Midterm 1 Problem 2.

Below are two possible ways of solving this problem. The first one is a "brute-force"-computational approach, the other one is based on noticing the relationship between $x(t)$ and $y(t)$ and changing the variable to simplfy the problem.

Solution I
1 step (8 points)
Recall the formula for the area of a surface obtained by rotating a parametrically given curve $x=f(t), y=g(t), t \in[a, b]$ around a coordinate axis:

$$
A=2 \pi \int_{a}^{b} y(t) \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t
$$

2 step (4 points)
Find the derivatives:

$$
x^{\prime}(t)=y^{\prime}(t)=\ln (2) 2^{t}
$$

3 step (8 points)
Substitute and integrate:

$$
A=2 \pi \int_{0}^{1} 2^{t} \sqrt{2(\ln (2))^{2} 2^{2 t}} d t=2 \pi \sqrt{2} \ln (2) \int_{0}^{1} 2^{2 t} d t
$$

let $u=2^{t}$ then $d u=2^{t} \ln (2) d t$, hence,

$$
A=2 \pi \sqrt{2} \int_{1}^{2} u d u=\left.2 \pi \sqrt{2} \frac{u^{2}}{2}\right|_{1} ^{2}=3 \pi \sqrt{2}
$$

Solution II

1 step (8 points)
Notice that $f(t)=g(t)$, hence, $x=y$ for the entire range of values of 2^{t} when t changes from 0 to 1 . Hence, the curve can be defined by

$$
y=x, x=2^{t}, t \in[0,1], \quad \text { i.e. } y=x, x \in[1,2]
$$

2 step (6 points)
Recall the formula for the area of a surface obtained by rotating the graph of a function $y=F(x)$, $x \in[\alpha, \beta]$

$$
A=2 \pi \int_{\alpha}^{\beta} F(x) \sqrt{1+\left(F^{\prime}(x)\right)^{2}} d x
$$

3 step (6 points)
Substitute $y=x, x \in[1,2]$ in the above expression and evaluate the integral:

$$
A=2 \pi \int_{0}^{1} x \sqrt{1+1^{2}} d x=\left.2 \pi \sqrt{2} \frac{x^{2}}{2}\right|_{1} ^{2}=3 \pi \sqrt{2}
$$

