PROBLEM 1, MIDTERM 3 - SOLUTION

In order to show that the limit

$$
\lim _{n \rightarrow \infty} \sqrt[n]{n^{3}}
$$

it suffices to observe that due to continuity of function $f(x)=x^{3}$, we have:

$$
\lim _{n \rightarrow \infty} \sqrt[n]{n^{3}}=\lim _{n \rightarrow \infty} n^{3 / n}=\left(\lim _{n \rightarrow \infty} \sqrt[n]{n}\right)^{3}
$$

Now, in class we showed that

$$
\lim _{n \rightarrow \infty} \sqrt[n]{n}=1
$$

and so

$$
\lim _{n \rightarrow \infty} \sqrt[n]{n^{3}}=1^{3}=1
$$

You could also write

$$
\sqrt[n]{n^{3}}=e^{\frac{1}{n} \ln \left(n^{3}\right)}=e^{\frac{3}{n} \ln (n)}
$$

and follow as in the case of $\lim _{n \rightarrow \infty} \sqrt[n]{n}$.
The most typical errors include writing

$$
\lim _{n \rightarrow \infty} \sqrt[n]{n^{3}}=n^{0}, \quad \text { or } \quad \infty^{0}=1
$$

20 points. NO PARTIAL CREDIT for this problem.

