gamma)$$

where Σ complete hyperbolic surface.

- Mess (1990): Σ not compact .
- Γ free;

Milnor's suggestion is the only way to construct examples in dimension three.

Suppose that $\Gamma \subset Aff(\mathbb{R}^3)$ acts properly and is *not solvable*.

- (Fried-Goldman 1983): Let $\Gamma \xrightarrow{\mathbb{L}} GL(3, \mathbb{R})$ be the *linear part*.
 - L(Γ) (conjugate to) a *discrete* subgroup of O(2, 1);
 L injective.

Homotopy equivalence

$$M^3 := \mathbb{E}^{2,1}/\Gamma \longrightarrow \Sigma := \mathrm{H}^2/\mathbb{L}(\Gamma)$$

where Σ complete hyperbolic surface.

- Mess (1990): Σ not compact .
- Γ free;

Milnor's suggestion is the only way to construct examples in dimension three.

Suppose that $\Gamma \subset Aff(\mathbb{R}^3)$ acts properly and is *not solvable*.

- (Fried-Goldman 1983): Let $\Gamma \xrightarrow{\mathbb{L}} GL(3, \mathbb{R})$ be the *linear part*.
 - $\mathbb{L}(\Gamma)$ (conjugate to) a *discrete* subgroup of O(2,1);
 - L injective.
- Homotopy equivalence

$$M^3 := \mathbb{E}^{2,1}/\Gamma \longrightarrow \Sigma := H^2/\mathbb{L}(\Gamma)$$

where Σ complete hyperbolic surface.

■ Mess (1990): ∑ not compact .

Γ free;

Milnor's suggestion is the only way to construct examples in dimension three.

Suppose that $\Gamma \subset Aff(\mathbb{R}^3)$ acts properly and is *not solvable*.

- (Fried-Goldman 1983): Let $\Gamma \xrightarrow{\mathbb{L}} GL(3, \mathbb{R})$ be the *linear part*.
 - $\mathbb{L}(\Gamma)$ (conjugate to) a *discrete* subgroup of O(2,1);
 - L injective.
- Homotopy equivalence

$$M^3 := \mathbb{E}^{2,1}/\Gamma \longrightarrow \Sigma := H^2/\mathbb{L}(\Gamma)$$

where Σ complete hyperbolic surface.

- Mess (1990): Σ not compact .
- Γ free;
- Milnor's suggestion is the only way to construct examples in dimension three.

Suppose that $\Gamma \subset Aff(\mathbb{R}^3)$ acts properly and is *not solvable*.

- (Fried-Goldman 1983): Let $\Gamma \xrightarrow{\mathbb{L}} GL(3, \mathbb{R})$ be the *linear part*.
 - $\mathbb{L}(\Gamma)$ (conjugate to) a *discrete* subgroup of O(2,1);
 - L injective.
- Homotopy equivalence

$$M^3 := \mathbb{E}^{2,1}/\Gamma \longrightarrow \Sigma := H^2/\mathbb{L}(\Gamma)$$

where Σ complete hyperbolic surface.

- Mess (1990): Σ not compact .
- Γ free;
- Milnor's suggestion is the only way to construct examples in dimension three.

Suppose that $\Gamma \subset Aff(\mathbb{R}^3)$ acts properly and is *not solvable*.

- (Fried-Goldman 1983): Let $\Gamma \xrightarrow{\mathbb{L}} GL(3, \mathbb{R})$ be the *linear part*.
 - $\mathbb{L}(\Gamma)$ (conjugate to) a *discrete* subgroup of O(2,1);
 - L injective.
- Homotopy equivalence

$$M^3 := \mathbb{E}^{2,1}/\Gamma \longrightarrow \Sigma := H^2/\mathbb{L}(\Gamma)$$

where Σ complete hyperbolic surface.

- Mess (1990): Σ not compact .
- Γ free;
- Milnor's suggestion is the only way to construct examples in dimension three.

Suppose that $\Gamma \subset Aff(\mathbb{R}^3)$ acts properly and is *not solvable*.

- (Fried-Goldman 1983): Let $\Gamma \xrightarrow{\mathbb{L}} GL(3, \mathbb{R})$ be the *linear part*.
 - $\mathbb{L}(\Gamma)$ (conjugate to) a *discrete* subgroup of O(2,1);
 - L injective.
- Homotopy equivalence

$$M^3 := \mathbb{E}^{2,1}/\Gamma \longrightarrow \Sigma := H^2/\mathbb{L}(\Gamma)$$

where Σ complete hyperbolic surface.

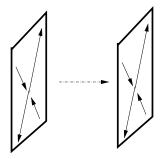
Mess (1990): Σ not compact .

Γ free;

Milnor's suggestion is the only way to construct examples in dimension three.

Cyclic groups

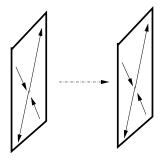
■ Most elements γ ∈ Γ are *boosts*, affine deformations of hyperbolic elements of O(2, 1). A fundamental domain is the *slab* bounded by two parallel planes.



(日)

Cyclic groups

■ Most elements γ ∈ Γ are *boosts*, affine deformations of hyperbolic elements of O(2, 1). A fundamental domain is the *slab* bounded by two parallel planes.

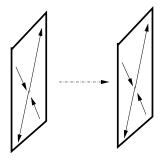


・ロト ・雪 ト ・ 画 ト ・ 画 ト

-

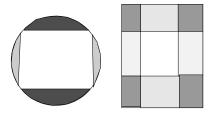
Cyclic groups

■ Most elements γ ∈ Γ are *boosts*, affine deformations of hyperbolic elements of O(2, 1). A fundamental domain is the *slab* bounded by two parallel planes.

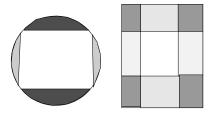


・ロト ・雪 ト ・ 画 ト ・ 画 ト

-

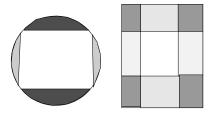


- In H², the half-spaces A_i^{\pm} are disjoint;
- Their complement is a fundamental domain.
- In affine space, half-spaces disjoint \Rightarrow parallel!
- Complements of slabs always intersect,
- Unsuitable for building Schottky groups!

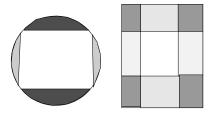


In H², the half-spaces A_i^{\pm} are disjoint;

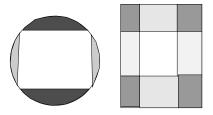
- Their complement is a fundamental domain.
- In affine space, half-spaces disjoint ⇒ parallel!
- Complements of slabs always intersect,
- Unsuitable for building Schottky groups!



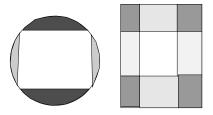
- In H², the half-spaces A_i^{\pm} are disjoint;
- Their complement is a fundamental domain.
- In affine space, half-spaces disjoint ⇒ parallel!
- Complements of slabs always intersect,
- Unsuitable for building Schottky groups!



- In H², the half-spaces A_i^{\pm} are disjoint;
- Their complement is a fundamental domain.
- In affine space, half-spaces disjoint ⇒ parallel!
- Complements of slabs always intersect,
- Unsuitable for building Schottky groups!



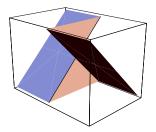
- In H², the half-spaces A_i^{\pm} are disjoint;
- Their complement is a fundamental domain.
- In affine space, half-spaces disjoint ⇒ parallel!
- Complements of slabs always intersect,
- Unsuitable for building Schottky groups!



- In H², the half-spaces A_i^{\pm} are disjoint;
- Their complement is a fundamental domain.
- In affine space, half-spaces disjoint ⇒ parallel!
- Complements of slabs always intersect,
- Unsuitable for building Schottky groups!

Crooked Planes (Drumm 1990)

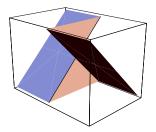
 Crooked Planes: Flexible polyhedral surfaces bound fundamental polyhedra for free affine groups.



Two null half-planes connected by lines inside light-cone.

Crooked Planes (Drumm 1990)

 Crooked Planes: Flexible polyhedral surfaces bound fundamental polyhedra for free affine groups.

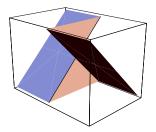


Two null half-planes connected by lines inside light-cone.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Crooked Planes (Drumm 1990)

 Crooked Planes: Flexible polyhedral surfaces bound fundamental polyhedra for free affine groups.

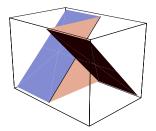


Two null half-planes connected by lines inside light-cone.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

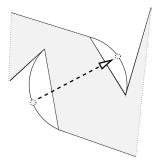
Crooked Planes (Drumm 1990)

 Crooked Planes: Flexible polyhedral surfaces bound fundamental polyhedra for free affine groups.

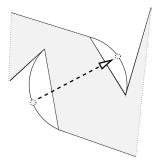


Two null half-planes connected by lines inside light-cone.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

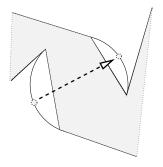


- Start with a *hyperbolic slab* in H².
- Extend into light cone in $\mathbb{E}^{2,1}$;
- Extend outside light cone in $\mathbb{E}^{2,1}$;
- Action proper except at the origin and two null half-planes.

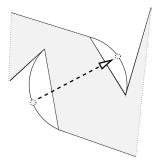


Start with a hyperbolic slab in H^2 .

- Extend into light cone in $\mathbb{E}^{2,1}$;
- Extend outside light cone in $\mathbb{E}^{2,1}$;
- Action proper except at the origin and two null half-planes.

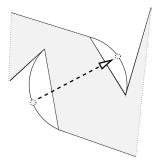


- Start with a hyperbolic slab in H².
 Extend into light cone in E^{2,1};
- Extend outside light cone in $\mathbb{E}^{2,1}$;
- Action proper except at the origin and two null half-planes.



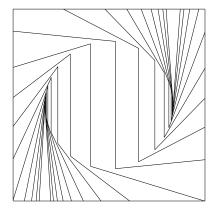
- Start with a *hyperbolic slab* in H^2 .
- Extend into light cone in $\mathbb{E}^{2,1}$;
- Extend outside light cone in $\mathbb{E}^{2,1}$;

Action proper except at the origin and two null half-planes.



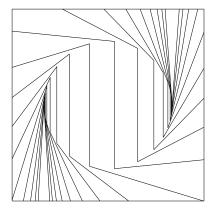
- Start with a *hyperbolic slab* in H^2 .
- Extend into light cone in $\mathbb{E}^{2,1}$;
- Extend outside light cone in $\mathbb{E}^{2,1}$;
- Action proper except at the origin and two null half-planes.

Images of crooked planes under a linear cyclic group



The resulting tessellation for a linear boost.

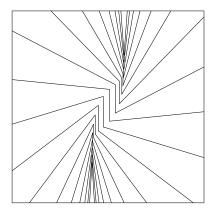
Images of crooked planes under a linear cyclic group



◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 • • • • • •

The resulting tessellation for a linear boost.

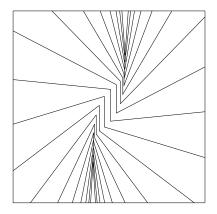
Images of crooked planes under an affine deformation



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Adding translations frees up the action
 — which is now proper on all of E^{2,1}.

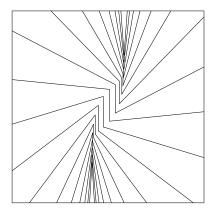
Images of crooked planes under an affine deformation



Adding translations frees up the action

• — which is now proper on all of $\mathbb{E}^{2,1}$.

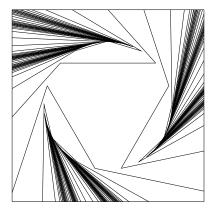
Images of crooked planes under an affine deformation



・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ らくぐ

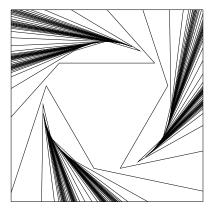
Adding translations frees up the action
 — which is now proper on *all* of E^{2,1}.

Linear action of Schottky group



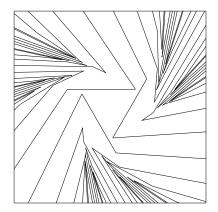
Crooked polyhedra tile H² for subgroup of O(2, 1).

Linear action of Schottky group



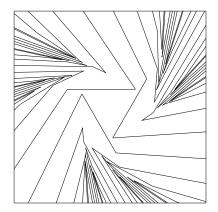
Crooked polyhedra tile H² for subgroup of O(2,1).

Affine action of Schottky group



Carefully chosen affine deformation acts properly on $\mathbb{E}^{2,1}$.

Affine action of Schottky group



Carefully chosen affine deformation acts properly on $\mathbb{E}^{2,1}$.

Theorem (Charette-Drumm-Goldman-Labourie-Margulis) For a fixed noncompact hyperbolic surface Σ , the space of proper affine deformations is an open convex cone in the vector space $H^1(\Sigma, \mathbb{R}^3_1)$.

- H¹(Σ, ℝ₁³) consists of infinitesimal deformations of the hyperbolic structure
- Proper affine deformations correspond to infinitesimal deformations which infinitesimally lengthen each measured geodesic lamination.

Theorem (Charette-Drumm-Goldman-Labourie-Margulis) For a fixed noncompact hyperbolic surface Σ , the space of proper affine deformations is an open convex cone in the vector space $H^1(\Sigma, \mathbb{R}^3_1)$.

- H¹(Σ, ℝ₁³) consists of infinitesimal deformations of the hyperbolic structure
- Proper affine deformations correspond to infinitesimal deformations which infinitesimally lengthen each measured geodesic lamination.

Theorem (Charette-Drumm-Goldman-Labourie-Margulis) For a fixed noncompact hyperbolic surface Σ , the space of proper affine deformations is an open convex cone in the vector space $H^1(\Sigma, \mathbb{R}^3_1)$.

- H¹(Σ, ℝ₁³) consists of infinitesimal deformations of the hyperbolic structure
- Proper affine deformations correspond to infinitesimal deformations which infinitesimally lengthen each measured geodesic lamination.

Theorem (Charette-Drumm-Goldman-Labourie-Margulis) For a fixed noncompact hyperbolic surface Σ , the space of proper affine deformations is an open convex cone in the vector space $H^1(\Sigma, \mathbb{R}^3_1)$.

- H¹(Σ, ℝ₁³) consists of infinitesimal deformations of the hyperbolic structure
- Proper affine deformations correspond to infinitesimal deformations which infinitesimally lengthen each measured geodesic lamination.

- Conjecture: Every Margulis spacetime M³ admits a fundamental polyhedron bounded by disjoint crooked planes.
 Corollary: (Tameness) M³ ≈ open solid handlebody.
- Proved when $\chi(\Sigma) = -1$ (that is, $rank(\pi_1(\Sigma)) = 2$). (Charette-Drumm-Goldman 2010)
- Four possible topologies for Σ:
 - Three-holed sphere;
 - Two-holed cross-surface (projective plane);
 - One-holed Klein bottle;
 - One-holed torus.
- The deformation space of complete affine structures on a solid handlebody of genus 2 has 4 connected components, each one of which is a 6-dimensional cell (with some boundary and corners).

- Conjecture: Every Margulis spacetime M³ admits a fundamental polyhedron bounded by disjoint crooked planes.
 - Corollary: (Tameness) $M^3 \approx$ open solid handlebody.
- Proved when χ(Σ) = -1 (that is, rank(π₁(Σ)) = 2). (Charette-Drumm-Goldman 2010)
- Four possible topologies for Σ:
 - Three-holed sphere;
 - Two-holed cross-surface (projective plane);
 - One-holed Klein bottle;
 - One-holed torus.
- The deformation space of complete affine structures on a solid handlebody of genus 2 has 4 connected components, each one of which is a 6-dimensional cell (with some boundary and corners).

- Conjecture: Every Margulis spacetime M³ admits a fundamental polyhedron bounded by disjoint crooked planes.
 - Corollary: (Tameness) $M^3 \approx$ open solid handlebody.
- Proved when χ(Σ) = -1 (that is, rank(π₁(Σ)) = 2). (Charette-Drumm-Goldman 2010)
- Four possible topologies for Σ:
 - Three-holed sphere;
 - Two-holed cross-surface (projective plane);
 - One-holed Klein bottle;
 - One-holed torus.
- The deformation space of complete affine structures on a solid handlebody of genus 2 has 4 connected components, each one of which is a 6-dimensional cell (with some boundary and corners).

- Conjecture: Every Margulis spacetime M³ admits a fundamental polyhedron bounded by disjoint crooked planes.
 - Corollary: (Tameness) $M^3 \approx$ open solid handlebody.
- Proved when χ(Σ) = -1 (that is, rank(π₁(Σ)) = 2). (Charette-Drumm-Goldman 2010)
- Four possible topologies for Σ:
 - Three-holed sphere;
 - Two-holed cross-surface (projective plane);
 - One-holed Klein bottle;
 - One-holed torus.
- The deformation space of complete affine structures on a solid handlebody of genus 2 has 4 connected components, each one of which is a 6-dimensional cell (with some boundary and corners).

- Conjecture: Every Margulis spacetime M³ admits a fundamental polyhedron bounded by disjoint crooked planes.
 Corollary: (Tameness) M³ ≈ open solid handlebody.
- Proved when χ(Σ) = -1 (that is, rank(π₁(Σ)) = 2). (Charette-Drumm-Goldman 2010)
- Four possible topologies for Σ:
 - Three-holed sphere;
 - Two-holed cross-surface (projective plane);
 - One-holed Klein bottle;
 - One-holed torus.
- The deformation space of complete affine structures on a solid handlebody of genus 2 has 4 connected components, each one of which is a 6-dimensional cell (with some boundary and corners).

- Conjecture: Every Margulis spacetime M³ admits a fundamental polyhedron bounded by disjoint crooked planes.
 - Corollary: (Tameness) $M^3 \approx$ open solid handlebody.
- Proved when χ(Σ) = -1 (that is, rank(π₁(Σ)) = 2). (Charette-Drumm-Goldman 2010)
- Four possible topologies for Σ:
 - Three-holed sphere;
 - Two-holed cross-surface (projective plane);
 - One-holed Klein bottle;
 - One-holed torus.
- The deformation space of complete affine structures on a solid handlebody of genus 2 has 4 connected components, each one of which is a 6-dimensional cell (with some boundary and corners).

- Conjecture: Every Margulis spacetime M³ admits a fundamental polyhedron bounded by disjoint crooked planes.
 - Corollary: (Tameness) $M^3 \approx$ open solid handlebody.
- Proved when χ(Σ) = -1 (that is, rank(π₁(Σ)) = 2). (Charette-Drumm-Goldman 2010)
- Four possible topologies for Σ:
 - Three-holed sphere;
 - Two-holed cross-surface (projective plane);
 - One-holed Klein bottle;
 - One-holed torus.
- The deformation space of complete affine structures on a solid handlebody of genus 2 has 4 connected components, each one of which is a 6-dimensional cell (with some boundary and corners).

- Conjecture: Every Margulis spacetime M³ admits a fundamental polyhedron bounded by disjoint crooked planes.
 - Corollary: (Tameness) $M^3 \approx$ open solid handlebody.
- Proved when χ(Σ) = -1 (that is, rank(π₁(Σ)) = 2). (Charette-Drumm-Goldman 2010)
- Four possible topologies for Σ:
 - Three-holed sphere;
 - Two-holed cross-surface (projective plane);
 - One-holed Klein bottle;
 - One-holed torus.
- The deformation space of complete affine structures on a solid handlebody of genus 2 has 4 connected components, each one of which is a 6-dimensional cell (with some boundary and corners).

- Conjecture: Every Margulis spacetime M³ admits a fundamental polyhedron bounded by disjoint crooked planes.
 - Corollary: (Tameness) $M^3 \approx$ open solid handlebody.
- Proved when χ(Σ) = -1 (that is, rank(π₁(Σ)) = 2). (Charette-Drumm-Goldman 2010)
- Four possible topologies for Σ:
 - Three-holed sphere;
 - Two-holed cross-surface (projective plane);
 - One-holed Klein bottle;
 - One-holed torus.
- The deformation space of complete affine structures on a solid handlebody of genus 2 has 4 connected components, each one of which is a 6-dimensional cell (with some boundary and corners).

- Conjecture: Every Margulis spacetime M³ admits a fundamental polyhedron bounded by disjoint crooked planes.
 - Corollary: (Tameness) $M^3 \approx$ open solid handlebody.
- Proved when χ(Σ) = -1 (that is, rank(π₁(Σ)) = 2). (Charette-Drumm-Goldman 2010)
- Four possible topologies for Σ:
 - Three-holed sphere;
 - Two-holed cross-surface (projective plane);
 - One-holed Klein bottle;
 - One-holed torus.
- The deformation space of complete affine structures on a solid handlebody of genus 2 has 4 connected components, each one of which is a 6-dimensional cell (with some boundary and corners).

Proper affine deformations of Σ when $\chi(\Sigma) = -1$

