(a) We are given \(f(x), g(x) \) relatively prime in \(K[x] \), such that \(\frac{f(x)}{g(x)} \notin K \). In particular, \(f(x) \) and \(g(x) \) each have degree at least 1. Now \(x \) is a root of the polynomial \(\varphi(y) = \left(\frac{f(x)}{g(x)} \right) g(y) - f(y) \in K \left(\frac{f(x)}{g(x)} \right)[y] \), since \(\varphi(x) = \left(\frac{f(x)}{g(x)} \right) g(x) - f(x) = 0 \), so \(x \) is algebraic over \(\frac{f(x)}{g(x)} \). Furthermore, as a polynomial in \(y \), \(\varphi \) has as its degree \(\max(\deg f, \deg g) \).

Now \(\left(\frac{f(x)}{g(x)} \right) \) is transcendental over \(K \), since if it were a root of a polynomial \(h(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_0 \in K[z] \), we could clear denominators in

\[
\left(\frac{f(x)}{g(x)} \right)^n + a_{n-1} \left(\frac{f(x)}{g(x)} \right)^{n-1} + \cdots + a_0 = 0
\]

by multiplying by \(g(x)^n \) to get a polynomial equation with coefficients in \(K \),

\[
f(x)^n + a_{n-1}f(x)^{n-1}g(x) + \cdots + a_0 g(x)^n = 0,
\]

satisfied by \(x \), contradicting the fact that \(x \) is transcendental over \(K \). So let \(z = \frac{f(x)}{g(x)} \), we have \(K \left(\frac{f(x)}{g(x)} \right) = K(z) \), the field of rational functions in the transcendental element \(z \). We want to show \(\varphi(y) = zg(y) - f(y) \) is irreducible in \(K(z)[y] \). Note that in fact \(\varphi(y) \in K[z][y] \), and it's primitive as a polynomial over \(K[z] \), since its coefficients are the coefficients of \(g \), multiplied by \(z \), and the coefficients of \(f \), so the only common factors of all the coefficients are non-zero elements of the ground field \(K \), which are units in \(K[z] \). So by Gauss's Lemma, \(\varphi \) can have no nontrivial factorization only if it factors in \(K[z][y] = K[y, z] \). Since \(\varphi \) has degree 1 in \(z \), if it had such a factorization \(\varphi(y) = \varphi_1(y)\varphi_2(y) \), then one could assume \(\varphi_1 \) had degree 1 in \(z \) and \(\varphi_2 \) had degree 0 in \(z \), i.e., were an element of \(K[y] \). But then we'd have \(\varphi_2(y) \) dividing \(zg(y) - f(y) \), hence dividing both \(g(y) \) and \(f(y) \), which is impossible unless \(\varphi_2 \) is a constant, since \(f \) and \(g \) were assumed relatively prime. Thus \(\varphi \) is irreducible and \(x \) has degree precisely \(\max(\deg f, \deg g) \) over \(K(z) \).

(b) Assume \(K \subsetneq E \subseteq K(x) \) with \(E \) a field. Then \(E \) contains some element \(\frac{f(x)}{g(x)} \) of \(K(x) \) not in \(K \). Hence we can apply part (a) to conclude that \([K(x) : K \left(\frac{f(x)}{g(x)} \right)] < \infty \), and so \([K(x) : E] < \infty \), since \(K \left(\frac{f(x)}{g(x)} \right) \subseteq E \).
(c) We saw above that any element \(z = \frac{f(x)}{g(x)} \) of \(K(x) \) which is not in \(K \) is transcendental over \(K \). So \(K(z) \cong K(x) \) and there is a monomorphism \(\sigma : K(x) \rightarrow K(z) \subseteq K(x) \) which is the identity on \(K \) and sends \(x \mapsto z \). For any rational function \(h \), this monomorphism sends \(h(x) \mapsto h(y) \). Note that \(\sigma \) is a \(K \)-automorphism of \(K(x) \) if and only if it is surjective. In this case, we have \(K(z) = K(x) \). Since, by part (b), \([K(x) : K(z)] = \max(\deg f, \deg g)\), we see \(\sigma \) is an automorphism of \(K(x) \) if and only if \(\max(\deg f, \deg g) = 1 \).

(d) By part (c), \(\text{Aut}_K K(x) \) can be identified precisely with the maps \(x \mapsto \frac{f(x)}{g(x)} \), where \(\max(\deg f, \deg g) = 1 \). Thus these are the maps

\[
x \mapsto \frac{ax + b}{cx + d}
\]

where \(a, b, c, d \in K \), \(a \) and \(c \) are not both 0, \(b \neq 0 \) if \(a = 0 \) and \(d \neq 0 \) is \(c = 0 \), and \(ax + b \) and \(cx + d \) are not multiples of each other. The criteria on \(a, b, c, d \) translate into saying that the vectors \((a, b)\) and \((c, d)\) in \(K^2 \) are linearly independent, or that

\[
\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc \neq 0.
\]