Let \mathbb{T} denote the unit circle in \mathbb{C}, which is a compact abelian group with respect to multiplication, and let \mathbb{T}^n denote the n-fold product of \mathbb{T} with itself, the n-torus. For a multi-index, let D^α denote the partial differentiation operator

$$D^\alpha = \frac{\partial^{\alpha_1}}{\partial z_1^{\alpha_1}} \cdots \frac{\partial^{\alpha_n}}{\partial z_n^{\alpha_n}},$$

where if $\alpha_j < 0$, $\partial^{\alpha_j} \partial z_j^{\alpha_j}$ is to be interpreted as $\partial^{\lvert \alpha_j \rvert} \partial z_j^{\lvert \alpha_j \rvert}$. Let $S(\mathbb{T}^n)$ denote $C^\infty(\mathbb{T}^n)$ with its usual Fréchet topology, in which a sequence of functions $\{f_n\}$ converges to f if $D^\alpha f_n \to D^\alpha f$ uniformly for all multi-indices α.

1. Show that the ring $\mathbb{C}[z_1^{\pm}, \ldots, z_n^{\pm}]$ of trigonometric polynomials (finite linear combinations of functions $z \mapsto z_1^{\alpha_1} \cdots z_n^{\alpha_n}$, with $\alpha \in \mathbb{Z}^n$) is dense in $S(\mathbb{T}^n)$. (This is a strengthening of the Weierstrass theorem, since if $f \in S(\mathbb{T}^n)$, you need to approximate not only f, but also all its derivatives, uniformly. Hint: given N, use the Weierstrass theorem to approximate all derivatives through order N to within $1/N$, then let N go to infinity.)

2. Let $S(\mathbb{Z}^n)$ denote the set of rapidly decreasing sequences $\{c_\alpha\}_{\alpha \in \mathbb{Z}^n}$ indexed by \mathbb{Z}^n. The “rapidly decreasing” condition means that for any integer k, $(1 + |\alpha|^2)^{k/2} c_\alpha$ is bounded in α. Show that $S(\mathbb{Z}^n)$ has a natural Fréchet space topology.

3. For $f \in S(\mathbb{T}^n)$, define its Fourier transform to be the sequence $\{c_\alpha\}_{\alpha \in \mathbb{Z}^n}$ given by

$$(\mathcal{F}f)(\alpha) = c_\alpha = \int_{\mathbb{T}^n} f(z) z_1^{-\alpha_1} \cdots z_n^{-\alpha_n} \, dz,$$

where dz is normalized Lebesgue measure with total mass 1. (Thus when $n = 1$, $dz = \frac{1}{2\pi} d\theta$ if $z = e^{i\theta}$.) Imitating the proof we gave in class in the case of \mathbb{R}^n, show that the Fourier transform \mathcal{F} is a continuous linear map from $S(\mathbb{T}^n)$ to $S(\mathbb{Z}^n)$.

4. Prove the Fourier inversion formula: that \mathcal{F} is a topological isomorphism and that for $f \in S(\mathbb{T}^n)$,

$$f(z) = \sum_\alpha (\mathcal{F}f)(\alpha) z_1^{\alpha_1} \cdots z_n^{\alpha_n}.$$
Hint: This is much easier than in the case of \mathbb{R}^n. Simply prove that the formula holds for $f \in \mathbb{C}[z_1^\pm, \cdots, z_n^\pm]$ and use part (1).

5. Deduce by duality that the Fourier transform gives a topological isomorphism from the space $\mathcal{S}'(T^n)$ of distributions on T^n to a Fréchet space $\mathcal{S}'(\mathbb{Z}^n)$ of “tempered sequences.” Identify the latter space explicitly.

6. A constant-coefficient partial differential operator T on T^n is simply a finite linear combination of the D^αs. Show that via Fourier transform, such an operator can be identified with multiplication by a polynomial in $\mathcal{F}T \in \mathbb{C}[z_1^\pm, \cdots, z_n^\pm]$ on $\mathcal{S}(T^n)$. Deduce that T is injective if and only if $\mathcal{F}T$ does not vanish on the lattice \mathbb{Z}^n.

7. Show that it is possible for T as in (5) to be injective but not surjective on $\mathcal{S}(T^n)$, but that this phenomenon doesn’t happen if $n = 1$. (Hint: Diophantine approximation.)