(2) Suppose \(f \) is differentiable at every number in \([-1, 1]\) and \(f'(1) = f'(-1) = 1 \) and assume that \(f(-1) = f(1) = 0 \).

Explain why \(f \) has at least one zero in \((-1, 1)\).

Explain why \(f' \) must have at least two zeros in \((-1, 1)\).

4.3 Consequence of the Mean Value Theorem

Definition 4.3.1. If \(f \) is a function defined on an interval \(I \), then any differentiable function \(F \) on \(I \) such that \(F'(x) = f(x) \) for every interior point \(x \) of \(I \) is called an antiderivative of \(f \).

Theorem 4.3.1. (a) Let \(f \) be continuous on an interval \(I \). If \(f'(x) \) exists and equals 0 for all interior points \(x \), then \(f \) is constant on \(I \).

(b) Let \(f \) and \(g \) be continuous on an interval \(I \). If \(f'(x) \) and \(g'(x) \) exist and are equal for each interior point \(x \) of \(I \), then \(f - g \) is constant on \(I \). In other words, there is a number \(C \) such that \(f(x) = g(x) + C \) for all \(x \) in \(I \).

Warning 4.3.1. Let \(f \) and \(g \) be defined on \(I = [-1, 0] \cup [2, 3] \) by

\[
 f(x) = \begin{cases}
 2 & \text{if } -1 \leq x \leq 0 \\
 x + 2 & \text{if } 2 \leq x < 3,
\end{cases}
\]

\[
 g(x) = \begin{cases}
 -3 & \text{if } -1 \leq x \leq 0 \\
 x + 4 & \text{if } 2 \leq x < 3.
\end{cases}
\]

Then \(f'(x) = g'(x) \) for each interior point \(x \) of \(I \), but there is no \(C \) such that \(f(x) = g(x) + C \) for all \(x \) in \(I \). The reason for this is that \(I \) is not an interval!

Definition 4.3.2. A function \(f \) is increasing on an interval \(I \) if \(f(x) < f(y) \) for all \(x, y \) in \(I \) with \(x < y \).

A function \(f \) is decreasing on an interval \(I \) if \(f(x) > f(y) \) for all \(x, y \) in \(I \) with \(x < y \).

Theorem 4.3.2. Let \(f \) be a continuous function on an interval \(I \) and differentiable at each interior point of \(I \).

(a) If \(f'(x) > 0 \) at each interior point of \(I \), then \(f \) is increasing on \(I \). Moreover, \(f \) is increasing on \(I \) if \(f'(x) > 0 \) except for a finite number of numbers \(x \) in \(I \).

(b) If \(f'(x) < 0 \) at each interior point of \(I \), then \(f \) is decreasing on \(I \). Moreover, \(f \) is decreasing on \(I \) if \(f'(x) < 0 \) except for a finite number of numbers \(x \) in \(I \).