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Abstract. Let Σ be a compact orientable surface with genus g and n bound-
ary components B = (B1, . . . , Bn). Let c = (c1, . . . , cn) ∈ [−2, 2]n. Then the
mapping class group MCG of Σ acts on the relative SU(2)-character variety
XC := HomC(π,SU(2))/SU(2), comprising conjugacy classes of representations
ρ with tr(ρ(Bi)) = ci. This action preserves a symplectic structure on the

smooth part of XC , and the corresponding measure is finite. Suppose g = 1
and n = 2. Let J ⊂ MCG be the subgroup generated by Dehn twists along
null homologous simple loops in Σ. Then the action of J on XC is ergodic for
almost all c.

1. Introduction

Let Σ = Σg,n be a compact oriented surface of genus g with n boundary compo-
nents B = {B1, ..., Bn}. Let π = π1(Σ) denote its fundamental group. The mapping
class group MCG consists of isotopy classes of orientation-preserving homeomor-
phisms of Σ which pointwise fix each Bi. Alternatively, MCG is the image under
the quotient homomorphism

Aut(π) −→ Out(π) := Aut(π)/Inn(π)

of the subgroup Aut(π,B) of all automorphisms of π that preserve the set B of
conjugacy classes of the cyclic subgroups π1(Bi) ⊂ π and correspond to orientation-
preserving homeomorphisms.

Let G be a Lie group. Then G acts on Hom(π,G) by conjugation. Let

X(G) = Hom(π,G)/G.

Let C = {C1, · · · , Cn}, where Ci ⊆ G is a conjugacy class for 1 ≤ i ≤ n. Then the
relative representation variety is

HomC(π,G) = {ρ ∈ Hom(π,G) : ρ(Bj) ∈ Cj , for 1 ≤ j ≤ n}.
The group G acts on HomC(π,G) by conjugation and the moduli space is the
quotient

XC(G) = HomC(π,G)/G.
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The group Aut(π,B) acts on π, preserving B. Hence it acts on HomC(π,G).
Furthermore the action descends to a MCG-action on XC(G). The moduli space
XC(G) has an invariant dense open subset XU

C (G) which is a smooth manifold.
This subset has an MCG-invariant symplectic structure ω, hence, a natural smooth
MCG-invariant measure μ [3, 5].

Denote by S the set of homotopy classes of simple closed curves on Σ and by
J ⊆ S the null homologous (in H1(Σ,Z)) subset. The group MCG is generated
by Dehn twists τa along simple loops in S. Denote by J ⊆ MCG the subgroup
generated by Dehn twists along simple loops in J and by T ⊆ MCG the subgroup
generated by Dehn twists τa for a ∈ J and products τaτ

−1
b , where a and b are

disjoint but homologous simple loops in S.
When n ≤ 1, T is the Torelli group, i.e. the subgroup of MCG acting trivially

on H1(Σ,Z) [8]. Johnson constructed epimorphisms{
T −→ Λ3H1(Σ,Z)/H1(Σ,Z) for n = 0,

T −→ Λ3H1(Σ,Z) for n = 1

and define the kernels to be J [7, 6].
For n > 1, our definition of T relates to the functorial Torelli group (see [11, 12]).

The ergodicity of the MCG-action on XC(SU(2)) was proved in [2, 4]. See [10, 9]
for similar results when G is a general compact group. Here we prove the following
ergodicity result:

Theorem 1.1. Suppose g = 1 and n = 2. Then the J -action on XC(SU(2)) is
ergodic for generic C1 and C2.

The moduli space XC(SU(2)) possesses a symplectic structure. The group J is
generated by simple loops described above. The same simple loops also correspond
to fundamental group elements. These Dehn twist actions embed into the Hamil-
tonian vector field flows of the trace functions on these corresponding fundamental
group elements. It is then a routine matter to produce a set of such Hamiltonian
vector fields, whose flows are locally transitive on an open dense (Zariski) subset
U ⊆ XC(SU(2)). However since XC(SU(2)) is a real variety (SU(2) < SL(2,C) is a
real form), V = XC(SU(2))\U is of R-codimension 1. In other words, V may contain
“walls” between components of U . To prove ergodicity of the J -action, we analyze
the vector fields along V explicitly. This then requires an explicit computation of
the symplectic form with the aid of a computer. The inability to carry out these
explicit computations for curves of higher genuses and/or with more punctures is
the main obstacle in generalizing Theorem 1.1 to these curves.

2. Trace functions and Hamiltonian flows

This section summarizes some needed results from [4]. Let X be a symplectic
manifold and f : X → R a smooth function. Denote by H(f) the associated
Hamiltonian vector field.

Proposition 2.1. Let X be a connected symplectic manifold and let F be a set of
real smooth R-valued functions on X such that at every point x ∈ X, the differentials
df(x), for f ∈ F , span the cotangent space T ∗

x (X). Then the group G generated by
the Hamiltonian flows of the vector fields H(f), for f ∈ F , acts transitively on X.

Proof. The proof is a straightforward application of the implicit function theorem;
see Lemma 3.2 in [4]. �
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Let G = SL(2,C) and C = {C1, · · · , Cn} be a family of conjugacy classes in G
such that Ci is non-parabolic for each 1 ≤ i ≤ n. Let c = (c1, · · · , cn) ∈ Cn such
that ci = tr(A) ∈ C for all A ∈ Ci. Then the representation variety is equivalently
defined as

HomC(π,G) = {ρ ∈ Hom(π,G), tr(ρ(Bj)) = cj , for 1 ≤ j ≤ n}.
In this setting, if α ∈ π is a homotopy class of based loops, then tα, the trace

function of α on XC , is defined as

Hom(π, SL(2,C))
tα−→ C; ρ �−→ tr

(
ρ(α)

)
.

Since the function SL(2,C)
tr−→ C is Inn(π)-invariant, tα defines a function (also

denoted by tα) on XC(SL(2,C)). Furthermore, when G = SU(2), c ∈ In, where
I = [−2, 2].

Proposition 2.2. Let α be a simple separating curve on Σ with Dehn twist τα.
Let ψ : XC → R be a measurable function invariant under the cyclic group 〈(τα)∗〉.
Then ψ is almost everywhere invariant under the flow of H(tα).

Proof. See Proposition 5.4 in [4]. �

For the rest of the paper, we shorten XC(SU(2)) (resp. X
U
C (SU(2))) to Xc (resp.

XU
c ).

3. Ergodicity

For g = 0 and n = 4 or for g = 1 and n = 2, the fundamental group π is
isomorphic to the free group of three generators

F3 = 〈F1, F2, F3, F4 |
∏

Fi〉,

where Fi corresponds to a simple closed curve on Σ. By convention, we also use
elements in π to denote curves they represent on Σ.

The coordinate ring of Hom(F3, SL(2,C))/SL(2,C) is C[K]/(k), where

K = {t4, t1, t2, t3, t12, t13, t23}
with

ti = tr(ρ(Fi)), tij = tr(ρ(FiFj)) for ρ ∈ Hom(F3, SL(2,C))

and

(3.1) k := t212 + t223 + t213 + t12t23t13 − c12t12 − c23t23 − c13t13 − c0,

where

c12 := t1t2 + t3t4,

c23 := t2t3 + t1t4,

c13 := t1t3 + t2t4,

c0 := 4− t21 − t22 − t23 − t24 − t1t2t3t4.(3.2)

Let

Ω = dt4 ∧ dt1 ∧ dt2 ∧ dt3 ∧ dt12 ∧ dt13 ∧ dt23.

A priori, we consider elements in R[K] as functions on I7. Then X ⊆ I7 is a
compact component of {v ∈ I7 : k(v) = 0}. Hence elements in R[K] also restrict to
functions on X.
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3.1. The 4-holed sphere. Suppose g = 0 and n = 4. The boundary components
of Σ are

B = (B1, B2, B3, B4).

The fundamental group π is isomorphic to F3 with the isomorphism Bi �→ Fi. Let

F : X −→ I4, F(K) = (t1, t2, t3, t4).

Then for c = (c1, c2, c3, c4) ∈ I4, Xc is a compact component of F−1(c).
The Johnson kernel J for the 4-holed torus is trivial as any non-trivial Dehn

twist must be along simple curves that separate the four boundary components
into pairs. However one may study a different group action as follows: Fix the
boundary components into two pairs {B1, B2} and {B3, B4}. Let J ′ ⊆ S be the
subset containing all the curves separating Σ into two pairs of pants containing
{B1, B2} and {B3, B4}, respectively. Let J ′ ⊆ MCG be the subgroup generated
by Dehn twists along elements in J ′. In this section, we study the J ′-action on
XU

c . This problem is interesting in its own right and instructive in the study of the
J -action on XU

c when Σ is the 2-holed torus.
The symplectic bi-vector field relating to ω is

W = (∂t12 ∧ ∂t23 ∧ ∂t13)(dk).

By convention, we use Fi to also denote a simple closed curve it represents. The
Dehn twist along the simple closed curve F2F3 takes the simple closed curve F1F2

to a simple closed curve F0. Denote by τ12, τ0 the Dehn twists along F1F2 and F0,
respectively. Let

Γ = 〈τ12, τ0〉.

Remark 3.1. Both F1F2 and F0 separate Σ into two components each containing
{B1, B2} and {B3, B4}, respectively. Hence Γ ⊆ J ′.

Let M be the space of measurable functions X → R. The trace functions of
F1F2, F0 are, respectively,

p12 = t12, p0 = c12 − t23t13 − t12.

Let Hi = W (dpi) be the Hamiltonian vector field (notice that, to conserve notation,
the subscript index i may mean either a number or a pair of numbers). Let

Gi = {g : XU → X
U | g is a smooth automorphism, pi ◦ g = pi,F ◦ g = F}.

Let G be the group generated by G0∪G12 and let G ⊆ G be the subgroup generated
by the Hamiltonian flows of the Hi’s. It is immediate that Γ ⊆ G. HenceMG ⊆ MΓ.
Suppose f ∈ M〈τi〉. Then by Proposition 2.2,

f = fi ◦ pi,
for some fi : R → R. Hence M〈τi〉 ⊆ MGi . Therefore

MΓ ⊆ M〈τ0〉 ∩M〈τ12〉 ⊆ MG0 ∩MG12 = MG .

Hence MΓ ⊆ MG ⊆ MG.
Let s ∈ R[K] such that

sΩ = dt4 ∧ dt1 ∧ dt2 ∧ dt3 ∧ dk ∧ dp0 ∧ dp12.

A direct calculation shows that

s = 2t223 − c23t23 − 2t213 + c13t13.
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Then

V = {v ∈ I7 : s(v) = 0}
is the dependency locus; i.e. by definition,

Lemma 3.2. The Hamiltonian vector fields H0,H12 are linearly dependent at v
only if v ∈ V .

Remark 3.3. The purpose is to find a sufficient condition for the set {dpi} to be
linearly independent at v ∈ Xc. The choices of dti, 1 ≤ i ≤ 4, and dk are not
canonical. They are chosen because the fi’s (1 ≤ i ≤ 4) are the boundary traces
and k is the defining equation of X; hence, they are constant on Xc.

Lemma 3.4. The vector field H12 is not tangent to V for almost all c ∈ I4.

Proof. Suppose H12 is tangent to V . Then H12 is a derivation on the ring of
functions on V ∩ X. Hence

H12(s) = (2t13 + t12t23 − c13)(4t23 − c23) + (−2t23 − t12t13 + c23)(−4t13 + c13)

is zero in R[K]/(k, s); that is, H12(s) ∈ (k, s).
We now compute a Gröbner basis for (k, s) ⊆ R[K]. A direct computation shows

that the residue of H12(s) is not zero. This implies that H12(s) �∈ (k, s). This implies
that for a generic c ∈ I4, H12 is not tangent to V . �

Theorem 3.5. The Γ-action on Xc is ergodic for almost every c ∈ I4.

Proof. Suppose f ∈ MΓ. Then f ∈ MG. For almost all c ∈ I4, the set Q =
XU

c ∩ V has measure zero and divides XU
c into a finite number of components. Let

A ⊆ XU
c \ Q be a connected component. By Lemma 3.2, the fibres of p12, p0 are

tangent to each other at v only if v ∈ Q. Hence, by Proposition 2.1, f must be
constant almost everywhere on A.

Lemma 3.4 implies that there is a Zariski dense subset of Q upon which H12 is
not tangent to Q. Hence there exists a smooth vector field (namely H12) that flows
across Q between adjacent components. This implies that if v0, v1 ∈ XU

c \Q, then
there exists g ∈ G such that g(v0) = v1. Since XU

c is smooth and connected, f is
constant almost everywhere on XU

c \ Q. Since XU
c is open and dense in Xc and Q

has measure zero, the theorem follows. �

3.2. The 2-holed torus. This case runs in parallel with that of the 4-holed sphere
above. Let g = 1 and n = 2. The boundary components of Σ are B = (B1, B2).
The fundamental group π is isomorphic to F3 as described by the ribbon graph in
Figure 1, with B1 �→ F1F2F3 and B2 �→ F1F3F2.

The sum and product formulas are, respectively [1]:

ks = t13t2 + t1t23 + t12t3 − t1t2t3,

kp = t22 + t23 + t21 + t212 + t213 + t223 + t12t13t23 − t2t3t23 − t2t1t12 − t3t1t13 − 4.

Notice that k = kp − t4(ks − t4). Let

F : X −→ I2, F(K) = (t4, ks − t4).

Then for c = (c1, c2) ∈ I2, Xc is a compact component of F−1(c).

Remark 3.6. The moduli space Xc is the subspace of X defined by ks = c1+ c2 and
kp = c1c2.
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F1

F2

F3

F1

F2

F3

Figure 1. A ribbon graph representing a 2-holed torus

With respect to the coordinates K, the canonical symplectic bi-vector field W
relating to ω is (this can be computed from the ribbon diagram of Figure 1) the
7 × 7 skew-symmetric matrix specified by the following (the unspecified terms are
zero; i.e. after filling in these specified terms and making it skew-symmetric, the
rest of the terms are zero):

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

W2,3 = −2t12 + t1t2, W2,4 = 2t13 − t1t3,
W2,5 = −t1t12 + 2t2, W2,6 = t1t13 − 2t3,
W3,4 = −2t23 + t2t3, W3,5 = −2t1 + t12t2, W3,7 = −t2t23 + 2t3,
W4,6 = 2t1 − t13t3, W4,7 = −2t2 + t23t3,
W5,6 = −t12t13 − 2t23 + 2t2t3, W5,7 = 2t13 + t12t23 − 2t1t3,
W6,7 = −2t12 + 2t1t2 − t13t23.

The Dehn twist along the simple closed curve F1 takes the simple closed curve
F2F3F

−1
2 F−1

3 to a simple closed curve F0. Denote by τij the Dehn twists along

FiFjF
−1
i F−1

j and by τ0 the Dehn twist along F0. Let

Γ = 〈τ12, τ23, τ13, τ0〉.

Remark 3.7. Γ ⊆ J .
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Let M be the space of all measurable functions X → R. The trace functions for
various i are

p12 = −2 + t21 + t212 − t1t12t2 + t22,

p23 = −2 + t22 + t223 − t2t23t3 + t23,

p13 = −2 + t21 + t213 − t1t13t3 + t23,

p0 = c0 + t1t12t2 + t4t13t2 + t1t4t23

+ t12t4t3 − t1t13t3 − t1t12t23t3 + t2t23t3 + t21t
2
3 − 2.

Let Hi = W (dpi) (again the subscript i may denote a number or a pair of
numbers) be the Hamiltonian vector field. Let

Gi = {g : XU → X
U | g is a smooth automorphism, pi ◦ g = pi,F ◦ g = F}.

Let G be the group generated by
⋃

i Gi and let G ⊆ G be the subgroup generated
by the flows of Hi’s. It is immediate that Γ ⊆ G. Hence MG ⊆ MΓ. Suppose
f ∈ M〈τi〉. Then by Proposition 2.2,

f = fi ◦ pi,

for some fi : R → R. Hence M〈τi〉 ⊆ MGi . Therefore

MΓ ⊆
⋂
i

M〈τi〉 ⊆
⋂
i

MGi = MG .

Hence MΓ ⊆ MG ⊆ MG.
Let V ⊆ I7 be the subvariety defined by the polynomial s = 0, where

sΩ = dt4 ∧ d(kp − t4) ∧ dk
∧
i

dpi.

By definition, V is the dependency locus:

Lemma 3.8. If the set {Hi} is linearly dependent at v ∈ XU
c , then v ∈ V .

Remark 3.9. Again in complete parallel with the case of the 4-hole sphere, the
choices of dt4, d(ks − t4), dk are not canonical. They are chosen because t4, ks − t4
are the boundary traces and k is the defining equation of X; hence, they are constant
on Xc.

Lemma 3.10. The vector field H12 is not tangent to V for almost all c ∈ I2.

Proof. Suppose H12 is tangent to V . Then H12 is a derivation on the ring of
functions on V ∩ X. Hence H12(s) = 0 ∈ R[K]/(k, s). This implies that H12(s) ∈
(k, s).

With the aid of a computer, one may compute a Gröbner basis for (k, s) and
show that the residue of H12(s) is not zero. Hence H12(s) �∈ (k, s). This implies
that for a generic c ∈ I2, H12 is not tangent to s.

It so happens that s = s1s2 is reducible with two factors. Hence one may
compute the Gröbner basis (k, s1) and (k, s2) and then compute the residues in
each cases. �

Proposition 3.11. The Γ-action on XU
c is ergodic for almost every c ∈ I2.
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Proof. Suppose f ∈ MΓ. Then f ∈ MG. For almost all c ∈ I2, the set Q =
XU

c ∩ V has measure zero and divides XU
c into a finite number of components. Let

A ⊆ XU
c \ Q be a connected component. By Lemma 3.8 and Proposition 2.1, f is

constant almost everywhere on A.
Lemma 3.10 implies that there is a Zariski dense subset of Q upon which H12 is

not tangent to Q. Hence there exists a smooth vector field (namely H12) in G12 that
flows across Q between adjacent components. This implies that if v0, v1 ∈ XU

c \Q,
then there exists g ∈ G such that g(v0) = v1. Since XU

c is smooth and connected, f
is constant almost everywhere on XU

c \Q. Since Q has measure zero, the theorem
follows. �

Theorem 1.1 follows as Γ ⊆ J and XU
c is open and dense in Xc.

Added after posting. We discovered a few misstatements after the article was
posted online and we correct them here. Between Remark 3.1 and Lemma 3.2 and
between Remark 3.7 and Lemma 3.8 there are passages that begin with “Let

Gi = {g : XU
C → XU

C | g is smooth, one-to-one, onto and pi ◦ g = pi}”

and end with “Hence MΓ ⊆ MG ⊆ MG.” These two passages should both be
replaced with the following passage:

Let Gi = G(pi) where G(pi) is the group generated by the Hamiltonian flow
of H(pi). Let G be the group generated by

⋃
i Gi. Suppose f ∈ M〈τi〉. Then by

Proposition 2.2, f ∈ MGi . Hence M〈τi〉 ⊆ MGi . Therefore

MΓ ⊆
⋂
i

M〈τi〉 ⊆
⋂
i

MGi = MG.
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