STAT 430
SAS Examples SAS6
=================================

ssh bnk@glue.umd.edu, tap sas913 (or sas82), sas
https://www.statlab.umd.edu/sasdoc/sashtml/onldoc.htm

a. t-Test
b. Wilcoxon Rank-Sum Test
c. Paired t-Test
d. Generate Random Data

a. t-Test
==

0. First assign to treatment A or B at random
===

We have 25 milking cows to which we assign treatments A or B using random number generator RANUNI(0) and PROC RANK.

OPTION PS=35 LS=70;

DATA ASSIGN;
INPUT NAME $ 5.;
/* GROUP will be assigned unif(0,1) random numbers*/;
GROUP=RANUNI(0);
/* Cows names */;
DATALINES;
C1
C2
C3
C4
C5
C6
C7
;
To verify what we have we print. Every cow is assigned a random number:

```
PROC PRINT DATA=ASSIGN;
VAR NAME GROUP;
RUN;
```

```
Obs  NAME   GROUP
1    C1    0.09277
2    C2    0.72997
3    C3    0.26708
4    C4    0.94593
5    C5    0.52810
6    C6    0.10918
7    C7    0.04104
```

If run again get different random numbers since we used the seed "0"!!! It depends on the time!!!

```
Obs  NAME   GROUP
1    C1    0.29978
2    C2    0.34289
3    C3    0.32744
4    C4    0.20692
5    C5    0.32888
6    C6    0.12573
7    C7    0.72896
```

Now use PROC RANK with option GROUPS=2 to divide the subjects and assign to '0' or '1' treatments, and create a new data set containing the treatments TREAT.

```
PROC RANK DATA=ASSIGN GROUPS=2 OUT=TREAT;
VAR GROUP;
RUN;
```

```
2
```
To see the content of TREAT: Without FORMAT get 0-1 assignments instead of A,B assignments!!!(

PROC PRINT DATA=TREAT;
ID NAME;
VAR GROUP;
RUN;

<table>
<thead>
<tr>
<th>NAME</th>
<th>GROUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>1</td>
</tr>
<tr>
<td>C2</td>
<td>0</td>
</tr>
<tr>
<td>C3</td>
<td>1</td>
</tr>
<tr>
<td>C4</td>
<td>1</td>
</tr>
<tr>
<td>C5</td>
<td>0</td>
</tr>
<tr>
<td>C6</td>
<td>0</td>
</tr>
<tr>
<td>C7</td>
<td>1</td>
</tr>
</tbody>
</table>

Now use PROC FORMAT to change from 0-1 to A-B:

PROC FORMAT;
VALUE ZERONE 0='A' 1='B';
RUN;

PROC SORT DATA=TREAT; <---- Also DATA=ASSIGN works!!!
BY NAME;
RUN;

PROC PRINT DATA=TREAT;
ID NAME;
VAR GROUP;
FORMAT GROUP ZERONE.;
RUN;
The SAS System

NAME GROUP

C1 B
C2 A
C3 B
C4 B
C5 A
C6 A
C7 B

1. t-test

Milking cows were assigned randomly to treatment A or B, and then the average daily milk production over a 3 week period was recorded. Test equality of means using a t-test.

NOTE: The category or class or group are the indep variable!!

OPTION PS=35 LS=70;

Ex. 1
======

DATA MILK;
INPUT DIET $ YIELD;
DATALINES;
A 44
A 44
A 56
A 46
A 47
A 38
A 58
A 53
A 49
A 35
PROC TTEST DATA=MILK;
CLASS DIET;
VAR YIELD;
RUN;

The TTEST Procedure

Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>DIET</th>
<th>Lower CL</th>
<th>Mean</th>
<th>Mean</th>
<th>Lower CL</th>
<th>Upper CL</th>
<th>Lower CL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>Mean</td>
<td>Mean</td>
<td>Mean</td>
<td>Std Dev</td>
<td>Std Dev</td>
</tr>
<tr>
<td>YIELD</td>
<td>A</td>
<td>13</td>
<td>40.32</td>
<td>45.154</td>
<td>49.987</td>
<td>5.7355</td>
<td></td>
</tr>
<tr>
<td>YIELD</td>
<td>B</td>
<td>12</td>
<td>36.697</td>
<td>42.250</td>
<td>47.803</td>
<td>6.1913</td>
<td></td>
</tr>
<tr>
<td>YIELD</td>
<td>Diff (1-2)</td>
<td>-4.02</td>
<td>2.9038</td>
<td>9.828</td>
<td>6.4985</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Statistics

<table>
<thead>
<tr>
<th>Upper CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
</tr>
</tbody>
</table>

5
YIELD A 7.9984 13.203 2.2184 30 58
YIELD B 8.7399 14.839 2.523 29 57
YIELD Diff (1-2) 8.3613 11.729 3.3472

T-Tests

| Variable | Method | Variances | DF | t Value | Pr > |t| |
|----------|--------------|-----------|----|---------|------|---|
| YIELD | Pooled | Equal | 23 | 0.87 | 0.3946|
| YIELD | Satterthwaite| Unequal | 22.3| 0.86 | 0.3966|

Equality of Variances

<table>
<thead>
<tr>
<th>Variable</th>
<th>Method</th>
<th>Num DF</th>
<th>Den DF</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>YIELD</td>
<td>Folded F</td>
<td>11</td>
<td>12</td>
<td>1.19</td>
<td>0.7621</td>
</tr>
</tbody>
</table>

Ex 2. (From the SAS book)

```
DATA RESPONSE;
INPUT GROUP $ TIME;
DATALINES;
  C 80
  C 93
  C 83
  C 89
  C 98
  T 100
  T 103
  T 104
  T 99
  T 102
;
PROC TTEST DATA=RESPONSE;
```
The TTEST Procedure

Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>GROUP</th>
<th>Lower CL N</th>
<th>Mean</th>
<th>Mean</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Upper CL Lower CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIME C</td>
<td>5</td>
<td>79.535</td>
<td>88.6</td>
<td>97.665</td>
<td>4.3741</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME T</td>
<td>5</td>
<td>99.025</td>
<td>101.6</td>
<td>104.17</td>
<td>1.2424</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME Diff (1-2)</td>
<td></td>
<td>-20.83</td>
<td>-13</td>
<td>-5.173</td>
<td>3.6249</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>GROUP</th>
<th>Std Dev</th>
<th>Std Dev</th>
<th>Std Err</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIME C</td>
<td>7.3007</td>
<td>20.979</td>
<td>3.265</td>
<td>80</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>TIME T</td>
<td>2.0736</td>
<td>5.9587</td>
<td>0.9274</td>
<td>99</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>TIME Diff (1-2)</td>
<td>5.3666</td>
<td>10.281</td>
<td>3.3941</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T-Tests

| Variable | Method | Variances | DF | t Value | Pr > |t| |
|----------|----------------|-----------|----|---------|------|---|
| TIME | Pooled | Equal | 8 | -3.83 | 0.0050 |
| TIME | Satterthwaite | Unequal | 4.64 | -3.83 | 0.0141 |

The TTEST Procedure

Equality of Variances

<table>
<thead>
<tr>
<th>Variable</th>
<th>Method</th>
<th>Num DF</th>
<th>Den DF</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
</table>

7
b. Wilcoxon Rank-Sum Test

Nonparametric two sample Wilcoxon Rank-Sum test (1945).

H_0: The two dists are identical
H_1: Dist A is SHIFTED to the right of the dist B.
 Dist A is SHIFTED to the left of the dist B.
 Dists A,B, are different.

Ex 1.

The mineral content of specimens from two locations A, B, are recorded.

A: 7.6, 11.1, 6.8, 9.8, 4.9, 6.1, 15.1 (n1=7=n_A)
B: 4.7, 6.4, 4.1, 3.7, 3.9 (n2=5=n_B)

Does location A have a higher mineral content?

Rank the combined data:

B B B B A A B A A A A A
3.7 3.9 4.1 4.7 4.9 6.1 6.4 6.8 7.6 9.8 11.1 15.1
1 2 3 4 5 6 7 8 9 10 11 12 <---- RANKS

USE SMALLER SAMPLE:

W=W_B=1+2+3+4+7=17 <---- Sum of the ranks of B
Test equality vs second dist lies to the left of the first. Thus we reject for small values of W.

Every 5-tuple out of \{1,2,3,4,5,6,7,\ldots,12\} has same chance.

\[
P(W \leq 17) = P(W=15)+P(W=16)+2\cdot P(W=17) = 0.0051
\]

\[
1+2+3+4+5=15
1+2+3+4+6=16 \quad \text{--- Four 5's cases out of binomial coef. (12 C 5)=792 5's}
1+2+3+5+6=17
1+2+3+4+7=17
\]

\[
\frac{12!}{[5!*7!]} = \frac{\text{gamma}(13)}{(\text{gamma}(6)\cdot\text{gamma}(8))} = 792
\]

\[
= \frac{5}{4/792}
\]

\[
[1] \ 0.005050505 = 0.0051 \quad \text{--- P-value}
\]

Thus we reject the hypothesis of dist equality. Now let’s see what SAS does.

Note: \(E[W_B]= n_B\cdot(n_A+n_B+1)/2=5\cdot13/2=32.5\)
\(E[W_A]= n_A\cdot(n_A+n_B+1)/2=7\cdot13/2=45.5\)

OPTION PS=35 LS=70;
DATA MINERAL;
INPUT LOCATION $ CONT @@; <-- Use "@@" to input data horizontally.
DATALINES;
A 7.6 A 11.1 A 6.8 A 9.8 A 4.9 A 6.1 A 15.1
B 4.7 B 6.4 B 4.1 B 3.7 B 3.9
;

PROC NPAR1WAY DATA=MINERAL WILCOXON;
CLASS LOCATION;
VAR CONT;
EXACT WILCOXON;
RUN;
The SAS System

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable CONT
Classified by Variable LOCATION

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>N</th>
<th>Sum of Scores</th>
<th>Expected Under H0</th>
<th>Std Dev Under H0</th>
<th>Mean Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>7</td>
<td>61.0</td>
<td>45.50</td>
<td>6.157651</td>
<td>8.714286</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>17.0</td>
<td>32.50</td>
<td>6.157651</td>
<td>3.400000</td>
</tr>
</tbody>
</table>

Wilcoxon Two-Sample Test

Statistic (S) 17.0000

Normal Approximation
Z -2.4360
One-Sided Pr < Z 0.0074 <-- Good Approx.
Two-Sided Pr > |Z| 0.0149

t Approximation
One-Sided Pr < Z 0.0165
Two-Sided Pr > |Z| 0.0331

Exact Test
One-Sided Pr <= S 0.0051 <-- WHAT I GOT ABOVE!!!
Two-Sided Pr >= |S - Mean| 0.0101

Z includes a continuity correction of 0.5.

Kruskal-Wallis Test

Chi-Square 6.3363
Ex 2.

Two fabrics tested for fire resistance. Measure damage in inches.

Fabric A: 5.7 7.3 7.6 6.0 6.5
Fabric B: 4.9 7.4 5.3 4.6 6.2

Any difference in flammability? Two sided test: $H_1: F_1 \neq F_2$
Reject if $W \leq c_1$ or $W \geq c_2$.

$\begin{align*}
\text{B} & \quad \text{B} & \quad \text{B} & \quad \text{A} & \quad \text{A} & \quad \text{B} & \quad \text{A} & \quad \text{B} & \quad \text{A} \\
4.6 & \quad 4.9 & \quad 5.3 & \quad 5.7 & \quad 6.0 & \quad 6.2 & \quad 6.5 & \quad 7.3 & \quad 7.4 & \quad 7.6 \\
1 & \quad 2 & \quad 3 & \quad 4 & \quad 5 & \quad 6 & \quad 7 & \quad 8 & \quad 9 & \quad 10
\end{align*}$

$W = 1 + 2 + 3 + 6 + 9 = 21 \quad \text{--- Sum ranks of B}$

Sum ranks of A is 34.

DATA FLAME;
INPUT FABRIC $ DAMAGE @@;
DATALINES;
A 5.7 A 7.3 A 7.6 A 6.0 A 6.5
B 4.9 B 7.4 B 5.3 B 4.6 B 6.2
;
PROC NPAR1WAY DATA=FLAME WILCOXON;
CLASS FABRIC;
VAR DAMAGE;
EXACT WILCOXON;
RUN;

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable DAMAGE
Classified by Variable FABRIC

<table>
<thead>
<tr>
<th>FABRIC</th>
<th>N</th>
<th>Sum of Scores</th>
<th>Expected Under H0</th>
<th>Std Dev Under H0</th>
<th>Mean Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>34.0</td>
<td>27.50</td>
<td>4.787136</td>
<td>6.80</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>21.0</td>
<td>27.50</td>
<td>4.787136</td>
<td>4.20</td>
</tr>
</tbody>
</table>

Wilcoxon Two-Sample Test

Statistic (S) 34.0000

Normal Approximation

| Z | One-Sided Pr > Z | Two-Sided Pr > |Z| |
|-------|------------------|----------------|---|
| 1.2534| 0.1050 | 0.2101 |

t Approximation

| One-Sided Pr > Z | Two-Sided Pr > |Z| |
|------------------|----------------|---|
| 0.1208 | 0.2417 |

Exact Test

| One-Sided Pr >= S | Two-Sided Pr >= |S - Mean| |
|-------------------|-----------------|--------|
| 0.1111 | 0.2222 |

Z includes a continuity correction of 0.5.

The NPAR1WAY Procedure

Kruskal-Wallis Test

<table>
<thead>
<tr>
<th>Chi-Square</th>
<th>DF</th>
<th>Pr > Chi-Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8436</td>
<td>1</td>
<td>0.1745</td>
</tr>
</tbody>
</table>

Dont reject!!!
c. Paired t-Test

Simply use PROC MEANS on the difference with options: T and PRT (p-val).

Ex.1

A pill is used to reduce blood pressure. Have 15 subjects.

Subject : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Before (x): 70 80 72 76 76 72 78 82 64 74 92 74 74 68 84
After (y): 68 72 62 70 58 66 68 52 64 72 74 60 74 72 74

d = x-y : 2 8 10 6 18 10 4 26 18 -8 0 32 0 -4 10

Test:

H_0: mu1=mu2 vs H_1: mu1 > mu2 <---- Note one sided!!!

Use the test stat: T = sqrt(n)*Dbar/S_D

DATA BP;
INPUT BEFORE AFTER;
DIFF=BEFORE-AFTER;
DATALINES;
70 68
80 72
72 62
76 70
76 58
76 66
72 68
78 52
PROC MEANS DATA=BP N MEAN STDERR T PRT;
VAR DIFF;
RUN;

Note: df=n-1=15-1=14!!!
Note: We get a two sided test. To get one sided, divide p-val by 2!!!

The MEANS Procedure

Analysis Variable: DIFF

| N | Mean | Std Error | t Value | Pr > |t| |
|-----|-------|-----------|---------|-------|---|
| 15 | 8.8000000 | 2.8338095 | 3.11 | 0.0077 |

P(T_{14} > 3.11)=0.003839171 ===> Reject in favor of m1 > m2.
P(|(T_{14}|>3.11)=2*0.003839171=0.007678342==>Reject in favor of m1 neq mu2.

More directly: Use PROC TTEST.

option ps=35 ls=70;

data Paired;
input diff;
datalines;
proc ttest data=Paired;
var diff;
run;

The TTEST Procedure

Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Lower CL Mean</th>
<th>Upper CL Mean</th>
<th>Lower CL Std Dev</th>
<th>Upper CL Std Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>diff</td>
<td>15</td>
<td>2.7221</td>
<td>8.8</td>
<td>8.0353</td>
<td>10.975</td>
</tr>
</tbody>
</table>

Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Upper CL Std Dev</th>
<th>Std Err</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>diff</td>
<td>17.309</td>
<td>2.8338</td>
<td>-8</td>
<td>32</td>
</tr>
</tbody>
</table>

T-Tests

15
| Variable | DF | t Value | Pr > |t| |
|----------|----|---------|------|---|
| diff | 14 | 3.11 | 0.0077 |

d. Generate Random Data
====================================

Normal N(0,1) Data

The SAS code below produces a data set called WORK.RANDOM containing 1000 N(0,1) observations.

```sas
option ps=35 ls=70;

data random;
do i = 1 to 1000;
r = RANNOR(0);
output;
end;
run;
```

Get this message from the SAS Log window:

NOTE: The data set WORK.RANDOM has 1000 observations and 2 variables.
NOTE: DATA statement used:
 real time 4.94 seconds
 cpu time 0.17 seconds

To see a histogram of the generated data we use PROC CHART:

```sas
proc chart data=WORK.RANDOM;
var r;
run;
```
The MEANS Procedure

Analysis Variable : r

<table>
<thead>
<tr>
<th>N</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>-0.0307679</td>
<td>0.9932871</td>
<td>-3.1157183</td>
<td>2.6768072</td>
</tr>
</tbody>
</table>
Uniform Unif(0,1) Data

data random;
do i = 1 to 1000;
u = RANUNI(0);
output;
end;
run;

proc chart data=WORK.RANDOM;
var u;
run;

Frequency

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9
The MEANS Procedure

Analysis Variable : u

N Mean Std Dev Minimum Maximum
1000 0.4953382 0.2797816 0.0033764 0.9991905

ChiSq(1) Data

data random;
do i = 1 to 100;
r = RANNOR(0);
y = r**2;
output;
end;
run;

From the LOG Window: 3 variables!!! i,r,y!!!

NOTE: The data set WORK.RANDOM has 100 observations and 3 variables.
NOTE: DATA statement used:
real time 0.14 seconds
cpu time 0.00 seconds

proc print data=WORK.RANDOM;
id i;
run;

Prints all 3 variables!!!
<table>
<thead>
<tr>
<th>i</th>
<th>r</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.43033</td>
<td>0.1852</td>
</tr>
<tr>
<td>2</td>
<td>-1.62440</td>
<td>2.6387</td>
</tr>
<tr>
<td>3</td>
<td>-1.02342</td>
<td>1.0474</td>
</tr>
<tr>
<td>4</td>
<td>0.31375</td>
<td>0.0984</td>
</tr>
<tr>
<td>5</td>
<td>-0.62463</td>
<td>0.3902</td>
</tr>
<tr>
<td>6</td>
<td>-1.45657</td>
<td>2.1216</td>
</tr>
<tr>
<td>7</td>
<td>0.65087</td>
<td>0.4236</td>
</tr>
<tr>
<td>8</td>
<td>-1.82668</td>
<td>3.3368</td>
</tr>
<tr>
<td>9</td>
<td>1.53697</td>
<td>2.3623</td>
</tr>
<tr>
<td>10</td>
<td>-0.31588</td>
<td>0.0998</td>
</tr>
</tbody>
</table>

85	0.19655	0.03863
86	-0.74097	0.54904
87	0.03033	0.00092
88	1.35246	1.82914
89	2.53814	6.44218
90	-0.60645	0.36779

```plaintext
proc chart data=WORK.RANDOM;
var y;
run;
```
Frequency

| 60 + ***** |

50 + *****	

40 + *****	

30 + ***** *****	
	***** *****
	***** *****
	***** *****
20 + ***** *****	
	***** *****
	***** *****
10 + ***** *****	
	***** *****
	***** ***** *****
	***** ***** ***** *****

y Midpoint

proc plot data=WORK.RANDOM;
plot y*r;
run;
Plot of y^r. Legend: $A = 1$ obs, $B = 2$ obs, etc.

```plaintext
proc plot data=WORK.RANDOM;
plot y*r='o';
run;
```
Plot of \(y \times r \). Symbol used is 'o'.

NOTE: 65 obs hidden.