Solutions to MATH141 Quiz 15

November 19, 2009

12 PM

Problem 1

Use exponentials and logarithms to rewrite the limit. Then use continuity to introduce the limit inside the argument of the exponential

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{2 n}\right)^{n}=\lim _{n \rightarrow \infty} e^{\ln \left(1+\frac{1}{2 n}\right)^{n}}=e^{\lim _{n \rightarrow \infty} n \ln \left(1+\frac{1}{2 n}\right)}
$$

Apply L'Hôpital's rule to evaluate the limit

$$
\begin{aligned}
\lim _{n \rightarrow \infty} n \ln \left(1+\frac{1}{2 n}\right) & =\lim _{x \rightarrow \infty} \frac{\ln \left(1+\frac{1}{2 x}\right)}{\frac{1}{x}}=\lim _{x \rightarrow \infty} \frac{\left(\frac{1}{1+1 /(2 x)}\right)\left(-\frac{1}{2 x^{2}}\right)}{-\frac{1}{x^{2}}} \\
& =\lim _{x \rightarrow \infty}\left(\frac{1 / 2}{1+1 /(2 x)}\right)=\frac{1}{2}
\end{aligned}
$$

Substituting back this limit in the exponential,

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{2 n}\right)^{n}=e^{\frac{1}{2}}
$$

Problem 2

Use exponentials and logarithms to rewrite the limit. Then use continuity to introduce the limit inside the argument of the exponential

$$
\lim _{n \rightarrow \infty} \sqrt[2 n]{n}=\lim _{n \rightarrow \infty} e^{\ln (\sqrt[2 n]{n})}=e^{\lim _{n \rightarrow \infty} \frac{\ln (n)}{2 n}}
$$

Apply L'Hôpital's rule to evaluate the limit

$$
\lim _{n \rightarrow \infty} \frac{\ln (n)}{2 n}=\lim _{x \rightarrow \infty} \frac{\ln (x)}{2 x}=\lim _{x \rightarrow \infty} \frac{1 / x}{2}=0
$$

Substituting back this limit in the exponential,

$$
\lim _{n \rightarrow \infty} \sqrt[2 n]{n}=e^{0}=1
$$

Problem 3

The sum is a geometric series with ratio $r=3$

$$
\sum_{n=1}^{\infty} \frac{4}{3^{n}}=4 \sum_{1}^{\infty} \frac{1}{3^{n}}=\frac{4 \cdot \frac{1}{3}}{1-\frac{1}{3}}=\frac{\frac{4}{3}}{\frac{2}{3}}=\frac{4}{2}=2
$$

Problem 4

The first part of the problem consists in comparing the series to the series $\sum_{n=2}^{\infty} \frac{1}{n^{2}}$. Either using
Comparison Test:

$$
\frac{n^{2}}{n^{4}+4} \leq \frac{1}{n^{2}} \Longleftrightarrow n^{4} \leq n^{4}+4 \quad \text { which is true for all } n \geq 0
$$

This means that convergence of $\sum_{n=2}^{\infty} \frac{1}{n^{2}}$ implies convergence of $\sum_{n=2}^{\infty} \frac{n^{2}}{n^{4}+4}$. Alternatively, one can use
Limit Comparison Test:

$$
\lim _{n \rightarrow \infty} \frac{\frac{n^{2}}{n^{4}+4}}{\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{n^{4}}{n^{4}+4}=1
$$

This implies that the convergence of the two series are equivalent, so it remains to establish the convergence of $\sum_{n=2}^{\infty} \frac{1}{n^{2}}$. This follows from the p-Series Theorem, for $p=2$. Since $p>1$, we have convergence. You can also do this directly by doing the Integral Test.

1 PM

Problem 1

Use exponentials and logarithms to rewrite the limit. Then use continuity to introduce the limit inside the argument of the exponential

$$
\lim _{n \rightarrow \infty}\left(1+\frac{2}{n}\right)^{n}=\lim _{n \rightarrow \infty} e^{\ln \left(1+\frac{2}{n}\right)^{n}}=e^{\lim _{n \rightarrow \infty} n \ln \left(1+\frac{2}{n}\right)}
$$

Apply L'Hôpital's rule to evaluate the limit

$$
\begin{aligned}
\lim _{n \rightarrow \infty} n \ln \left(1+\frac{2}{n}\right) & =\lim _{x \rightarrow \infty} \frac{\ln \left(1+\frac{2}{x}\right)}{\frac{1}{x}}=\lim _{x \rightarrow \infty} \frac{\left(\frac{1}{1+2 / x}\right)\left(-\frac{2}{x^{2}}\right)}{-\frac{1}{x^{2}}} \\
& =\lim _{x \rightarrow \infty}\left(\frac{1 / 2}{1+2 / x}\right)=2
\end{aligned}
$$

Substituting back this limit in the exponential,

$$
\lim _{n \rightarrow \infty}\left(1+\frac{2}{n}\right)^{n}=e^{2}
$$

Problem 2

Use exponentials and logarithms to rewrite the limit. Then use continuity to introduce the limit inside the argument of the exponential

$$
\lim _{n \rightarrow \infty} \sqrt[n]{2 n}=\lim _{n \rightarrow \infty} e^{\ln (\sqrt[n]{2 n})}=e^{\lim _{n \rightarrow \infty} \frac{\ln (2 n)}{n}}
$$

Apply L'Hôpital's rule to evaluate the limit

$$
\lim _{n \rightarrow \infty} \frac{\ln (2 n)}{n}=\lim _{x \rightarrow \infty} \frac{\ln (2 x)}{x}=\lim _{x \rightarrow \infty} \frac{1}{2 x} \cdot 2=0 .
$$

Substituting back this limit in the exponential,

$$
\lim _{n \rightarrow \infty} \sqrt[2 n]{n}=e^{0}=1
$$

Problem 3

The sum is a geometric series with ratio $r=3$

$$
\sum_{n=3}^{\infty} \frac{1}{3^{n}}=\sum_{3}^{\infty} \frac{1}{3^{n}}=\frac{\left(\frac{1}{3}\right)^{3}}{1-\frac{1}{3}}=\frac{\frac{1}{27}}{\frac{2}{3}}=\frac{1}{18}
$$

Problem 4

The first part of the problem consists in comparing the series to the series $\sum_{n=2}^{\infty} \frac{1}{n^{2}}$. Either using
Comparison Test:

$$
\frac{n}{n^{3}+4} \leq \frac{1}{n^{2}} \Longleftrightarrow n^{3} \leq n^{3}+4 \quad \text { which is true for all } n \geq 0
$$

This means that convergence of $\sum_{n=2}^{\infty} \frac{1}{n^{2}}$ implies convergence of $\sum_{n=2}^{\infty} \frac{n}{n^{3}+4}$. Alternatively, one can use
Limit Comparison Test:

$$
\lim _{n \rightarrow \infty} \frac{\frac{n}{n^{3}+4}}{\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{n^{3}}{n^{3}+4}=1 .
$$

This implies that the convergence of the two series are equivalent, so it remains to establish the convergence of $\sum_{n=2}^{\infty} \frac{1}{n^{2}}$. This follows from the p-Series Theorem, for $p=2$. Since $p>1$, we have convergence. You can also do this directly by doing the Integral Test.

2 PM

Problem 1

For all $n \geq 0, \sin (2 \pi n)=0$. Then

$$
\lim _{n \rightarrow \infty} \sin ^{n}(2 \pi n)=\lim _{n \rightarrow \infty} 0^{n}=0
$$

Problem 2

Use exponentials and logarithms to rewrite the limit. Then use continuity to introduce the limit inside the argument of the exponential

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\frac{1}{n}}=\frac{1}{\lim _{n \rightarrow \infty} \sqrt[n]{n}}=\frac{1}{\lim _{n \rightarrow \infty} e^{\ln (\sqrt[n]{n})}}=\frac{1}{e^{\lim _{n \rightarrow \infty} \frac{\ln (n)}{n}}}
$$

Apply L'Hôpital's rule to evaluate the limit

$$
\lim _{n \rightarrow \infty} \frac{\ln (n)}{n}=\lim _{x \rightarrow \infty} \frac{\ln (x)}{x}=\lim _{x \rightarrow \infty} \frac{1}{x}=0 .
$$

Substituting back this limit in the exponential,

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\frac{1}{n}}=e^{0}=1
$$

Problem 3

Compute the N-th partial sum
$S_{N}=\sum_{n=1}^{\infty}\left(\frac{1}{n^{2}}-\frac{1}{(n+1)^{2}}\right)=\left(1-\frac{1}{2^{2}}\right)+\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right)+\ldots+\left(\frac{1}{N^{2}}-\frac{1}{(N+1)^{2}}\right)$.
This is a telescoping sum, after some cancelling we're left with

$$
S_{N}=1-\frac{1}{(N+1)^{2}}
$$

The sum of a series equals the limit of its partial sums

$$
\lim _{N \rightarrow \infty} S_{N}=\lim _{N \rightarrow \infty}\left(1-\frac{1}{(N+1)^{2}}\right)=1-\lim _{N \rightarrow \infty} \frac{1}{(N+1)^{2}}=1
$$

Problem 4

Notice that the cosine is a bounded function

$$
\cos ^{2}(n) \leq 1
$$

By the Comparison Test

$$
\sum_{n=2}^{\infty} \frac{\cos ^{2}(n)}{n^{3 / 2}} \text { converges if } \sum_{n=2}^{\infty} \frac{1}{n^{3 / 2}} \quad \text { converges. }
$$

The latter converges by the p-Series Theorem, for $p=3 / 2>1$.

3 PM

Problem 1

For all $n \geq 0, \cos (2 \pi n)=1$. Then

$$
\lim _{n \rightarrow \infty} \cos ^{n}(2 \pi n)=\lim _{n \rightarrow \infty} 1^{n}=1
$$

Problem 2

Use exponentials and logarithms to rewrite the limit. Then use continuity to introduce the limit inside the argument of the exponential

$$
\lim _{n \rightarrow \infty} \sqrt[2 n]{\frac{1}{2 n}}=\frac{1}{\lim _{n \rightarrow \infty} \sqrt[2 n]{2 n}}=\frac{1}{\lim _{n \rightarrow \infty} e^{\ln (\sqrt[2 n]{2 n})}}=\frac{1}{e^{\lim _{n \rightarrow \infty} \frac{\ln (2 n)}{2 n}}}
$$

Apply L'Hôpital's rule to evaluate the limit

$$
\lim _{n \rightarrow \infty} \frac{\ln (2 n)}{2 n}=\lim _{x \rightarrow \infty} \frac{\ln (2 x)}{2 x}=\lim _{x \rightarrow \infty} \frac{\frac{1}{2 x} \cdot 2}{2}=0 .
$$

Substituting back this limit in the exponential,

$$
\lim _{n \rightarrow \infty} \sqrt[2 n]{\frac{1}{2 n}}=e^{0}=1
$$

Problem 3

Compute the N-th partial sum
$S_{N}=\sum_{n=3}^{\infty}\left(\frac{1}{n^{2}}-\frac{1}{(n+1)^{2}}\right)=\left(\frac{1}{3^{2}}-\frac{1}{4^{2}}\right)+\left(\frac{1}{4^{2}}-\frac{1}{5^{2}}\right)+\ldots+\left(\frac{1}{N^{2}}-\frac{1}{(N+1)^{2}}\right)$.
This is a telescoping sum, after some cancelling we're left with

$$
S_{N}=\frac{1}{3^{2}}-\frac{1}{(N+1)^{2}}
$$

The sum of a series equals the limit of its partial sums

$$
\lim _{N \rightarrow \infty} S_{N}=\lim _{N \rightarrow \infty}\left(\frac{1}{3^{2}}-\frac{1}{(N+1)^{2}}\right)=\frac{1}{9}-\lim _{N \rightarrow \infty} \frac{1}{(N+1)^{2}}=\frac{1}{9} .
$$

Problem 4

Notice that the sine is a bounded function

$$
\sin ^{2}(n) \leq 1
$$

By the Comparison Test

$$
\sum_{n=2}^{\infty} \frac{\sin ^{2}(n)}{n^{3}} \quad \text { converges if } \quad \sum_{n=2}^{\infty} \frac{1}{n^{3}} \quad \text { converges. }
$$

The latter converges by the p-Series Theorem, for $p=3>1$.

