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Problem 1

Use exponentials and logarithms to rewrite the limit. Then use continuity to
introduce the limit inside the argument of the exponential

lim
n→∞

(
1 +

1
2n

)n

= lim
n→∞

eln(1+ 1
2n )n

= elimn→∞ n ln(1+ 1
2n )

Apply L’Hôpital’s rule to evaluate the limit

lim
n→∞

n ln
(

1 +
1

2n

)
= lim

x→∞

ln
(
1 + 1

2x

)
1
x

= lim
x→∞

(
1

1+1/(2x)

) (
− 1

2x2

)
− 1

x2

= lim
x→∞

(
1/2

1 + 1/(2x)

)
=

1
2
.

Substituting back this limit in the exponential,

lim
n→∞

(
1 +

1
2n

)n

= e
1
2 .

Problem 2

Use exponentials and logarithms to rewrite the limit. Then use continuity to
introduce the limit inside the argument of the exponential

lim
n→∞

2n
√
n = lim

n→∞
eln( 2n

√
n) = elimn→∞

ln(n)
2n

Apply L’Hôpital’s rule to evaluate the limit

lim
n→∞

ln(n)
2n

= lim
x→∞

ln(x)
2x

= lim
x→∞

1/x
2

= 0.

Substituting back this limit in the exponential,

lim
n→∞

2n
√
n = e0 = 1.
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Problem 3

The sum is a geometric series with ratio r = 3

∞∑
n=1

4
3n

= 4
∞∑
1

1
3n

=
4 · 1

3

1− 1
3

=
4
3
2
3

=
4
2

= 2.

Problem 4

The first part of the problem consists in comparing the series to the series∑∞
n=2

1
n2 . Either using

Comparison Test:

n2

n4 + 4
≤ 1
n2
⇐⇒ n4 ≤ n4 + 4 which is true for all n ≥ 0.

This means that convergence of
∑∞

n=2
1

n2 implies convergence of
∑∞

n=2
n2

n4+4 .
Alternatively, one can use
Limit Comparison Test:

lim
n→∞

n2

n4+4
1

n2

= lim
n→∞

n4

n4 + 4
= 1.

This implies that the convergence of the two series are equivalent, so it remains
to establish the convergence of

∑∞
n=2

1
n2 . This follows from the p-Series Theo-

rem, for p = 2. Since p > 1, we have convergence. You can also do this directly
by doing the Integral Test.
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Problem 1

Use exponentials and logarithms to rewrite the limit. Then use continuity to
introduce the limit inside the argument of the exponential

lim
n→∞

(
1 +

2
n

)n

= lim
n→∞

eln(1+ 2
n )n

= elimn→∞ n ln(1+ 2
n )

Apply L’Hôpital’s rule to evaluate the limit

lim
n→∞

n ln
(

1 +
2
n

)
= lim

x→∞

ln
(
1 + 2

x

)
1
x

= lim
x→∞

(
1

1+2/x

) (
− 2

x2

)
− 1

x2

= lim
x→∞

(
1/2

1 + 2/x

)
= 2.

Substituting back this limit in the exponential,

lim
n→∞

(
1 +

2
n

)n

= e2.
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Problem 2

Use exponentials and logarithms to rewrite the limit. Then use continuity to
introduce the limit inside the argument of the exponential

lim
n→∞

n
√

2n = lim
n→∞

eln( n√2n) = elimn→∞
ln(2n)

n

Apply L’Hôpital’s rule to evaluate the limit

lim
n→∞

ln(2n)
n

= lim
x→∞

ln(2x)
x

= lim
x→∞

1
2x
· 2 = 0.

Substituting back this limit in the exponential,

lim
n→∞

2n
√
n = e0 = 1.

Problem 3

The sum is a geometric series with ratio r = 3

∞∑
n=3

1
3n

=
∞∑
3

1
3n

=

(
1
3

)3
1− 1

3

=
1
27
2
3

=
1
18
.

Problem 4

The first part of the problem consists in comparing the series to the series∑∞
n=2

1
n2 . Either using

Comparison Test:

n

n3 + 4
≤ 1
n2
⇐⇒ n3 ≤ n3 + 4 which is true for all n ≥ 0.

This means that convergence of
∑∞

n=2
1

n2 implies convergence of
∑∞

n=2
n

n3+4 .
Alternatively, one can use
Limit Comparison Test:

lim
n→∞

n
n3+4

1
n2

= lim
n→∞

n3

n3 + 4
= 1.

This implies that the convergence of the two series are equivalent, so it remains
to establish the convergence of

∑∞
n=2

1
n2 . This follows from the p-Series Theo-

rem, for p = 2. Since p > 1, we have convergence. You can also do this directly
by doing the Integral Test.
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Problem 1

For all n ≥ 0, sin(2πn) = 0. Then

lim
n→∞

sinn(2πn) = lim
n→∞

0n = 0.
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Problem 2

Use exponentials and logarithms to rewrite the limit. Then use continuity to
introduce the limit inside the argument of the exponential

lim
n→∞

n

√
1
n

=
1

limn→∞
n
√
n

=
1

limn→∞ eln( n
√

n)
=

1

elimn→∞
ln(n)

n

Apply L’Hôpital’s rule to evaluate the limit

lim
n→∞

ln(n)
n

= lim
x→∞

ln(x)
x

= lim
x→∞

1
x

= 0.

Substituting back this limit in the exponential,

lim
n→∞

n

√
1
n

= e0 = 1.

Problem 3

Compute the N -th partial sum

SN =
∞∑

n=1

(
1
n2
− 1

(n+ 1)2

)
=
(

1− 1
22

)
+
(

1
22
− 1

32

)
+. . .+

(
1
N2
− 1

(N + 1)2

)
.

This is a telescoping sum, after some cancelling we’re left with

SN = 1− 1
(N + 1)2

The sum of a series equals the limit of its partial sums

lim
N→∞

SN = lim
N→∞

(
1− 1

(N + 1)2

)
= 1− lim

N→∞

1
(N + 1)2

= 1.

Problem 4

Notice that the cosine is a bounded function

cos2(n) ≤ 1

By the Comparison Test
∞∑

n=2

cos2(n)
n3/2

converges if
∞∑

n=2

1
n3/2

converges.

The latter converges by the p-Series Theorem, for p = 3/2 > 1.
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Problem 1

For all n ≥ 0, cos(2πn) = 1. Then

lim
n→∞

cosn(2πn) = lim
n→∞

1n = 1.
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Problem 2

Use exponentials and logarithms to rewrite the limit. Then use continuity to
introduce the limit inside the argument of the exponential

lim
n→∞

2n

√
1

2n
=

1
limn→∞

2n
√

2n
=

1

limn→∞ eln( 2n√2n)
=

1

elimn→∞
ln(2n)

2n

Apply L’Hôpital’s rule to evaluate the limit

lim
n→∞

ln(2n)
2n

= lim
x→∞

ln(2x)
2x

= lim
x→∞

1
2x · 2

2
= 0.

Substituting back this limit in the exponential,

lim
n→∞

2n

√
1

2n
= e0 = 1.

Problem 3

Compute the N -th partial sum

SN =
∞∑

n=3

(
1
n2
− 1

(n+ 1)2

)
=
(

1
32
− 1

42

)
+
(

1
42
− 1

52

)
+. . .+

(
1
N2
− 1

(N + 1)2

)
.

This is a telescoping sum, after some cancelling we’re left with

SN =
1
32
− 1

(N + 1)2

The sum of a series equals the limit of its partial sums

lim
N→∞

SN = lim
N→∞

(
1
32
− 1

(N + 1)2

)
=

1
9
− lim

N→∞

1
(N + 1)2

=
1
9
.

Problem 4

Notice that the sine is a bounded function

sin2(n) ≤ 1

By the Comparison Test

∞∑
n=2

sin2(n)
n3

converges if
∞∑

n=2

1
n3

converges.

The latter converges by the p-Series Theorem, for p = 3 > 1.
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