MATH 141 - Quiz Solutions(12 noon), Fall 2009

1. Find the numerical value of $\sec(\sin^{-1}(\frac{\sqrt{3}}{2}))$.

Solution: Let $x = \sin^{-1}(\frac{\sqrt{3}}{2})$, then we know that $\sin(x) = \frac{\sqrt{3}}{2}$, and we want to find $\sec(x)$. Use the graph on the next page, and we find

$$\sec(x) = \frac{2}{1} = 2$$

2. Find the length of the curve described parametrically by $x = 1 - t^2$ and $y = 1 + t^3$, for $t \in [0, 2]$.

Solution: Use the formula

$$L = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$

it follows that

$$\begin{split} L &= \int_{0}^{2} \sqrt{(2t)^{2} + (3t^{2})^{2}} dt \\ &= \int_{0}^{2} \sqrt{9t^{4} + 4t^{2}} dt \\ &= \int_{0}^{2} t\sqrt{4 + 9t^{2}} dt \\ &\text{(substitution } u = 4 + 9t^{2} \Rightarrow du = 18t dt) \\ &= \frac{1}{18} \int_{4}^{40} \sqrt{u} du \\ &= \frac{1}{18} \cdot \frac{2}{3} u^{\frac{3}{2}} \Big|_{4}^{40} \\ &= \frac{1}{27} \left(40^{\frac{3}{2}} - 4^{\frac{3}{2}} \right) \end{split}$$

3. Find the formula for the inverse of the function $f(x) = -4x^3 - 1$

Solution: Let
$$y = -4x^3 - 1$$
, then
 $-4x^3 = 1 + y \Rightarrow x = \sqrt[3]{\frac{1}{4}(-1-y)} \Rightarrow f^{-1}(x) = \sqrt[3]{\frac{1}{4}(-1-x)}$

4. Find the integral

$$\int e^{ex} dx$$

Solution:
$$\int e^{ex} dx = \frac{1}{e} e^{ex} + C$$

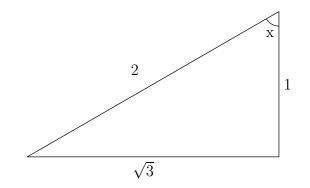


Figure 1: Graph for Problem 1

MATH 141 - Quiz Solutions (1pm), Fall 2009

1. Find the numerical value of $\sin(\sec^{-1}(\sqrt{3}))$.

Solution: Let $x = \sec^{-1}(\sqrt{3})$, then we know that $\sec(x) = \sqrt{3}$, and we want to find $\sin(x)$. Use the graph on the next page, and we find

$$\sin(x) = \frac{\sqrt{2}}{\sqrt{3}} = \frac{\sqrt{6}}{3}$$

2. Find the length of the curve described parametrically by $x = 1 - t^3$ and $y = 1 + t^2$, for $t \in [0, 2]$.

Solution: Use the formula

$$L = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$
it follows that

$$L = \int_{0}^{2} \sqrt{(3t^{2})^{2} + (2t)^{2}} dt$$

$$= \int_{0}^{2} \sqrt{9t^{4} + 4t^{2}} dt$$

$$= \int_{0}^{2} t\sqrt{4 + 9t^{2}} dt$$
(substitution $u = 4 + 9t^{2} \Rightarrow du = 18tdt$)

$$= \frac{1}{18} \int_{4}^{40} \sqrt{u} du$$

$$= \frac{1}{18} \cdot \frac{2}{3} u^{\frac{3}{2}} \Big|_{4}^{40}$$

$$= \frac{1}{27} \left(40^{\frac{3}{2}} - 4^{\frac{3}{2}}\right)$$

3. Find the formula for the inverse of the function $f(x) = -4x^3 + 1$

Solution: Let $y = -4x^3 + 1$, then $4x^3 = 1 - y \Rightarrow x = \sqrt[3]{\frac{1}{4}(1 - y)} \Rightarrow f^{-1}(x) = \sqrt[3]{\frac{1}{4}(1 - x)}$

4. Find the integral

$$\int e^{\sqrt{2}x} dx$$

Solution: $\int e^{\sqrt{2}x} dx = \frac{1}{\sqrt{2}} e^{\sqrt{2}x} + C$

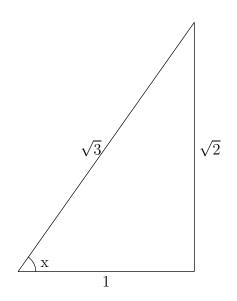


Figure 1: Graph for Problem 1

MATH 141 - Quiz Solutions(2pm), Fall 2009

1. Find the numerical value of $\csc(\tan^{-1}(\sqrt{3}))$.

Solution: Let $x = \tan^{-1}(\sqrt{3})$, then we know that $\tan(x) = \sqrt{3}$, and we want to find $\csc(x)$. Use the graph on the next page, and we find

$$\csc(x) = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$$

2. Find the length of the curve described parametrically by $x = -1 + t^3$ and $y = 1 + t^2$, for $t \in [0, 4]$.

Solution: Use the formula

$$L = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$
it follows that

$$L = \int_{0}^{4} \sqrt{(3t^{2})^{2} + (2t)^{2}} dt$$

$$= \int_{0}^{4} \sqrt{9t^{4} + 4t^{2}} dt$$

$$= \int_{0}^{4} t\sqrt{4 + 9t^{2}} dt$$
(substitution $u = 4 + 9t^{2} \Rightarrow du = 18tdt$)

$$= \frac{1}{18} \int_{4}^{148} \sqrt{u} du$$

$$= \frac{1}{18} \cdot \frac{2}{3} u^{\frac{3}{2}} \Big|_{4}^{148}$$

$$= \frac{1}{27} \left(148^{\frac{3}{2}} - 4^{\frac{3}{2}}\right)$$

3. Find the formula for the inverse of the function $f(x) = -x^3 + 4$

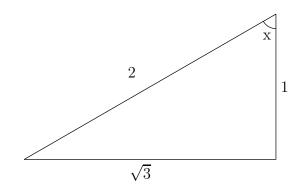
Solution: Let $y = -x^3 + 4$, then $x^3 = 4 - y \Rightarrow x = \sqrt[3]{4 - y} \Rightarrow f^{-1}(x) = \sqrt[3]{4 - x}$

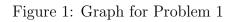
- _____
- 4. Find the integral

$$\int \sqrt{e^x} dx$$

Solution:

$$\int \sqrt{e^x} dx = \int e^{\frac{x}{2}} dx = 2e^{\frac{x}{2}} + C$$





MATH 141 - Quiz Solutions (3pm), Fall 2009

1. Find the numerical value of $\tan(\csc^{-1}(\sqrt{3}))$.

Solution: Let $x = \csc^{-1}(\sqrt{3})$, then we know that $\csc(x) = \sqrt{3}$, and we want to find $\csc(x)$. Use the graph on the next page, and we find

$$\tan(x) = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$

2. Find the length of the curve described parametrically by $x = -1 + t^2$ and $y = 1 - t^3$, for $t \in [0, 4]$.

Solution: Use the formula $L = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$ it follows that $L = \int_{0}^{4} \sqrt{(3t^{2})^{2} + (2t)^{2}} dt$ $= \int_{0}^{4} \sqrt{9t^{4} + 4t^{2}} dt$ $= \int_{0}^{4} t\sqrt{4 + 9t^{2}} dt$ (substitution $u = 4 + 9t^{2} \Rightarrow du = 18tdt$) $= \frac{1}{18} \int_{4}^{148} \sqrt{u} du$ $= \frac{1}{18} \cdot \frac{2}{3} u^{\frac{3}{2}} \Big|_{4}^{148}$ $= \frac{1}{27} \left(148^{\frac{3}{2}} - 4^{\frac{3}{2}}\right)$ 3. Find the formula for the inverse of the function $f(x) = -x^3 - 4$

Solution: Let $y = -x^3 - 4$, then $-x^3 = 4 + y \Rightarrow x = \sqrt[3]{-4 - y} \Rightarrow f^{-1}(x) = \sqrt[3]{-4 - x}$

4. Find the integral

$$\int \left(e^x\right)^2 dx$$

Solution:

$$\int (e^x)^2 \, dx = \int e^{2x} \, dx = \frac{1}{2}e^{2x} + C$$

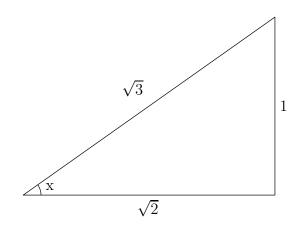


Figure 1: Graph for Problem 1